FEATURES

- Specified Break-Before-Make Switching
- Negative Signaling Capability: Maximum Swing From -2.75 V to $2.75 \mathrm{~V}\left(\mathrm{~V}_{+}=2.75 \mathrm{~V}\right)$
- Internal Shunt Switch Prevents Audible Click-and-Pop When Switching Between Two Sources (TS5A22364)
- Low ON-State Resistance (0.65 Ω Typical)
- Low Charge Injection
- Excellent ON-State Resistance Matching
- $2.3-\mathrm{V}$ to $5.5-\mathrm{V}$ Power Supply (V_{+})
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2500-V Human-Body Model
(A114-B, Class II)
- 1500-V Charged-Device Model (C101)
- 200-V Machine Model (A115-A)

APPLICATIONS

- Cell Phones
- PDAs
- Portable Instrumentation
- Audio Routing

YZP PACKAGE

Laser Marking View

YZP PACKAGE TERMINAL ASSIGNMENTS

\mathbf{D}	NO2	V $_{+}$	NO1
\mathbf{C}	COM2		COM1
\mathbf{B}	NC2		NC1
\mathbf{A}	IN2	GND	IN1
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$

DESCRIPTION/ORDERING INFORMATION

The TS5A22362 and TS5A22364 are single-pole double-throw (SPDT) analog switches designed to operate from 2.3 V to 5.5 V . The devices feature negative signal capability that allows signals below ground to pass through the switch without distortion. Additionally, the TS5A22364 includes an internal shunt switch, which automatically discharges any capacitance at the NC or NO terminals when they are unconnected to COM. This reduces the audible click/pop noise when switching between two sources. The break-before-make feature prevents signal distortion during the transferring of a signal from one path to another. Low ON-state resistance, excellent channel-to-channel ON-state resistance matching, and minimal total harmonic distortion (THD) performance are ideal for audio applications.

[^0]SCDS261-MARCH 2008

ORDERING INFORMATION

TA	PACKAGE ${ }^{(1)(2)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING ${ }^{(3)}$
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	NanoFree ${ }^{\text {TM }}-$ WCSP (DSBGA) YZP (Pb-free)	Tape and reel	TS5A22362YZPR	392
			TS5A22364YZPR	382
	MSOP (VSSOP) - DGS	Tape and reel	TS5A22362DGSR	39R
			TS5A22364DGSR	38R
	SON - DRC	Tape and reel	TS5A22362DRCR	ZVG
			TS5A22364DRCR	ZVF

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.
(3) YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition ($1=\mathrm{SnPb}, \bullet=\mathrm{Pb}$-free).

SUMMARY OF CHARACTERISTICS

$\mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Configuration	2:1 Multiplexer/Demultiplexer ($2 \times$ SPDT)
Number of channels	2
ON-state resistance ($\mathrm{r}_{\text {on }}$)	0.65Ω
ON-state resistance match ($\Delta \mathrm{r}_{\text {on }}$)	0.023Ω
ON-state resistance flatness ($\mathrm{ron}_{\text {oflat }}$)	0.18Ω
Turn-on/turn-off time (ton/toff)	$80 \mathrm{~ns} / 70 \mathrm{~ns}$
Break-before-make time ($\mathrm{t}_{\text {BBM }}$)	7 ns
Charge injection (Q_{C})	150 pC
Bandwidth (BW)	17 MHz
OFF isolation ($\mathrm{O}_{\text {ISO }}$)	-66 dB at 100 kHz
Crosstalk ($\mathrm{X}_{\text {TALK }}$)	-75 dB at 100 kHz
Total harmonic distortion (THD)	0.01\%
Leakage current ($\mathrm{I}_{\mathrm{NO}(\mathrm{OFF}), \mathrm{I}_{\text {NC(OFF) }} \text {) }}$	TBD nA
Package options	10-pin WCSP (YZP), 10-pin VSSOP (DGS), and 10-pin SON (DRC)

FUNCTION TABLE

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
H	OFF	ON

APPLICATION BLOCK DIAGRAMS

Figure 1. TS5A22364 Application Block Diagram

Shunt Switch (TS5A22364)

The $50-\Omega$ shunt switches on the TS5A22364 automatically discharge any capacitance at the NC or NO terminals when they are unconnected to COM. This reduces audible click-and-pop sounds that occur when switching between audio sources. Audible clicks and pops are caused when a step DC voltage is switched into the speaker. By automatically discharging the side that is not connected, any residual DC voltage is removed, thereby reducing the clicks and pops.

Figure 2. TS5A22362 Application Block Diagram

Negative Signaling Capacity

The TS5A22362 and TS5A22364 dual SPDT switches feature negative signal capability that allows signals below ground to pass through without distortion. These analog switches operate from a single $+2.3-\mathrm{V}$ to $+5.5-\mathrm{V}$ supply. The input/output signal swing of the device is dependant of the supply voltage V_{+}: the devices pass signals as high as V_{+}and as low as $\mathrm{V}_{+}-5.5 \mathrm{~V}$, including signals below ground with minimal distortion.
Table 1 shows the input/output signal swing the user can get with different supply voltages.

SCDS261-MARCH 2008
Table 1. INPUT/OUTPUT SIGNAL SWING

SUPPLY VOLTAGE, \mathbf{V}_{+}	MINIMUM $\left(\mathbf{V}_{\mathbf{N c}}, \mathbf{V}_{\mathbf{N O}}, \mathbf{V}_{\mathbf{C O M}}\right)=\mathbf{V}_{+}-\mathbf{5 . 5}$	MAXIMUM $\left(\mathbf{V}_{\mathbf{N C}}, \mathbf{V}_{\mathbf{N O}}, \mathbf{V}_{\mathbf{C O M}}\right)=\mathbf{V}_{+}$
5.5 V	0 V	5.5 V
4.2 V	-1.3 V	4.2 V
3.3 V	-2.2 V	3.3 V
3 V	-2.5 V	3 V
2.5 V	-3 V	2.5 V

ABSOLUTE MINIMUM AND MAXIMUM RATINGS ${ }^{(1)(2)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{+}	Supply voltage range ${ }^{(3)}$		-0.5	6	V
V_{NC} V_{NO} $\mathrm{V}_{\mathrm{COM}}$	Analog voltage range ${ }^{(3)(4)(5)}$		$\mathrm{V}_{+}-6$	$\mathrm{V}_{+}+0.5$	V
$\mathrm{l}_{\text {I/OK }}$	Analog port diode current	$\mathrm{V}_{+}<\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}<0$	-50	50	mA
I_{NC}	ON-state switch current	$\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}=0$ to V_{+}	-150	150	mA
$\begin{array}{\|l\|l} \hline I_{\mathrm{NO}} \\ \mathrm{I}_{\mathrm{COM}} \\ \hline \end{array}$	ON-state peak switch current ${ }^{(6)}$		-300	300	
V_{1}	Digital input voltage range		-0.5	6.5	V
I_{IK}	Digital input clamp current ${ }^{(3)(4)}$	$\mathrm{V}_{10}<\mathrm{V}_{1}<0$	-50	50	mA
$\begin{array}{\|l\|} \hline I_{+} \\ I_{\mathrm{GND}} \end{array}$	Continuous current through V_{+}or GND		-100	100	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(3) All voltages are with respect to ground, unless otherwise specified.
(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(5) This value is limited to 5.5 V maximum.
(6) Pulse at 1 -ms duration $<10 \%$ duty cycle

THERMAL IMPEDANCE RATINGS

				UNIT
θ_{JA}	Package thermal impedance ${ }^{(1)}$	DGS package	56.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DRC package	165.36	
		YZP package	93	

[^1]
ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY ${ }^{(1)}$

$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at V_{+}or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCDS261-MARCH 2008

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY (continued)

$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 20 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.5 V		44	80	
				Full	2.3 V to 2.7 V			80	ns
Turn-off time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { See Figure } 20 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.5 V		22	70	ns
				Full	2.3 V to 2.7 V			70	
Break-beforemake time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 21	$25^{\circ} \mathrm{C}$	2.5 V	1	7		ns
Charge injection	Qc	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ See Figure 26	$25^{\circ} \mathrm{C}$	2.5 V		150		pC
NC, NO OFF capacitance (TS5A22362 only)	$\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$, $\mathrm{C}_{\text {NO(OFF) }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	See Figure 19	$25^{\circ} \mathrm{C}$	2.5 V		70		pF
NC, NO, COM ON capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\begin{aligned} & V_{\text {Com }}=V_{+} \text {or GND, } \\ & \text { Switch ON, } f=10 \mathrm{MHz} \end{aligned}$	See Figure 19	$25^{\circ} \mathrm{C}$	2.5 V		370		pF
Digital input capacitance	C_{1}	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND	See Figure 19	$25^{\circ} \mathrm{C}$	2.5 V		2.6		pF
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega,-3 \mathrm{~dB}$	See Figure 21	$25^{\circ} \mathrm{C}$	2.5 V		17		MHz
OFF isolation	$\mathrm{O}_{\text {ISO }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	$\mathrm{f}=100 \mathrm{kHz},$ See Figure 24	$25^{\circ} \mathrm{C}$	2.5 V		-66		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	$\mathrm{f}=100 \mathrm{kHz},$ See Figure 25	$25^{\circ} \mathrm{C}$	2.5 V		-75		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \text {, } \end{aligned}$ See Figure 27	$25^{\circ} \mathrm{C}$	2.5 V		0.01		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{1}=\mathrm{V}+$ or GND		$25^{\circ} \mathrm{C}$	2.7 V		0.2	1.1	$\mu \mathrm{A}$
				Full				1.3	
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}-5.5 \mathrm{~V}$		Full	2.7 V			3.3	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY ${ }^{(1)}$

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(2) All unused digital inputs of the device must be held at V_{+}or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCDS261-MARCH 2008

ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY (continued)

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY ${ }^{(1)}$

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

[^2]SCDS261-MARCH 2008

ELECTRICAL CHARACTERISTICS FOR 5-V SUPPLY (continued)

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\begin{aligned} & C_{L}=35 \mathrm{pF}, \\ & \text { See Figure } 20 \end{aligned}$	$25^{\circ} \mathrm{C}$	5 V		27	80	
				Full	4.5 V to 5.5 V			80	ns
Turn-off time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$$\text { See Figure } 20$	$25^{\circ} \mathrm{C}$	5 V		13	70	ns
				Full	4.5 V to 5.5 V			70	
Break-beforemake time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 21	$25^{\circ} \mathrm{C}$	3.3 V	1	3.5		ns
Charge injection	Qc	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{R}_{\mathrm{GEN}}=0, \end{aligned}$	$C_{L}=1 \mathrm{nF},$ See Figure 26	$25^{\circ} \mathrm{C}$	5 V		10		pC
NC, NO OFF capacitance (TS5A22362 only)	$\mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{C}_{\text {NO(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} \text {or } \\ & \mathrm{V}_{+}-5.5 \mathrm{~V}, \end{aligned}$	See Figure 19	$25^{\circ} \mathrm{C}$	5 V		70		pF
NC, NO, COM ON capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{+}$or GND,	See Figure 19	$25^{\circ} \mathrm{C}$	5 V		370		pF
Digital input capacitance	C_{1}	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND	See Figure 19	$25^{\circ} \mathrm{C}$	5 V		2.6		pF
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	See Figure 21	$25^{\circ} \mathrm{C}$	5 V		18.3		MHz
OFF isolation	$\mathrm{O}_{\text {ISO }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	$\mathrm{f}=100 \mathrm{kHz},$ See Figure 24	$25^{\circ} \mathrm{C}$	5 V		-70		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	$\mathrm{f}=100 \mathrm{kHz},$ See Figure 25	$25^{\circ} \mathrm{C}$	5 V		-78		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \text { See Figure } 27 \end{aligned}$	$25^{\circ} \mathrm{C}$	5 V		0.009		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{1}=\mathrm{V}_{+}$or GND		$25^{\circ} \mathrm{C}$	5.5 V		0.2	1.3	$\mu \mathrm{A}$
				Full				3.5	
		$\mathrm{V}_{1}=\mathrm{V}_{+}-5.5 \mathrm{~V}$		Full				5	

TYPICAL PERFORMANCE

Figure 3. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {com }}$

Figure 5. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {com }}\left(\mathrm{V}_{+}=3.3 \mathrm{~V}\right)$

Figure 7. Leakage Current vs Temperature

Figure 4. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {com }}\left(\mathrm{V}_{+}=2.7 \mathrm{~V}\right)$

Figure 6. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {com }}\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 8. Insertion Loss

TYPICAL PERFORMANCE (continued)

Figure 9. OFF Isolation vs Frequency

Figure 11. Crosstalk ($\mathrm{V}_{+}=3.3 \mathrm{~V}$)

Figure 13. Power-Supply Current vs \mathbf{V}_{+}

Figure 10. Charge Injection $\left(Q_{c}\right)$ vs $\mathrm{V}_{\text {com }}$

Figure 12. Total Harmonic Distortion vs Frequency

Figure 14. t_{ON} and $\mathrm{t}_{\text {OFF }}$ vs Supply Voltage

TYPICAL PERFORMANCE (continued)

Figure 15. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs Temperature (2.5-V Supply)

PARAMETER MEASUREMENT INFORMATION

Figure 16. ON-State Resistance (ron)

Figure 17. OFF-State Leakage Current
(ICOM(OFF), $I_{\text {NO(OFF) }}$

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 18. ON-State Leakage Current
(ICOM(ON), $I_{\text {NO(ON) }}$)

Figure 19. Capacitance
($\mathrm{C}_{1}, \mathrm{C}_{\text {COM(OFF) }}, \mathrm{C}_{\text {COM(ON) }}, \mathrm{C}_{\text {NO(OFF) }}, \mathrm{C}_{\text {NO(ON) }}$)

SCDS261-MARCH 2008

PARAMETER MEASUREMENT INFORMATION (continued)

A. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.

Figure 20. Turn-On (t_{ON}) and Turn-Off Time ($\mathrm{t}_{\mathrm{OFF}}$)

A. $\quad C_{L}$ includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.

Figure 21. Break-Before-Make Time (t_{BB})
(TS5A22362 Only)

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 22. Break-Before-Make Time ($\mathrm{t}_{\text {ввм }}$)
(TS5A22364 Only)
A. $\quad C_{L}$ includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.

Figure 23. Bandwidth (BW)

SCDS261-MARCH 2008

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 24. OFF Isolation ($\mathrm{O}_{\mathrm{IsO}}$)

Figure 25. Crosstalk ($\mathrm{X}_{\text {taLK }}$)

PARAMETER MEASUREMENT INFORMATION (continued)

A. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.

Figure 26. Charge Injection $\left(Q_{C}\right)$

A. C_{L} includes probe and jig capacitance.

Figure 27. Total Harmonic Distortion (THD)
www.ti.com

PACKAGING INFORMATION

Orderable Device	Status $^{(1)}$	Package Type	Package Drawing	Pins Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$	
TS5A22362DGSR	PREVIEW	MSOP	DGS	10	2500	TBD	Call TI	Call TI
TS5A22362DRCR	PREVIEW	SON	DRC	10	3000	TBD	Call TI	Call TI
TS5A22362YZPR	PREVIEW	WCSP	YZP	10	3000	TBD	Call TI	Call TI
TS5A22364DGSR	ACTIVE	MSOP	DGS	10	2500	 no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS5A22364DGSRG4	ACTIVE	MSOP	DGS	10	2500	 no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION
www.ti.com

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 (mm)	B0 (mm)	K0 (mm)	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
TS5A22364DGSR	MSOP	DGS	10	2500	330.0	13.0	5.3	3.4	1.4	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A22364DGSR	MSOP	DGS	10	2500	358.0	335.0	35.0

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-187 variation BA.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. NanoFree ${ }^{\text {TM }}$ package configuration.
D. This package is a lead-free solder ball design.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Small Outline No-Lead (SON) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance.
See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
Metalized features are supplier options and may not be on the package.

THERMAL PAD MECHANICAL DATA

THERMAL INFORMATION
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.
The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View
NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

DRC (S-PVSON-N10)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video \& Imaging Wireless	www.ti.com/video www.ti.com/wireless
	ailing Address: Texas Copyrigh	st Office Box 65530 Instruments Incorp	, Texas 75265

[^0]: 找 (a)PDF
 Piease be aware that an important notice concerning availability, standard warranty, and use in critical applications of
 Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^1]: (1) The package thermal impedance is calculated in accordance with JESD 51-7.

[^2]: (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 (2) All unused digital inputs of the device must be held at V_{+}or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

