# UTC TS391/A

# LINEAR INTEGRATED CIRCUIT

# LOW POWER SINGLE VOLTAGE COMPARATOR

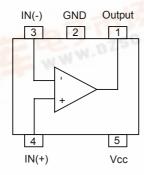
### **DESCRIPTION**

The UTC TS391/A consist of a low power voltage comparator designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

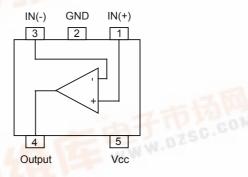
This comparator also a unique characteristic in that the input common-mode voltage range includes ground even though operated from a single power supply voltage.

### **FEATURES**

- \*Wide single supply voltage range or dual supplies +2V to +34V or  $\pm 1$ V to  $\pm 1$ 8V
- \*Very low supply current (0.2mA) independent of supply voltage (1 mW /comparator at +5V)
- \*Low input bias current: 25nA typ.
- \*Low input offset current:  $\pm 5$ nA typ.
- \*Low input offset voltage:  $\pm 1$ mV typ
- \*Input common-mode voltage range includes ground.
- \*Low output saturation voltage: 250mV typ.(Io=4mA).
- \*Differential input voltage range equal to the supply voltage.




### MARKING


| Part Number | Marking |
|-------------|---------|
| TS391       | S1      |
| TS391A      | SA      |

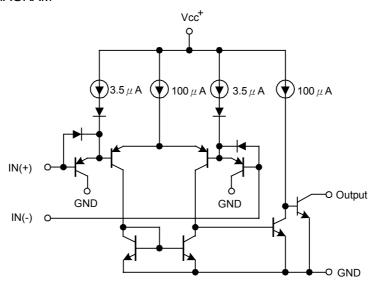
### PIN CONNECTIONS (top view)

TS391



# TS391A




# UTC

UNISONIC TECHNOLOGIES CO. LTD

QW-R104-003,A



# **BLOCK DIAGRAM**



## ABSOLUTE MAXIMUM RATINGS

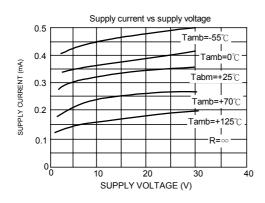
| ABOOLOTE IN VAINON TO ATTIVOO        |        |                |            |  |  |  |
|--------------------------------------|--------|----------------|------------|--|--|--|
| PARAMETER                            | SYMBOL | RATING         | UNIT       |  |  |  |
| Supply Voltage                       | Vcc    | $\pm$ 18 or 36 | V          |  |  |  |
| Differential Input Voltage           | Vid    | ±36            | V          |  |  |  |
| Input Voltage                        | Vi     | -0.3 ~ +36     | V          |  |  |  |
| Output Short-circuit to Ground 1)    |        | Infinite       |            |  |  |  |
| Power Dissipation 2)                 | Pd     | 500            | mW         |  |  |  |
| Operating Free Air Temperature Range | Topr   | -40 ~ +125     | $^{\circ}$ |  |  |  |
| Storage Temperature Range            | Tstg   | -65 ~ +150     | $^{\circ}$ |  |  |  |

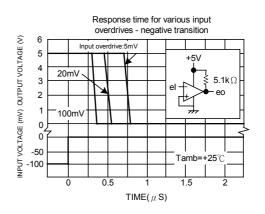
Short-circuit from the output to Vcc can cause excessive heating and eventual destruction. The maximum output current is approximately 20mA,independent of the magnitude of Vcc.

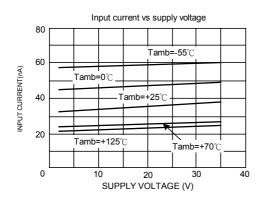
Tj=150°C, Tamb=25°C with Rthja=250°C/W for SOT25 Package.

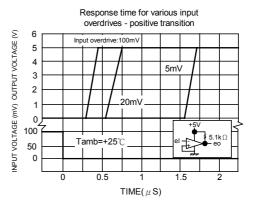
# LINEAR INTEGRATED CIRCUIT

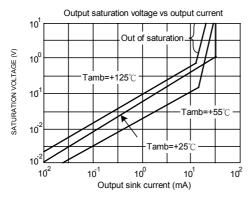
### **ELECTRICAL CHARACTERISTICS**


Vcc=5.0V, All voltage referenced to GND ,Tamb=25°C(unless otherwise specified)


| PARAMETER                     | SYMBOL            | TEST CONDITIONS                           | MIN | TYP | MAX      | UNITS      |
|-------------------------------|-------------------|-------------------------------------------|-----|-----|----------|------------|
| Input Offset Voltage 1) Vio   | Vio               | Tamb=+25℃                                 |     | 1   | 5        | mV         |
|                               | VIO               | Tmin.≤Tamb≤Tmax.                          |     |     | 9        | IIIV       |
| Input Bias Current 2)         | lib               | Tamb=+25℃                                 |     | 25  | 250      | nA         |
|                               |                   | Tmin.≤Tamb≤Tmax.                          |     |     | 400      |            |
| Input Offset Current          | lio               | Tamb=+25℃                                 |     | 5   | 50       | nA         |
|                               | 110               | Tmin.≤Tamb≤Tmax.                          |     |     | 150      |            |
| Large Signal Voltage Gain     | Gv                | Vcc=15V,R∟=15k,Vo=1 to 11V                | 50  | 200 |          | V/mV       |
| Supply Current Icc            | loo               | Vcc=5V,no load                            |     | 0.2 | 0.5      | mA         |
|                               | icc               | Vcc=30V,no load                           |     | 0.5 | 1.25     |            |
| Input Common Mode             | Vicm              | Tamb=+25℃                                 | 0   |     | Vcc -1.5 | mV         |
| Voltage Range 3)              | VICITI            | Tmin.≤Tamb≤Tmax.                          | 0   |     | Vcc -2   |            |
| Differential Input Voltage    | Vid               |                                           |     |     | Vcc      | mV         |
| Output sink current           | Isink             | Vid=-1V,Vo=1.5V                           | 6   | 16  |          | mA         |
| Low Level Output Voltage Vol. |                   | Vid=1V,Vcc=Vo=30V                         |     |     |          |            |
|                               | Tamb=+25℃         |                                           | 250 | 400 | mV       |            |
|                               | Tmin.≤Tamb≤Tmax.  |                                           |     | 700 |          |            |
| High Level Output Current     | Vid=1V,Vcc=Vo=30V |                                           |     |     |          |            |
|                               | Іон               | Tamb=+25℃                                 |     | 0.1 |          | nA         |
|                               | Tmin.≤Tamb≤Tmax.  |                                           |     | 1   | $\mu A$  |            |
| Response Time                 | tre               | RL=5.1kΩ to Vcc <sup>5)</sup>             |     | 1.3 |          | μ <b>s</b> |
| Large Signal Response<br>Time | trel              | Vi=TTL,Vref=+1.4V,RL=5.1k $\Omega$ to Vcc |     | 300 |          | ns         |


- 1.At output switch point, Vo=1.4V,Rs=0  $\Omega$  with Vcc from 5V to 30V and over the full input common-mode range(0V to Vcc 1.5V).
- 2.The direction of the input current is out of the IC due to the PN P input stage. This current is essentially constant, independent of the state of the output, so no loading charge exists on the reference or input lines.
- 3.The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V.The upper end of the common-mode voltage range is Vcc+ -1.5V,but either or both inputs can go to +30V without damage.
- 4.Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range the comparator will provide a proper output state.
  - The low input voltage state must not be less than -0.3V(or 0.3V below the negative power supply, if used).
- 5.The response time specified is for a 100mV input step with 5mV overdrive. For larger overdrive signals 300ns can be obtained.


# LINEAR INTEGRATED CIRCUIT


## TYPICAL PERFORMANCE CHARACTERISTICS











# UTC TS391/A LINEAR INTEGRATED CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC

UNISONIC TECHNOLOGIES CO. LTD