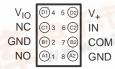


捷多邦,专业PCB打样工厂,24小时加急出货TS5A6542 0.75-Ω SPDT ANALOG SWITCH WITH INPUT LOGIC TRANSLATION

SCDS230-APRIL 2006

FEATURES


- Specified Break-Before-Make Switching
- Low ON-State Resistance (0.75 Ω Max)
- Control Inputs Referenced to V_{IO}
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 2.25-V to 5.5-V Power Supply (V_)
- 1.65-V to 1.95-V Logic Supply (V₁₀)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 4000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
 - 400-V Machine Model (A115-A)

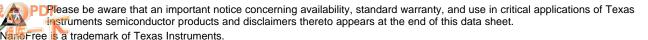
- COM Port to GND
 - 8000-V Human-Body Model (A114-B, Class II)
 - ±15-kV Contact Discharge (IEC 61000-4-2)

APPLICATIONS

- Cell Phones
- PDAs
- Portable Instrumentation

YZT PACKAGE (BOTTOM VIEW)

DESCRIPTION/ORDERING INFORMATION


The TS5A6542 is a single-pole double-throw (SPDT) analog switch that is designed to operate from 2.25 V to 5.5 V. The device offers a low ON-state resistance with an excellent channel-to-channel ON-state resistance matching, and the break-before-make feature to prevent signal distorion during the transferring of a signal from one path to another. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

The TS5A6542 has a separate logic supply pin (V_{IO}) operates from 1.65 V to 1.95 V. V_{IO} powers the control circuitry, which allows the TS5A6542 to be controlled by 1.8-V signals.

ORDERING INFORMATION

T_A	PACKAGE ⁽¹⁾	FRI F	ORDERABLE PART NUMBER	TOP-SIDE MARKING(2)
-40°C to 85°C	NanoFree [™] – WCSP (DSBGA) 0.23-mm Large Bump – YZT (Pb-free) 0.625-mm max height	Tape and reel	TS5A6542YZTR	JH7

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

⁽²⁾ YZT: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).

SUMMARY OF CHARACTERISTICS(1)

Configuration	2:1 Multiplexer/Demultiplexer (1 × SPDT)				
Number of channels	1				
ON-state resistance (r _{on})	0.75 Ω max				
ON-state resistance match (Δr _{on})	0.1 Ω max				
ON-state resistance flatness [(r _{on(flat)}]	0.1 Ω max				
Turn-on/turn-off time (t _{ON} /t _{OFF})	25 ns/20 ns				
Charge injection (Q _C)	15 pC				
Bandwidth (BW)	43 MHz				
OFF isolation (O _{ISO})	-63 dB at 1 MHz				
Crosstalk (X _{TALK})	-63 dB at 1 MHz				
Total harmonic distortion (THD)	0.004%				
Leakage current [I _{NO(OFF)} /I _{NC(OFF)}]	20 nA				
Package option	8-pin WCSP				

(1)
$$V_+ = 5 \text{ V}, T_A = 25^{\circ}\text{C}$$

FUNCTION TABLE

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

Absolute Maximum Ratings (1)(2)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{+} V_{IO}	Supply voltage range (3)		-0.5	6.5	V
V _{NC} V _{NO} V _{COM}	Analog voltage range ⁽³⁾⁽⁴⁾⁽⁵⁾	-0.5	V ₊ + 0.5	V	
I _{I/OK}	Analog port diode current ⁽⁶⁾	V_{NO} , $V_{COM} < 0$ or V_{NO} , $V_{COM} > V_{+}$	-50	50	mA
I _{NC}	On-state switch current		-200	200	
I _{NO} I _{COM}	On-state peak switch current ⁽⁷⁾	V_{NO} , $V_{COM} = 0$ to V_{+}	-400	400	mA
VI	Digital input voltage range (3)(4)		-0.5	6.5	V
I _{IK}	Digital input clamp current	V _I < 0	-50		mA
I ₊ I _{GND}	Continuous current through V ₊ or GND	-100	100	mA	
θ_{JA}	Package thermal impedance (8)		102	°C/W	
T _{stg}	Storage temperature range		-65	150	°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (5) This value is limited to 5.5 V maximum.
 (6) Requires clamp diodes on analog port to V₊
- (7) Pulse at 1-ms duration <10% duty cycle
- (8) The package thermal impedance is calculated in accordance with JESD 51-7.

SCDS230-APRIL 2006

Electrical Characteristics for 5-V Supply⁽¹⁾

 $V_+ = 4.5 \text{ V}$ to 5.5 V, $V_{IO} = 1.65 \text{ V}$ to 1.95 V, $T_A = -40 ^{\circ}\text{C}$ to 85 °C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDIT	TONS	T _A	٧,	MIN	TYP	MAX	UNIT
Analog Switch					•			•	
Analog signal range	$V_{\rm COM}, \ V_{\rm NO}$					0		V ₊	V
ON-state resistance	r _{on}	V_{NO} or $V_{NC} = 2.5 \text{ V}$, $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 14	25°C Full	4.5 V		0.5	0.75	Ω
ON-state resistance match between channels	$\Delta r_{\sf on}$	V_{NO} or $V_{NC} = 2.5 \text{ V}$, $I_{COM} = -100 \text{ mA}$,	Switch ON, See Figure 14	25°C Full	4.5 V		0.05	0.1	Ω
		$0 \le (V_{NO} \text{ or } V_{NC}) \le V_+, \\ I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 14	25°C			0.1		
ON-state resistance flatness	r _{on(flat)}	V_{NO} or $V_{NC} = 1 \text{ V}$, 1.5 V, 2.5 V,	Switch ON,	25°C	4.5 V		0.1	0.25	Ω
		I _{COM} = -100 mA, See Figure 14	Full				0.25		
		$V_{NO} = 1 \text{ V}, 4.5 \text{ V}, V_{COM} = 4.5 \text{ V}, 1 \text{ V},$		25°C		-20	2	20	
NO, NC OFF leakage current	I _{NO(OFF)} , I _{NC(OFF)}	V _{NC} = Open, or V _{NO} = 1 V, 4.5 V, V _{COM} = 4.5 V, 1 V, V _{NO} = Open,	Switch OFF, See Figure 15	Full	5.5 V	-100		100	nA
		V _{NO} = 1 V, 4.5 V,		25°C		-20	2	20	
NC, NO ON leakage current	I _{NO(ON)}		Switch ON, See Figure 16	Full	5.5 V	-200		200	nA
		V _{COM} = 1 V, 4.5 V,		25°C		-20	2	20	
COM ON leakage current	$I_{COM(ON)} \begin{tabular}{ll} V_{NO} and $V_{NC} = Op \\ or \\ $V_{COM} = 1$ V, 4.5 V \\ V_{NO} or $V_{NC} = Ope \\ \end{tabular}$		See Figure 16	Full	5.5 V	-200		200	nA
Digital Control Input (IN) ⁽²⁾								
Input logic high	V_{IH}	V _{IO} = 1.65 V to 1.95 V		Full		$\begin{array}{c} 0.65 \\ \times V_{IO} \end{array}$		V _{IO}	V
Input logic low	V_{IL}	V _{IO} = 1.65 V to 1.95 V		Full		0		$\begin{array}{c} 0.35 \\ \times V_{IO} \end{array}$	V
Input leakage current	I _{IH} , I _{IL}	V _I = V _{IO} or 0		25°C Full	5.5 V	-2 -20		20	nA

 ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 (2) All unused digital inputs of the device must be held at V_{IO} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

TS5A6542 0.75- Ω SPDT ANALOG SWITCH WITH INPUT LOGIC TRANSLATION

Electrical Characteristics for 5-V Supply⁽¹⁾ (continued)

 $V_+ = 4.5 \text{ V}$ to 5.5 V, $V_{IO} = 1.65 \text{ V}$ to 1.95 V, $T_A = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST C	ONDITIONS	T _A	V+	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	t _{ON}	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 18	25°C Full	5 V 4.5 V	1	12.5	25 30	ns
		$V_{COM} = V_+,$	$C_1 = 35 \text{ pF},$	25°C	4.5 V	1	9.5	20	
Turn-off time	t _{OFF}	$R_L = 50 \Omega$	See Figure 18	Full	4.5 V			25	ns
Break-before-make	t _{BBM}	$V_{NC} = V_{NO} = V_{+}/2,$	C _L = 35 pF,	25°C	5 V	1	5	10	ns
time	RRM	$R_L = 50 \Omega$,	See Figure 19	Full	4.5 V	1		12	110
Charge injection	$Q_{\mathbb{C}}$	$V_{GEN} = 0,$ $R_{GEN} = 0,$	$C_L = 1 \text{ nF},$ See Figure 23	25°C	5 V		15		рС
NO OFF capacitance	C _{NO(OFF)}	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 17	25°C	5 V		37		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V _{NC} or V _{NO} = V ₊ or GND, Switch ON,	See Figure 17	25°C	5 V		130		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 17	25°C	5 V		130		pF
Digital input capacitance	C _I	$V_I = V_{IO}$ or GND,	See Figure 17	25°C	5 V		6.5		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	5 V		43		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 1 MHz,	See Figure 21	25°C	5 V		-63		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, f = 1 MHz,	See Figure 22	25°C	5 V		-63		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 24	25°C	5 V		0.004		%
Supply					•	•		'	
Positive supply		V V as CND		25°C	5 5 V		5.5	100	^
current	I ₊	$V_I = V_{IO}$ or GND		Full	5.5 V			750	nA

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

$\begin{array}{c} \textbf{TS5A6542}\\ \textbf{0.75-}\Omega \ \textbf{SPDT ANALOG SWITCH}\\ \textbf{WITH INPUT LOGIC TRANSLATION} \end{array}$

SCDS230-APRIL 2006

Electrical Characteristics for 3.3-V Supply⁽¹⁾

 $V_{+} = 3$ V to 3.6 V, $V_{IO} = 1.65$ V to 1.95 V, $T_{A} = -40^{\circ}$ C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDIT	TONS	T _A	V ₊	MIN	TYP	MAX	UNIT	
Analog Switch										
Analog signal range	${\sf V_{COM}}, {\sf V_{NO}}$					0		V ₊	V	
ON-state resistance	2222	V_{NO} or $V_{NC} = 2 V$,	Switch ON,	25°C	3 V		0.75	0.9	Ω	
ON-State resistance	r _{on}	$I_{COM} = -100 \text{ mA},$	See Figure 14	Full	3 V			1.2	52	
ON-state resistance	A	V_{NO} or $V_{NC} = 2 \text{ V}, 0.8 \text{ V},$	Switch ON,	25°C	2.1/		0.1	0.15	0	
match between channels	$\Delta r_{\sf on}$	$I_{COM} = -100 \text{ mA},$	See Figure 14	Full	3 V			0.15	Ω	
ON-state resistance	_	$0 \leq (V_{NO} \text{ or } V_{NC}) \leq V_+,$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 14	25°C	2.1/		0.2		Ω	
flatness	r _{on(flat)}	V_{NO} or $V_{NC} = 0.8 \text{ V}, 2 \text{ V},$		25°C	3 V	0.1	0.3	22		
			See Figure 14	Full				0.3		
		$V_{NO} = 1 \text{ V}, 3 \text{ V},$		25°C		-20	2	20	nA	
NO, NC OFF leakage current	I _{NO(OFF)} , I _{NC(OFF)}	$V_{COM} = 3 \text{ V}, 1 \text{ V}, \ V_{NC} = \text{Open}, \ \text{or} \ V_{NC} = 1 \text{ V}, 3 \text{ V}, \ V_{COM} = 3 \text{V}, 1 \text{ V}, \ V_{NO} = \text{Open}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Switch OFF, See Figure 15	Full	3.6 V	-50		50		
		V _{NO} = 1 V, 3 V,		25°C		-10	2	10		
NC, NO ON leakage current	I _{NO(ON)}	$\begin{array}{c} V_{NC} \text{ and } V_{COM} = Open,\\ \text{or}\\ V_{NC} = 1 \text{ V}, 3 \text{ V},\\ V_{NO} \text{ and } V_{COM} = Open, \end{array}$	Switch ON, See Figure 16	Full	3.6 V	-30		30	nA	
		$V_{COM} = 1 V$		25°C		-10	2	10		
COM ON leakage current	I _{COM(ON)}	V_{NO} and V_{NC} = Open, or V_{COM} = 3 V, V_{NO} and V_{NC} = Open,	See Figure 16	Full	3.6 V3			30	nA	
Digital Control Input (IN) ⁽²⁾									
Input logic high	V_{IH}	V _{IO} = 1.65 V to 1.95 V		Full		0.65 × V _{IO}		V _{IO}	V	
Input logic low	V_{IL}	V _{IO} = 1.65 V to 1.95 V		Full		0		$\begin{array}{c} 0.35 \\ \times V_{IO} \end{array}$	V	
Input leakage current	I _{IH} , I _{IL}	$V_{I} = V_{IO}$ or 0		25°C	3.6 V	-2		2	nA	
pat loakago ourloit	'IH' 'IL	1 10 01 0	VI = VIO OI U		0.0 .	-20		20	IIA	

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

⁽²⁾ All unused digital inputs of the device must be held at V_{IO} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

TS5A6542 0.75- Ω SPDT ANALOG SWITCH WITH INPUT LOGIC TRANSLATION

Electrical Characteristics for 3.3-V Supply⁽¹⁾ (continued)

 $V_{+} = 3 \text{ V to } 3.6 \text{ V}, V_{IO} = 1.65 \text{ V to } 1.95 \text{ V}, T_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (unless otherwise noted)}$

PARAMETER	SYMBOL	TEST C	ONDITIONS	T _A	V+	MIN	TYP	MAX	UNIT
Dynamic	•								
Turn-on time	t _{ON}	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 18	25°C Full	3.3 V 3 V	5	15	30 35	ns
Turn-off time	t _{OFF}	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 18	25°C Full	3.3 V 3 V	1	9	20	ns
Break-before-make time	t _{BBM}	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{1} = 50 \Omega,$	C _L = 35 pF, See Figure 19	25°C	3.3 V	1	8	13	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	Full 25°C	3 V 3.3V	1	6.5	15	рС
NO OFF capacitance	C _{NO(OFF)}	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 17	25°C	3.3 V		38		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V _{NC} or V _{NO} = V ₊ or GND, Switch ON,	See Figure 17	25°C	3.3 V		133		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 17	25°C	3.3 V		133		pF
Digital input capacitance	C _I	$V_I = V_{IO}$ or GND,	See Figure 17	25°C	3.3 V		6.5		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	3.3 V		42		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 1 MHz,	See Figure 21	25°C	3.3 V		-63		dB
Crosstalk	X _{TALK}	$R_L = 50 \ \Omega,$ f = 1 MHz,	See Figure 22	25°C	3.3 V		-63		dB
Total harmonic distortion	THD	$R_L = 600 \ \Omega,$ $C_L = 50 \ pF,$	f = 20 Hz to 20 kHz, See Figure 24	25°C	3.3 V		0.004		%
Supply									
Positive supply current	I ₊	$V_I = V_{IO}$ or GND		25°C Full	3.6 V		10	50 300	nA

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TS5A6542 $\mathbf{0.75}\text{-}\Omega$ SPDT ANALOG SWITCH WITH INPUT LOGIC TRANSLATION

SCDS230-APRIL 2006

Electrical Characteristics for 2.5-V Supply⁽¹⁾

 $V_+ = 2.25$ V to 2.75 V, $V_{IO} = 1.65$ V to 1.95 V, $T_A = -40$ °C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDIT	TIONS	TA	٧,	MIN	TYP	MAX	UNIT	
Analog Switch				I.	II.	1				
Analog signal range	$V_{\rm COM}, \ V_{\rm NO}$					0		V ₊	V	
ON-state resistance	r	V_{NO} or $V_{NC} = 1.8 \text{ V}$,	Switch ON,	25°C	2.25 V		1	1.3	Ω	
ON-State resistance	r _{on}	$I_{COM} = -100 \text{ mA},$	See Figure 14	Full	2.25 V			1.6	22	
ON-state resistance	۸	V_{NO} or $V_{NC} = 1.8 \text{ V}$,	Switch ON,	25°C	2.25.1/		0.15	0.2	0	
match between channels	$\Delta r_{\sf on}$	$I_{COM} = -100 \text{ mA},$	See Figure 14	Full	2.25 V			0.2	Ω	
ON-state resistance		$\begin{array}{l} 0 \leq (V_{NO} \text{ or } V_{NC}) \leq V_+, \\ I_{COM} = -100 \text{ mA}, \end{array}$	Switch ON, See Figure 14	25°C			0.5			
flatness	r _{on(flat)}	V_{NO} or $V_{NC} = 0.8 \text{ V}, 1 \text{ V},$	Switch ON,	25°C	2.25 V		0.25	0.5	Ω	
		$I_{COM} = -100 \text{ mA},$	See Figure 14	Full				0.6		
		$V_{NO} = 0.5 \text{ V}, 2.2 \text{ V},$		25°C		-20	2	20		
NO, NC OFF leakage current	I _{NO(OFF)} , I _{NC(OFF)}	$\begin{aligned} & \text{V}_{\text{COM}} = 2.2 \text{ V}, 0.5 \text{ V}, \\ & \text{V}_{\text{NC}} = \text{Open}, \\ & \text{or} \\ & \text{V}_{\text{NC}} = 0.5 \text{ V}, 2.2 \text{ V}, \\ & \text{V}_{\text{COM}} = 2.2 \text{ V}, 0.5 \text{ V}, \\ & \text{V}_{\text{NO}} = \text{Open}, \end{aligned}$	Switch OFF, See Figure 15	Full	2.75 V	-50		50	nA	
		$V_{NO} = 0.5 \text{ V}, 2.2 \text{ V},$		25°C		-10	2	10		
NC, NO ON leakage current	I _{NO(ON)}	V_{NC} and V_{COM} = Open, or V_{NC} = 2.2 V, 0.5 V, V_{NO} and V_{COM} = Open,	Switch ON, See Figure 16	Full	2.75 V	-20		20	nA	
		$V_{COM} = 0.5 \text{ V},$		25°C		-10	2	10		
COM ON leakage current	V_{NO} and V_{NC} = Open,		Switch ON, See Figure 16	Full	2.75 V	-20		20	nA	
Digital Control Input (IN) ⁽²⁾									
Input logic high	V_{IH}	V _{IO} = 1.65 V to 1.95 V		Full		$\begin{array}{c} 0.65 \\ \times V_{IO} \end{array}$		V _{IO}	V	
Input logic low	V_{IL}	V _{IO} = 1.65 V to 1.95 V		Full		0		$\begin{array}{c} 0.35 \\ \times V_{IO} \end{array}$	V	
Input leakage current	I _{IH} , I _{IL}	$V_I = V_{IO}$ or 0		25°C	2.75 V	-2		2	nA	
,	1117 112	1 10		Full	_	-20		20		

 ⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
 (2) All unused digital inputs of the device must be held at V_{IO} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

TS5A6542 0.75- Ω SPDT ANALOG SWITCH WITH INPUT LOGIC TRANSLATION

Electrical Characteristics for 2.5-V Supply⁽¹⁾ (continued)

 V_{+} = 2.25 V to 2.75 V, V_{IO} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted)

SYMBOL	TEST CONDITIONS		T _A	V+	MIN	TYP	MAX	UNIT
							·	
t _{ON}	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 18	25°C Full	2.5 V	5	20	35 40	ns
t _{OFF}	V _{COM} = V ₊ ,	C _L = 35 pF,	25°C	2.5 V	2	10	20	ns
	_		-				_	
t_{BBM}	$\begin{aligned} &V_{NC} = V_{NO} = V_{+}/2, \\ &R_{L} = 50 \ \Omega, \end{aligned}$	C _L = 35 pF, See Figure 19	25°C Full	2.5 V 2.25 V	1	11	20 25	ns
Q_{C}	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 23	25°C	2.5 V		5		рС
C _{NO(OFF)}	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 17	25°C	2.5 V		38		pF
C _{NC(ON)} , C _{NO(ON)}	V _{NC} or V _{NO} = V ₊ or GND, Switch ON,	See Figure 17	25°C	2.5 V		135		pF
C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 17	25°C	2.5 V		135		pF
C _I	$V_I = V_{IO}$ or GND,	See Figure 17	25°C	2.5 V		6.5		pF
BW	$R_L = 50 \Omega$, Switch ON,	See Figure 20	25°C	2.5 V		40		MHz
O _{ISO}	$R_L = 50 \Omega$, f = 1 MHz,	See Figure 21	25°C	2.5 V		-63		dB
X _{TALK}	$R_L = 50 \Omega$, f = 1 MHz,	See Figure 22	25°C	2.5 V		-63		dB
THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 24	25°C	2.5 V		0.008		%
			•				'	
I ₊	V _I = V _{IO} or GND		25°C	2.75 V		10	25	nA
	ton toff tbbbm Qc Cno(off) Cno(on) Com(on) C1 BW O1SO XTALK THD	$t_{ON} \qquad V_{COM} = V_{+}, \\ R_{L} = 50 \ \Omega, \\ t_{OFF} \qquad V_{COM} = V_{+}, \\ R_{L} = 50 \ \Omega, \\ t_{BBM} \qquad V_{NC} = V_{NO} = V_{+}/2, \\ R_{L} = 50 \ \Omega, \\ Q_{C} \qquad V_{GEN} = 0, \\ R_{GEN} = 0, \\ V_{NO} = V_{+} \ or \ GND, \\ Switch \ OFF, \\ C_{NO(OFF)} \qquad V_{NO} = V_{+} \ or \ GND, \\ Switch \ ON, \\ C_{COM(ON)} \qquad V_{COM} = V_{+} \ or \ GND, \\ Switch \ ON, \\ Q_{C} \qquad V_{I} = V_{IO} \ or \ GND, \\ Switch \ ON, \\ Q_{I} \qquad V_{I} = V_{IO} \ or \ GND, \\ Switch \ ON, \\ Q_{ISO} \qquad R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \\ X_{TALK} \qquad R_{L} = 600 \ \Omega, \\ C_{L} = 50 \ pF, \\ \\ THD \qquad R_{L} = 600 \ \Omega, \\ C_{L} = 50 \ pF, \\ \\$	$t_{ON} \begin{array}{ll} V_{COM} = V_{+}, & C_{L} = 35 \ pF, \\ R_{L} = 50 \ \Omega, & See \ Figure \ 18 \\ \\ t_{OFF} \begin{array}{ll} V_{COM} = V_{+}, \\ R_{L} = 50 \ \Omega, & See \ Figure \ 18 \\ \\ \end{array}$ $t_{BBM} \begin{array}{ll} V_{NC} = V_{NO} = V_{+}/2, & C_{L} = 35 \ pF, \\ R_{L} = 50 \ \Omega, & See \ Figure \ 18 \\ \\ \end{array}$ $Q_{C} \begin{array}{ll} V_{GEN} = 0, & C_{L} = 35 \ pF, \\ See \ Figure \ 19 \\ \\ \end{array}$ $Q_{C} \begin{array}{ll} V_{GEN} = 0, & C_{L} = 1 \ nF, \\ See \ Figure \ 23 \\ \\ \end{array}$ $C_{NO(OFF)} \begin{array}{ll} V_{NO} = V_{+} \ or \ GND, \\ Switch \ OFF, & See \ Figure \ 27 \\ \\ \end{array}$ $C_{NO(ON)} \begin{array}{ll} V_{NC} \ or \ V_{NO} = V_{+} \ or \ GND, \\ Switch \ ON, & See \ Figure \ 17 \\ \\ \end{array}$ $C_{COM(ON)} \begin{array}{ll} V_{COM} = V_{+} \ or \ GND, \\ Switch \ ON, & See \ Figure \ 17 \\ \\ \end{array}$ $C_{I} V_{I} = V_{IO} \ or \ GND, & See \ Figure \ 20 \\ \\ O_{ISO} \begin{array}{ll} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, & See \ Figure \ 21 \\ \\ \end{array}$ $X_{TALK} \begin{array}{ll} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, & See \ Figure \ 22 \\ \\ \end{array}$ $THD \begin{array}{ll} R_{L} = 600 \ \Omega, \\ C_{L} = 50 \ pF, & See \ Figure \ 24 \\ \end{array}$	$t_{ON} \begin{array}{c} V_{COM} = V_{+}, \\ R_{L} = 50 \ \Omega, \\ \end{array} \begin{array}{c} C_{L} = 35 \ pF, \\ See \ Figure \ 18 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} Full \\ \end{array} \\ t_{OFF} \begin{array}{c} V_{COM} = V_{+}, \\ R_{L} = 50 \ \Omega, \\ \end{array} \begin{array}{c} C_{L} = 35 \ pF, \\ See \ Figure \ 18 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} Full \\ \end{array} \\ \end{array} \begin{array}{c} t_{BBM} \begin{array}{c} V_{NC} = V_{NO} = V_{+}/2, \\ R_{L} = 50 \ \Omega, \\ \end{array} \begin{array}{c} C_{L} = 35 \ pF, \\ See \ Figure \ 18 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} Full \\ \end{array} \\ Q_{C} \begin{array}{c} V_{NC} = V_{NO} = V_{+}/2, \\ R_{L} = 50 \ \Omega, \\ \end{array} \begin{array}{c} C_{L} = 1 \ nF, \\ See \ Figure \ 23 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} C_{NO(OFF)} \begin{array}{c} V_{OEN} = 0, \\ V_{NO} = V_{+} \ or \ GND, \\ Switch \ OFF, \\ \end{array} \begin{array}{c} See \ Figure \ 17 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} C_{NO(ON)} \begin{array}{c} C_{NC(ON)}, \\ C_{NO(ON)} \begin{array}{c} C_{NC} OV_{NO} = V_{+} \ or \ GND, \\ Switch \ ON, \\ \end{array} \begin{array}{c} See \ Figure \ 17 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} C_{NC(ON)}, C_{NO(ON)} \begin{array}{c} V_{NC} or \ V_{NO} = V_{+} \ or \ GND, \\ Switch \ ON, \\ \end{array} \begin{array}{c} See \ Figure \ 17 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} C_{NC(ON)} \begin{array}{c} V_{COM} = V_{+} \ or \ GND, \\ Switch \ ON, \\ \end{array} \begin{array}{c} See \ Figure \ 17 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} C_{NC(ON)} \begin{array}{c} V_{NC} or \ O_{NC} O_{NC} O_{NC} \\ \end{array} \begin{array}{c} See \ Figure \ 20 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} See \ Figure \ 20 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} See \ Figure \ 21 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} See \ Figure \ 21 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} See \ Figure \ 22 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} See \ Figure \ 22 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} See \ Figure \ 22 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} See \ Figure \ 22 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} See \ Figure \ 24 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} See \ Figure \ 24 \\ \end{array} \begin{array}{c} 25^{\circ}C \\ \end{array} \begin{array}{c} See \ Figure \ 24 \\ \end{array} \begin{array}{c} See \ Figure \ 25 \\ \end{array} \begin{array}{c}$	$t_{ON} \begin{array}{c} V_{COM} = V_{+}, \\ R_L = 50 \ \Omega, \\ \end{array} \begin{array}{c} C_L = 35 \ \text{pF}, \\ \text{See Figure 18} \\ \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} 2.5 \ \text{V} \\ \end{array}$ $t_{OFF} \begin{array}{c} V_{COM} = V_{+}, \\ R_L = 50 \ \Omega, \\ \end{array} \begin{array}{c} C_L = 35 \ \text{pF}, \\ \text{See Figure 18} \\ \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} 2.5 \ \text{V} \\ \end{array}$ $t_{BBM} \begin{array}{c} V_{NC} = V_{NO} = V_{+}/2, \\ R_L = 50 \ \Omega, \\ \end{array} \begin{array}{c} C_L = 35 \ \text{pF}, \\ \text{See Figure 19} \\ \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} 2.5 \ \text{V} \\ \end{array}$ $Q_C \begin{array}{c} V_{GEN} = 0, \\ R_{GEN} = 0, \\ R_{GEN} = 0, \\ \end{array} \begin{array}{c} C_L = 1 \ \text{nF}, \\ \text{See Figure 23} \\ \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} 2.5 \ \text{V} \\ \end{array}$ $C_{NO(OFF) \begin{array}{c} V_{NO} = V_{+} \text{ or GND}, \\ \text{Switch OFF}, \\ \end{array} \begin{array}{c} \text{See Figure 17} \\ \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} 2.5 \ \text{V} \\ \end{array}$ $C_{NO(ON) \begin{array}{c} V_{NO} = V_{+} \text{ or GND}, \\ \text{Switch ON}, \\ \end{array} \begin{array}{c} \text{See Figure 17} \\ \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} 2.5 \ \text{V} \\ \end{array}$ $C_{COM(ON) \begin{array}{c} V_{NC} \text{ or V}_{NO} = V_{+} \text{ or GND}, \\ \text{Switch ON}, \\ \end{array} \begin{array}{c} \text{See Figure 17} \\ \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} 2.5 \ \text{V} \\ \end{array}$ $C_{NO(ON) \begin{array}{c} V_{NC} = V_{+} \text{ or GND}, \\ \text{Switch ON}, \\ \end{array} \begin{array}{c} \text{See Figure 17} \\ \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} 2.5 \ \text{V} \\ \end{array}$ $D_{ISO} \begin{array}{c} R_L = 50 \ \Omega, \\ S_{E} = 50 \ \Omega, \\ S_{E} = 1 \ \text{MHz}, \\ \end{array} \begin{array}{c} \text{See Figure 20} \\ \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} 2.5 \ \text{V} \\ \end{array}$ $THD \begin{array}{c} R_L = 50 \ \Omega, \\ C_L = 50 \ \text{pF}, \\ \end{array} \begin{array}{c} \text{See Figure 22} \\ \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} 2.5 \ \text{V} \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TYPICAL PERFORMANCE

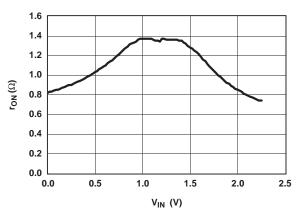


Figure 1. r_{on} vs V_{COM} ($V_{+} = 2.5 \text{ V}$)

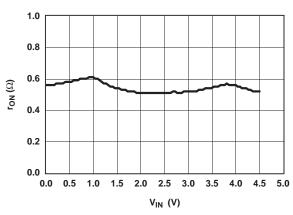


Figure 3. r_{on} vs V_{COM} ($V_{+} = 5 V$)

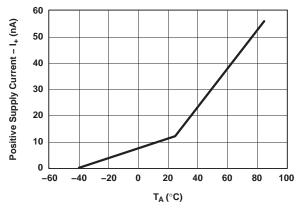


Figure 5. I_+ vs Temperature ($V_+ = 5 \text{ V}$)

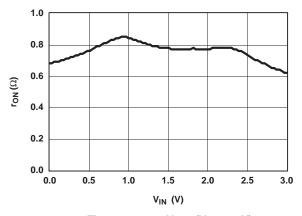


Figure 2. r_{on} vs V_{COM} ($V_{+} = 3.3 \text{ V}$)

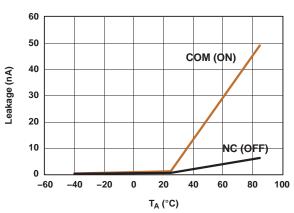


Figure 4. Leakage Current vs Temperature $(V_{+} = 5 \text{ V})$

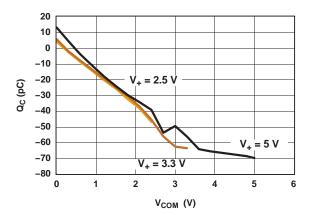


Figure 6. Charge Injection (Q_C) vs V_{COM}

TYPICAL PERFORMANCE (continued)

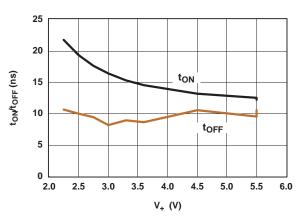


Figure 7. t_{ON}/t_{OFF} vs Supply Voltage

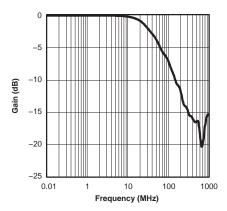


Figure 9. Gain vs Frequency $(V_+ = 5 V)$

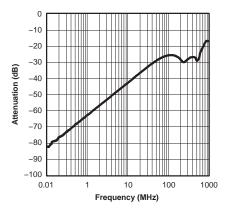


Figure 11. OFF Isolation vs Frequency $(V_{+} = 5 \text{ V})$

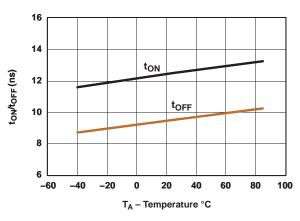


Figure 8. t_{ON}/t_{OFF} vs Temperature (V₊ = 5 V)

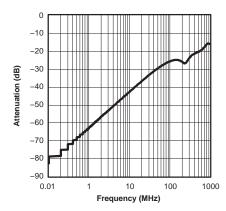


Figure 10. Crosstalk vs Frequency $(V_+ = 5 V)$

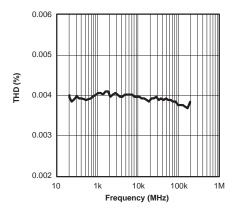


Figure 12. Total Harmonic Distortion vs Frequency ($V_+ = 2.5 \text{ V}$)

SCDS230-APRIL 2006

TYPICAL PERFORMANCE (continued)

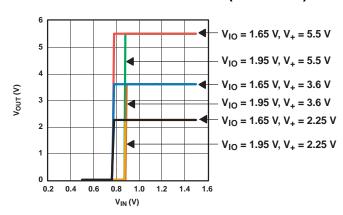


Figure 13. $V_{\rm IO}$ Thresholds

PARAMETER MEASUREMENT INFORMATION

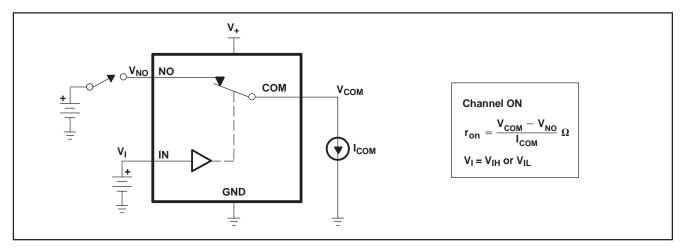


Figure 14. ON-State Resistance (ron)

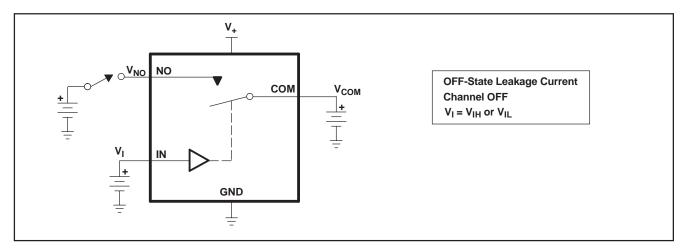


Figure 15. OFF-State Leakage Current ($I_{COM(OFF)}$, $I_{NC(OFF)}$, $I_{COM(PWROFF)}$, $I_{NC(PWR(FF))}$)

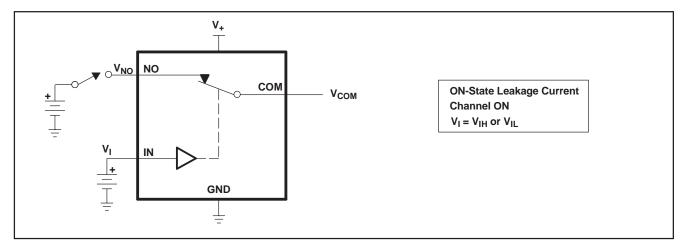
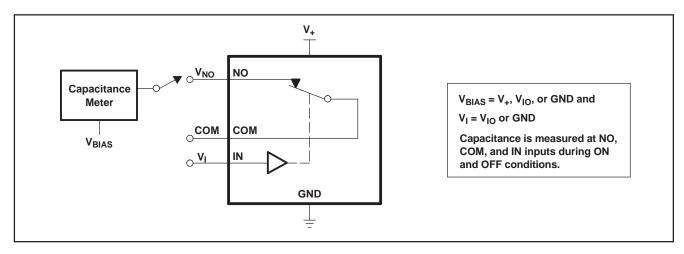
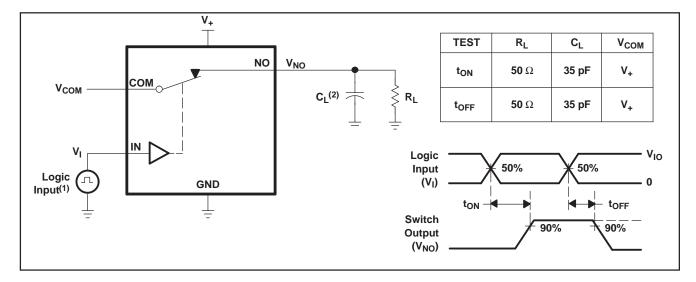
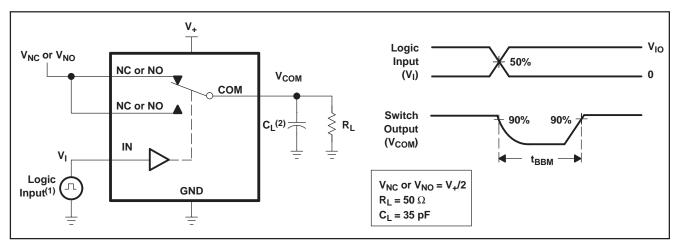


Figure 16. ON-State Leakage Current (I_{COM(ON)}, I_{NC(ON)})


Figure 17. Capacitance (C_I, $C_{COM(OFF)}$, $C_{COM(ON)}$, $C_{NC(OFF)}$, $C_{NC(ON)}$)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.

Figure 18. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f < 5 ns.
- $^{(2)}$ C_L includes probe and jig capacitance.

Figure 19. Break-Before-Make Time (t_{BBM})

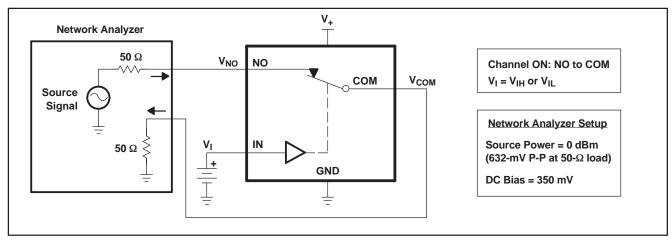
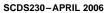



Figure 20. Bandwidth (BW)

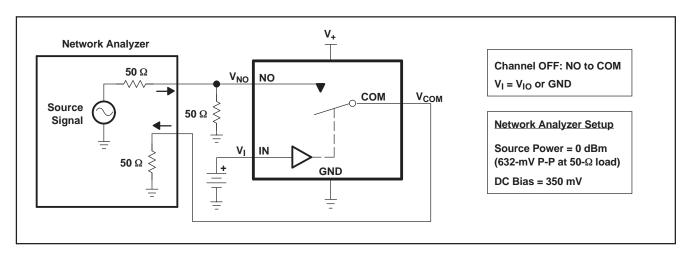
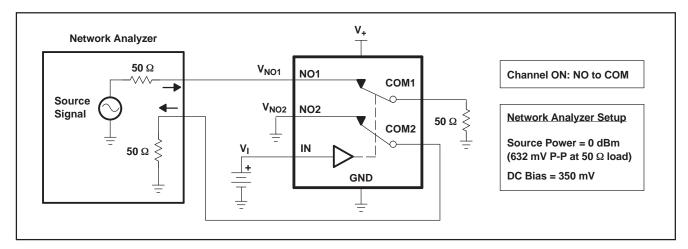
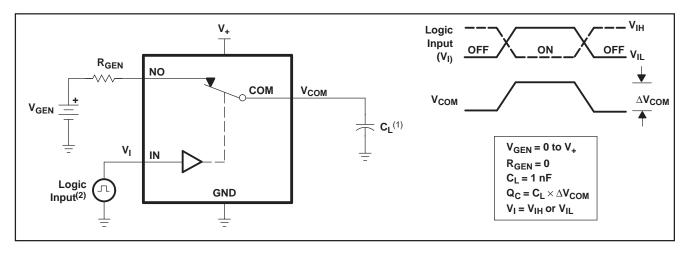
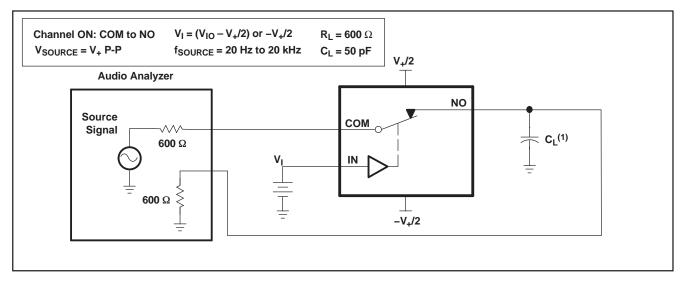


Figure 21. OFF Isolation (O_{ISO})


Figure 22. Crosstalk (X_{TALK})

- (1) C_L includes probe and jig capacitance.
- (2) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.

Figure 23. Charge Injection (Q_C)

(1) C_L includes probe and jig capacitance.

Figure 24. Total Harmonic Distortion (THD)

PACKAGE OPTION ADDENDUM

27-Jul-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins P	ackage Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TS5A6542YZPR	ACTIVE	WCSP	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM

 $^{(1)}$ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

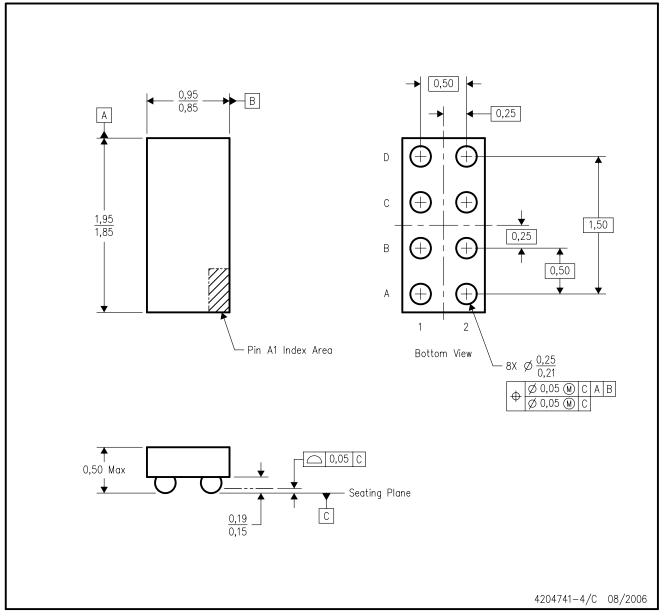
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

YZP (R-XBGA-N8)

DIE-SIZE BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- D. This package is lead—free. Refer to the 8 YEP package (drawing 4204725) for tin—lead (SnPb).

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265