

## TUSB6015 USB 2.0 High Speed Peripheral Controller Data Sheet

### FEATURES

- USB 2.0 High-Speed (HS) Compliant Peripheral Controller Core
  - USB-IF TID # 40630005
- Integrated USB 2.0 PHY
- NOR FLASH - Like External Host Interface
- DP/DM lines are high impedance when the device is not powered
- Six physical endpoints
  - Each endpoint is configurable as IN or OUT with dedicated 1K buffer
- NOR Flash Interface Access modes:
  - Asynchronous 16-bit single access
  - Asynchronous 32-bit single access
  - Asynchronous 16x16 burst access w/ DMA
  - Synchronous 16x16 burst access with DMA (Max GPMC clock is 65 MHz)
- Interrupt on DP/DM line state change for CEA-936-A detect
- VBUS MAX Voltage rating will be 6V for USB Charging
- RoHS Complaint 80 Terminal BGA MICROSTAR JUNIOR Package

### DESCRIPTION

The TUSB6015 is a USB 2.0 HS Peripheral Controller designed for seamless interface to an external Host processor through the NOR FLASH-like interface.

The NOR FLASH-like interface is a 16-bit, multiplexed address/data, interface with support for synchronous burst and single asynchronous read/write access. Configuration registers are accessible via the asynchronous chip select only; the End Point FIFO's are accessible via both the synchronous and asynchronous chip selects.

The device also has eight user configurable general purpose I/O interface pins. The GPIO can be configured as an interrupt or wakeup source. Some GPIO have secondary NOR-flash DMA Request functionality.

The device is fully compliant with the Universal Serial Bus Specification Rev. 2.0.

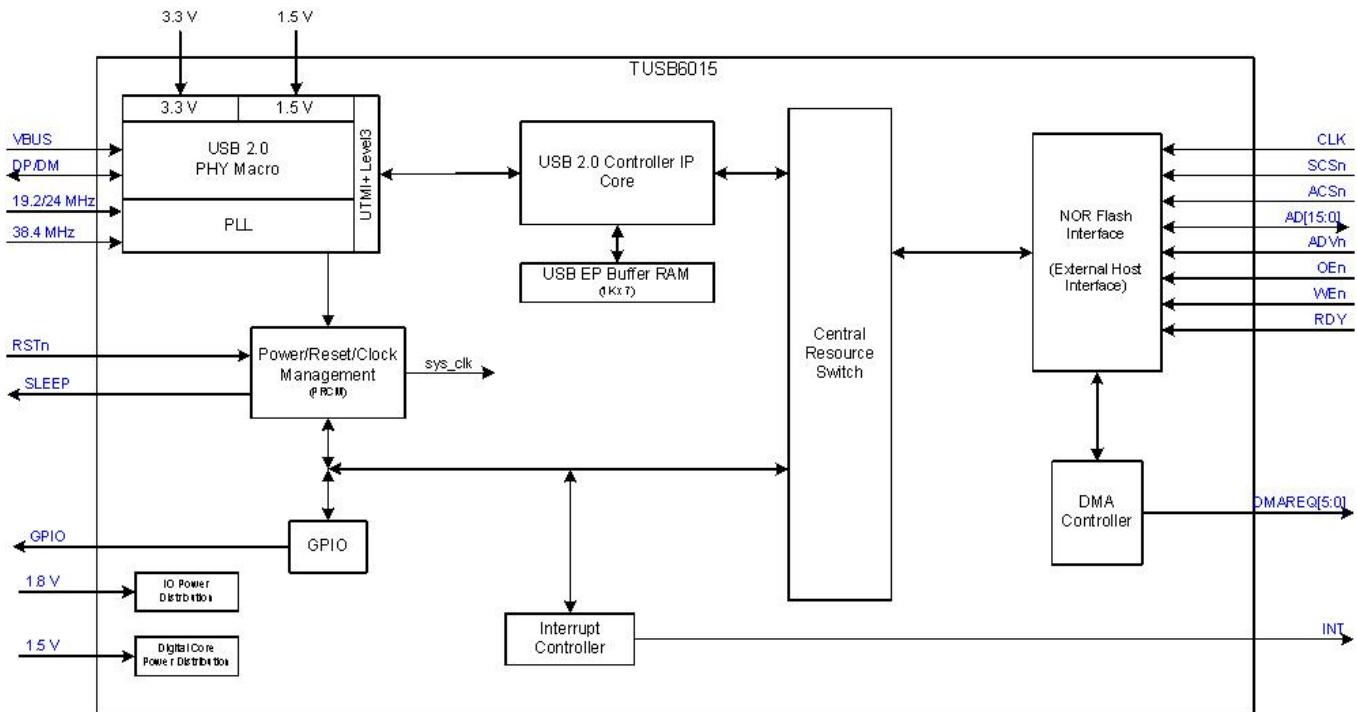
The ESD protection level is 2KV HBM (JESD22-A114D), 500V CDM (JESD22-C101C).

# TUSB6015ZQE

SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

---

## Ordering Information<sup>1</sup>


| PACKAGED DEVICES           | PACKAGE <sup>2</sup> | MARKING   |
|----------------------------|----------------------|-----------|
| TUSB6015IZQE               | ZQE                  | TUSB6015I |
| TUSB6015IZQER <sup>3</sup> | ZQE                  | TUSB6015I |

<sup>1</sup> For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at [www.ti.com](http://www.ti.com).

<sup>2</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at [www.ti.com/sc/package](http://www.ti.com/sc/package).

<sup>3</sup>The tape and reel option is available for TUSB6015IZQE by adding an R suffix.

## Device Block Diagram



# TUSB6015ZQE

SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

## Electrical Characteristics

### Absolute Maximum Ratings<sup>1</sup>

|                                                             |                           |
|-------------------------------------------------------------|---------------------------|
| 3.3V Supply Voltage, VDDA3P3.....                           | -0.5 V to 4.2 V           |
| 1.8V Supply Voltage VDD18.....                              | -0.5 V to 2.1 V           |
| 1.5V Supply Voltage, VDD15, VDDD1P5, VDDCM1P5, VDDA1P5..... | -0.5 V to 2.1 V           |
| USB VBUS Supply Voltage <sup>2</sup> .....                  | 0 V to 6.0 V              |
| Input voltage, V <sub>i</sub> , 3.3V USB <sup>3</sup> ..... | -0.5 V to VDDA3P3 + 0.5 V |
| Output voltage, V <sub>o</sub> , 3.3V USB.....              | -0.5 V to VDDA3P3 + 0.5 V |
| Input clamp current, I <sub>IK</sub> .....                  | ±20 mA                    |
| Output clamp current, I <sub>OK</sub> .....                 | ±20 mA                    |
| Storage temperature range, T <sub>STG</sub> .....           | -65°C to 150°C            |

### Recommended Operating Conditions

| PARAMETER      |                                      | MIN                          | TYP | MAX  | UNIT  |
|----------------|--------------------------------------|------------------------------|-----|------|-------|
| VDDA3P3        | Supply voltage for PHY Analog        | 3                            | 3.3 | 3.6  | V     |
| VDD18          | Supply voltage for Digital I/O       | 1.62                         | 1.8 | 1.98 | V     |
| VDD15          | Supply voltage for Digital Core      |                              |     |      |       |
| VDDD1P5        | Supply voltage for PHY Digital       |                              |     |      |       |
| VDDCM1P5       | Supply voltage for PHY Common Module | 1.35                         | 1.5 | 1.65 | V     |
| VDDA1P5        | Supply voltage for PHY Analog        |                              |     |      |       |
| T <sub>A</sub> | Operating Temperature                | TUSB6015I (Industrial grade) |     | -40  | 85 °C |

<sup>1</sup>Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

<sup>2</sup>VBUS can tolerate 6V for the lifetime of the device. It can handle 6.5V for 36 hours.

<sup>3</sup>TUSB6015 complies with short circuit withstand and AC stress conditions as described in Chapter 7.1.1 of the USB 2.0 specification.

**Electrical Characteristics for the Digital I/O** **$T_A = -30^\circ\text{C} - 85^\circ\text{C}$ ,  $V_{DD18} = 1.8 \text{ V} \pm 10\%$ ,  $V_{SS} = 0 \text{ V}$  (Unless otherwise noted)**

| PARAMETER  |                                        |                                    | TEST CONDITIONS                    | MIN         | TYP | MAX          | UNIT |
|------------|----------------------------------------|------------------------------------|------------------------------------|-------------|-----|--------------|------|
| VI         | Input voltage                          | LVCMOS                             |                                    | 0           |     | VDD18        | V    |
| $V_o$      | Output voltage                         | LVCMOS                             |                                    | 0           |     | VDD18        | V    |
| $V_{IH}$   | High-level input voltage               | LVCMOS                             |                                    | 0.7 x VDD18 |     | VDD18        | V    |
| $V_{IL}$   | Low-level input voltage                | LVCMOS                             |                                    | 0           |     | 0.3 x VDD18  | V    |
| $V_{OH}$   | High-level output voltage              | LVCMOS                             | $I_{OH} = 8\text{mA}$              | 0.8 x VDD18 |     |              | V    |
| $V_{OL}$   | Low-level output voltage               | LVCMOS open-drain                  | $I_{OL} = 4\text{mA}$              |             |     | 0.22 x VDD18 | V    |
|            |                                        | LVCMOS                             | $I_{OL} = 8\text{mA}$              |             |     | 0.22 x VDD18 |      |
|            |                                        | LVCMOS (1.5V_SWEN, 3.3V_SWEN only) | $I_{OL} = 100\text{uA}$            |             | 10  |              | mV   |
| $I_{IH}$   | High-level input current               | LVCMOS                             | $V_i = V_i \text{ max}$            |             |     | $\pm 1$      | uA   |
| $I_{IL}$   | Low-level input current                | LVCMOS                             | $V_i = V_i \text{ min}$            |             |     | $\pm 1$      | uA   |
| $I_{OZ}$   | Output leakage current (high-Z)        |                                    | $V_i = V_i \text{ max or } V_{SS}$ |             |     | $\pm 20$     | uA   |
| $C_i$      | Input Capacitance (1.8V NOR Interface) |                                    |                                    |             |     | 2.43         | pF   |
| $t_r, t_f$ | Input rise/fall time                   |                                    |                                    | 0           |     | 25           | ns   |

# TUSB6015ZQE

SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

**Vbus - Electrical Characteristics for the Integrated USB 2.0 Transceiver,**  
 $T_A = -30^\circ\text{C} - 85^\circ\text{C}$ ,  $V_{DD15} = 1.5\text{V} \pm 10\%$ ,  $V_{DD18} = 1.8\text{V} \pm 10\%$ ,  $V_{DDA1P5} = 1.5\text{V} \pm 10\%$ ,  
 $V_{DDA3P3} = 3.3 \pm 10\%$ ,  $V_{DDD1P5} = 1.5\text{V} \pm 10\%$ ,  $V_{DDCM1P5} = 1.5 \pm 10\%$ ,  $V_{SS} = 0\text{V}$  (unless  
otherwise noted)<sup>†</sup>

| PARAMETER                                         | MIN | TYP | MAX  | UNIT       |
|---------------------------------------------------|-----|-----|------|------------|
| <b>Input Levels</b>                               |     |     |      |            |
| Vbus Input Impedance                              | 360 |     | 690  | k $\Omega$ |
| Vbus Valid Comparator                             | 4.4 |     | 4.75 | V          |
| Vbus leakage current (when device is powered off) |     |     | 11   | uA         |

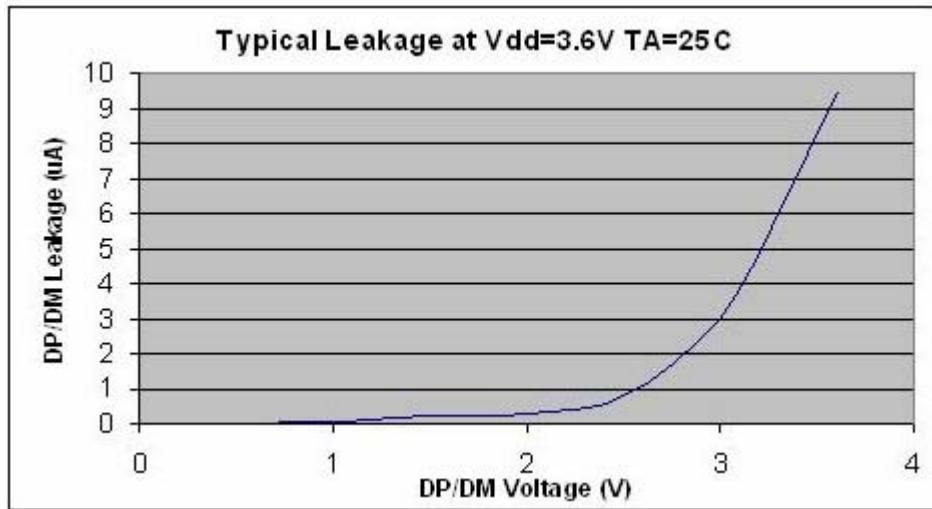
<sup>†</sup>Characterization only. Limits approved by design.

**DP and DM - Electrical Characteristics for the Integrated USB 2.0 Transceiver**

$T_A = -30^\circ\text{C} - 85^\circ\text{C}$ ,  $V_{DD15} = 1.5\text{V} \pm 10\%$ ,  $V_{DD18} = 1.8\text{V} \pm 10\%$ ,  $V_{DDA1P5} = 1.5\text{V} \pm 10\%$ ,  $V_{DDA3P3} = 3.3\text{V} \pm 10\%$ ,  $V_{DDD1P5} = 1.5\text{V} \pm 10\%$ ,  $V_{DDCM1P5} = 1.5\text{V} \pm 10\%$ ,  $V_{SS} = 0\text{V}$  (unless otherwise noted)<sup>†</sup>

| PARAMETER                                  |                                                                        | MIN    | TYP | MAX     | UNIT     |
|--------------------------------------------|------------------------------------------------------------------------|--------|-----|---------|----------|
| <b>Input Levels for Full Speed</b>         |                                                                        |        |     |         |          |
| $V_{DI}$                                   | Full-speed differential input threshold                                | 0.2    |     |         | V        |
| $V_{CM}$                                   | Input (was differential) common mode range                             | 0.8    |     | 2.5     | V        |
| <b>Input Levels for High Speed</b>         |                                                                        |        |     |         |          |
| $V(HSSQ)$                                  | High-speed squelch detection threshold (differential signal amplitude) | 100    |     | 150     | mV       |
| $VDI$                                      | High-speed differential input threshold voltage                        | 100    |     |         | mV       |
| CHSLOAD                                    | Capacitance to ground on each line                                     |        |     | 5.5     | pF       |
| <b>Output Levels for Full Speed</b>        |                                                                        |        |     |         |          |
| $VOL$                                      | Low-level output voltage                                               | 0      |     | 0.3     | V        |
| $VOH$                                      | High-level output voltage (driven)                                     | 2.8    |     | 3.6     | V        |
| $VO(SE1)$                                  | Output voltage on SE1                                                  | 0.8    |     |         | V        |
| $VO(CRS)$                                  | Output signal crossover voltage                                        | 1.3    |     | 2       | V        |
| <b>Output Levels for High Speed</b>        |                                                                        |        |     |         |          |
| $V(HSOI)$                                  | High-speed idle level                                                  | -10    |     | 10      | mV       |
| $V(HSOH)$                                  | High-speed data signaling high                                         | 360    |     | 440     | mV       |
| $V(HSOL)$                                  | High-speed data signaling low                                          | -10    |     | 10      | mV       |
| $VID(CHIRPJ)$                              | Chirp J level (differential voltage)                                   | 700    |     | 1100    | mV       |
| $VID(CHIRPK)$                              | Chirp K level (differential voltage)                                   | -900   |     | -500    | mV       |
| <b>Driver Characteristics (Full Speed)</b> |                                                                        |        |     |         |          |
| $tr$                                       | Full-speed rise time                                                   | 4      |     | 20      | ns       |
| $tf$                                       | Full-speed fall time                                                   | 4      |     | 20      | ns       |
| $t(RFM)$                                   | Full-speed rise/fall time matching                                     | 90%    |     | 110%    |          |
| <b>Driver Characteristics (High Speed)</b> |                                                                        |        |     |         |          |
| $tr$                                       | Rise time (10%-90%)                                                    | 500    |     |         | ps       |
| $tf$                                       | Fall time (10%-90%)                                                    | 500    |     |         | ps       |
| $ro(HDRV)$                                 | Driver output resistance (serves as a high-speed termination)          | 40.5   |     | 49.5    | $\Omega$ |
| $t(FRFM)$                                  | Differential rise and fall time matching                               | 90%    |     | 111.11% |          |
| <b>Clock Timings</b>                       |                                                                        |        |     |         |          |
| $t(HSDRAT)$                                | High-speed data rate                                                   | 479.76 |     | 480.24  | Mb/s     |
| <b>Single-Ended Receiver</b>               |                                                                        |        |     |         |          |
| $VIT+$                                     | Positive-going input threshold voltage                                 |        |     | 2.0     | V        |
| $VIT-$                                     | Negative-going input threshold voltage                                 | 0.8    |     |         | V        |
| $V_{hys}$                                  | Hysteresis voltage                                                     | 200    |     | 500     | mV       |

# TUSB6015ZQE


SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

## DP and DM - Electrical Characteristics for the Integrated USB 2.0 Transceiver (CONT'D)

| INPUT LEAKAGE |                                                                      | TEST CONDITION              | MIN  | TYP                    | MAX | UNIT |
|---------------|----------------------------------------------------------------------|-----------------------------|------|------------------------|-----|------|
| DP/DM         | Measurement taken with pull-up/dn disabled and device in idle mode   | DP/DM Voltage = 0 – VDDA3.3 | -1.3 |                        | 1.3 | uA   |
| DP/DM         | Measurement taken with pull-up/dn disabled and device in active mode | DP/DM Voltage = 2V          |      | See Chart <sup>1</sup> | 1.3 | uA   |

<sup>†</sup>Characterization only. Limits approved by design.

<sup>1</sup>Typical DP/DM Input Leakage with pull-up/dn disabled and device in active mode



## Power Sequencing Guidelines

### Power-On Reset

The system reset function ensures an orderly start-up sequence for the TUSB6015. There is a one active low external system reset input (RSTn). The reset initializes the Power/Reset/Clock Manager (PRCM) module, which in turn generates all the internal resets to initialize USB 2.0 PHY Macro and synchronous logic in the core. While reset is asserted (active low), the dual functional pin is sampled to determine device configuration after reset.

Since TUSB6015 relies on a dual function pin to configure the device during reset, the reset must be sufficiently long for (external) marginal pull-up/pull-down to achieve the intended levels. Reset pulse duration should be at least three times actual RC constant time (with typical 22 kOhm marginal pull-up resistor with 50 pF load, reset pulse should be at least 3.3  $\mu$ s).

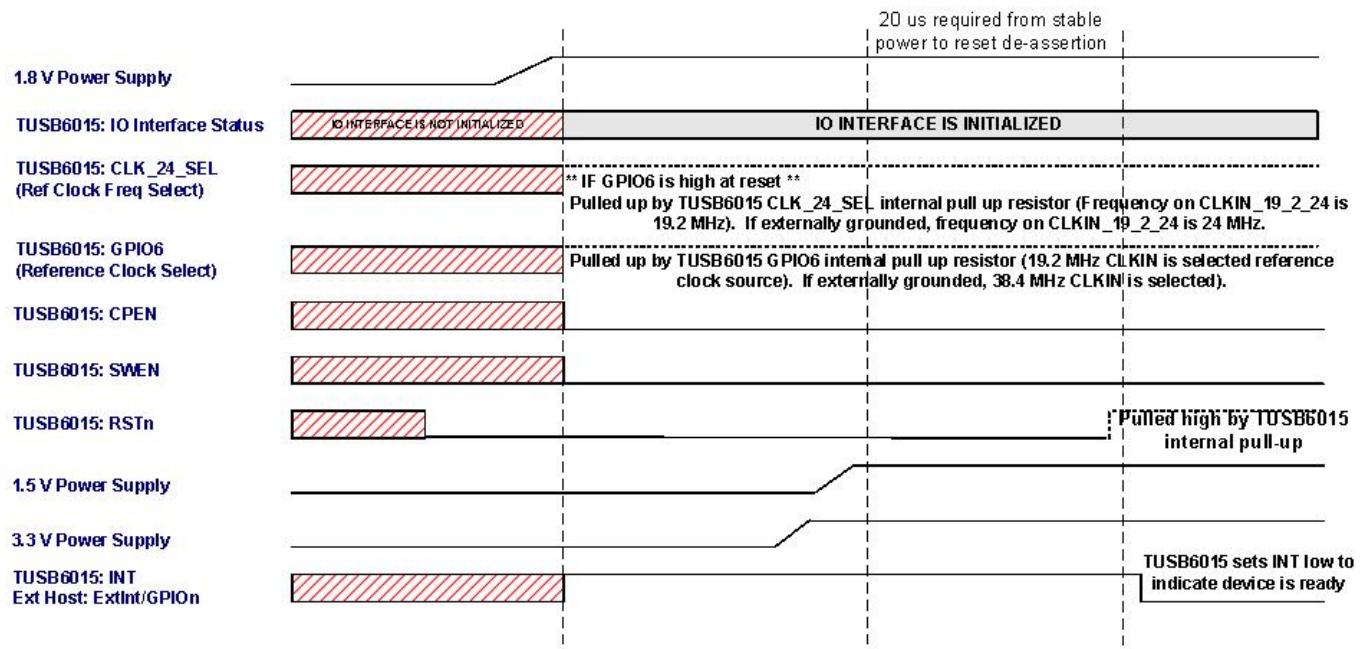
All functional pins remain in same state even after RSTn is de-asserted and stay in that state until internal core reset is cleared. The internal core reset is held for 16 system clock cycles following low-to-high RSTn transition.

Upon power-on reset, the following must be determined for proper device initialization:

- System reference clock source

Device uses dual-mode pin to determine initial clock input setup. Dual function pin is latched during the reset. After the reset this terminal assumes the normal functionality.

| External Pin | Function                         | Description                                                                                                                                                                   |
|--------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPIO6        | Reference Clock Frequency Select | Determines the reference clock pin<br><br>0 – 38.4 MHz (CLKIN_38_4 pin is used)<br>1 – 19.2 MHz (CLKIN_19_2_24 pin is used)                                                   |
| CLK_24_SEL   | CLKIN_19_2_24 Frequency Select   | Determines the reference frequency of the CLKIN_19_2_24 pin<br><br>0 – RSVD<br>1 – 19.2 MHz<br><br>If GPIO6 is low at reset, this pin will have no effect on clock selection. |


Upon exiting reset, the USB 2.0 PHY is not in the suspend state and the system clock (60 MHz) is enabled and free running. The USB 2.0 HS Peripheral Controller Core powers up and a session is not enabled. With session not enabled, all the USB 2.0 HS Peripheral Controller Core State Machine's are in the idle state.

After reset is de-asserted, the device asserts the DevReady interrupt to the External Host to indicate that it is ready to be programmed. The host reads the NOR Flash Interrupt Source register and decides how to proceed based on the device's current status.

# TUSB6015ZQE

SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

## System Power-Up Sequence



NOTE: Reference Clock Source selection is latched on RSTn rising edge.  
No external components are required to select 19.2 MHz CLKIN as a reference clock source.

Signal state cannot be guaranteed

Signal state is stable and valid

## Input Supply Current

$T_A = 25^\circ\text{C}$

**VDDA3.3 = 3.3V +/- 10%, VSS = 0V**

| PARAMETER |                      | TEST CONDITIONS                          | TYP  | UNIT |
|-----------|----------------------|------------------------------------------|------|------|
| IDD       | Input supply current | Idle <sup>1</sup>                        | 16.5 | uA   |
|           |                      | No Bus Activity <sup>2</sup>             | 3.7  | mA   |
|           |                      | Active (Transmit / Receive) <sup>3</sup> | 3.6  | mA   |
|           |                      | Reset <sup>4</sup>                       | 2.7  | mA   |

**VDD1.8<sup>7</sup> = 1.8V +/- 10%, VSS = 0V**

| PARAMETER |                      | TEST CONDITIONS                          | TYP   | UNIT |
|-----------|----------------------|------------------------------------------|-------|------|
| IDD       | Input supply current | Idle <sup>1</sup>                        | 0.26  | uA   |
|           |                      | No Bus Activity <sup>2</sup>             | 157.0 | uA   |
|           |                      | Active (Transmit / Receive) <sup>3</sup> | 350.0 | uA   |
|           |                      | Reset <sup>4</sup>                       | 1.8   | mA   |

**Cumulative VDD1.5 = 1.5V +/- 10%, VSS = 0V**

**(VDD1.5, VDDD1.5, VDDCM1.5, VDDA1.5)**

| PARAMETER |                      | TEST CONDITIONS                          | TYP  | UNIT |
|-----------|----------------------|------------------------------------------|------|------|
| IDD       | Input supply current | Idle <sup>1</sup>                        | 2.0  | uA   |
|           |                      | No Bus Activity <sup>2</sup>             | 56.5 | mA   |
|           |                      | Active (Transmit / Receive) <sup>3</sup> | 58.0 | mA   |
|           |                      | Reset <sup>4</sup>                       | 29.2 | mA   |

<sup>1</sup> DevIdle bit set in Device PRCM Management Register, USB cable unplugged.

<sup>2</sup> Normal operation with no packets being transferred on the USB, except SOF every 125  $\mu\text{s}$ .

<sup>3</sup> Bulk IN and OUT on one End Point. Packet size is 512 bytes.

<sup>4</sup> TUSB6015 RSTn asserted.

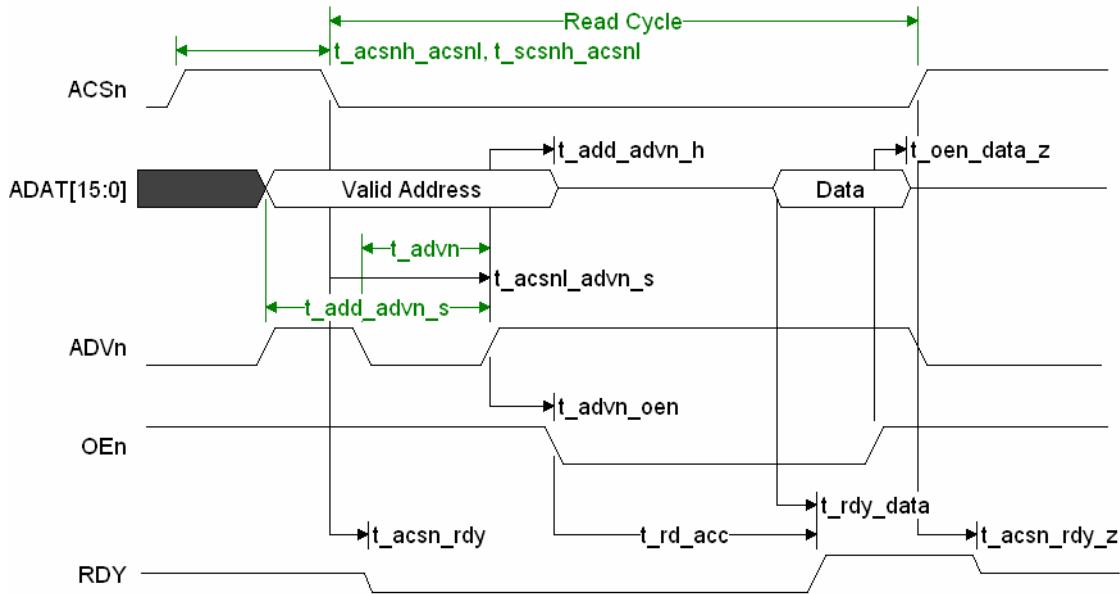
# TUSB6015ZQE

SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

---

## Input Clock Requirements

### CLKIN 19.2 MHz Recommended Operating Conditions

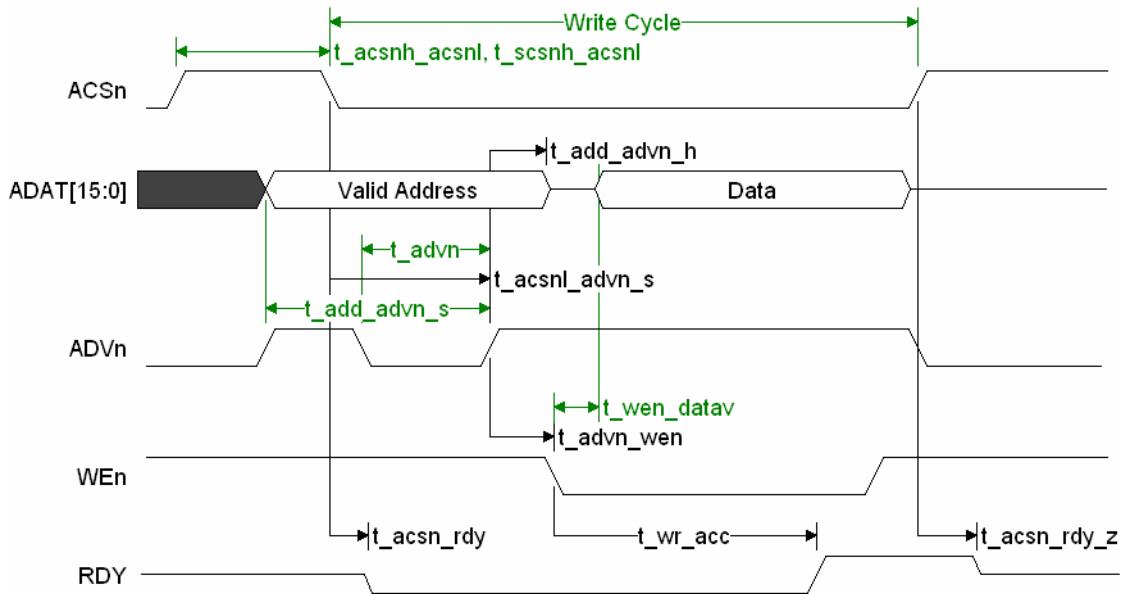

| PARAMETER                                                                        | VALUE            |
|----------------------------------------------------------------------------------|------------------|
| Nominal Clock Frequency<br>(GPIO6 = high @ reset)<br>(CLK_24_SEL = high @ reset) | 19.20 MHz        |
| Frequency Accuracy                                                               | +/- 100 ppm      |
| Maximum Rise/Fall Time                                                           | 5ns (10% to 90%) |
| Input Clock Type                                                                 | Square Wave      |
| Duty Cycle                                                                       | 45% - 55%        |
| Input Capacitance Loading                                                        | 4pF              |
| Jitter                                                                           | 118 ps           |

### CLKIN 38.4 MHz Recommended Operating Conditions

| PARAMETER                                        | VALUE                 |
|--------------------------------------------------|-----------------------|
| Nominal Clock Frequency (GPIO6 = low @ reset)    | 38.40 MHz             |
| Frequency Accuracy                               | +/- 100 ppm           |
| Input Clock Type                                 | Sinusoid              |
| Duty Cycle                                       | 45% - 55%             |
| Input Common Mode Voltage VCM (V <sub>CM</sub> ) | 1 V +/- 100 mV        |
| V <sub>p-p</sub>                                 | 200 mV – 800 mV       |
| Input Capacitance Loading                        | 5 pF                  |
| R <sub>in</sub>                                  | 180 kOhms             |
| Jitter                                           | 100 ps (peak-to-peak) |

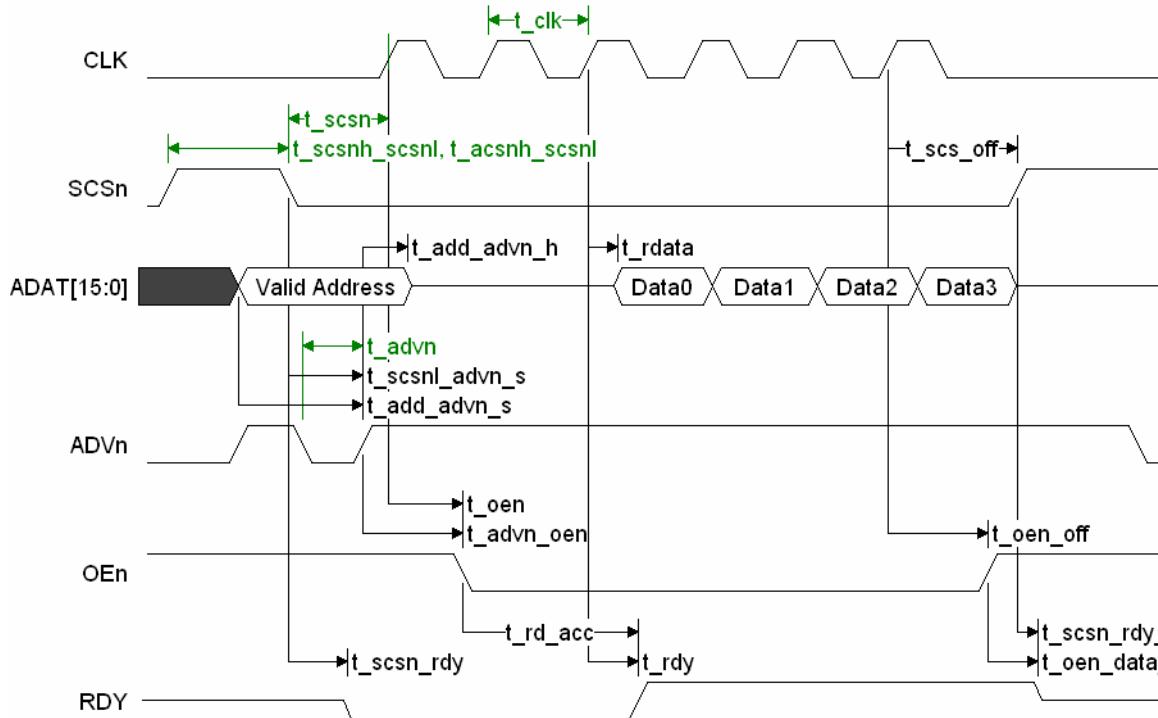
## Timing Diagrams

### Asynchronous Read Access




| PARAMETER      |                                                                       | MIN | MAX | UNIT    |
|----------------|-----------------------------------------------------------------------|-----|-----|---------|
| t_acsnh_acsnl  | Delay time, ACSn high to ACSn low                                     | 8   |     | ns      |
| t_scsnh_acsnl  | Delay time, SCSn high to ACSn low                                     | 8   |     | ns      |
| t_add_advn_h   | Address Hold to ADVn high                                             | 0.8 |     | ns      |
| t_acsnl_advn_s | ACSn low Setup to ADVn high                                           | 18  |     | ns      |
| t_add_advn_s   | Address Setup to ADVn high                                            | 18  |     | ns      |
| t_advn_oen     | Sampled Address to OEn low                                            | 1   |     | ns      |
| t_advn         | ADVn low pulse                                                        | 7   |     | ns      |
| t_rd_acc       | OEn low to RDY high (16-bit Register Access)                          | 6   | 8   | Sys Clk |
|                | OEn low to RDY high (32-bit Register Access) 1 <sup>st</sup> 16-bit   | 5   | 7   | Sys Clk |
|                | OEn low to RDY high (32-bit Register Access) 2 <sup>nd</sup> 16-bit   | 2   | 4   | Sys Clk |
|                | OEn low to RDY high (FIFO Access, with DMAREQ) 1 <sup>st</sup> 16-bit | 3   | 4   | Sys Clk |
|                | OEn low to RDY high (FIFO Access, with DMAREQ) 2 <sup>nd</sup> 16-bit | 3   | 4   | Sys Clk |
| t_acsn_rdy     | ACSn low to RDY low                                                   |     | 7   | ns      |
| t_acsn_rdy_z   | ACSn high to RDY high-Z                                               |     | 7   | ns      |
| t_oen_data_z   | OEn high to Data high-Z                                               |     | 8   | ns      |
| t_rdy_data     | Delay time, RDY high to data valid                                    | -1  | 6   | ns      |

# TUSB6015ZQE


SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

## Asynchronous Write Access

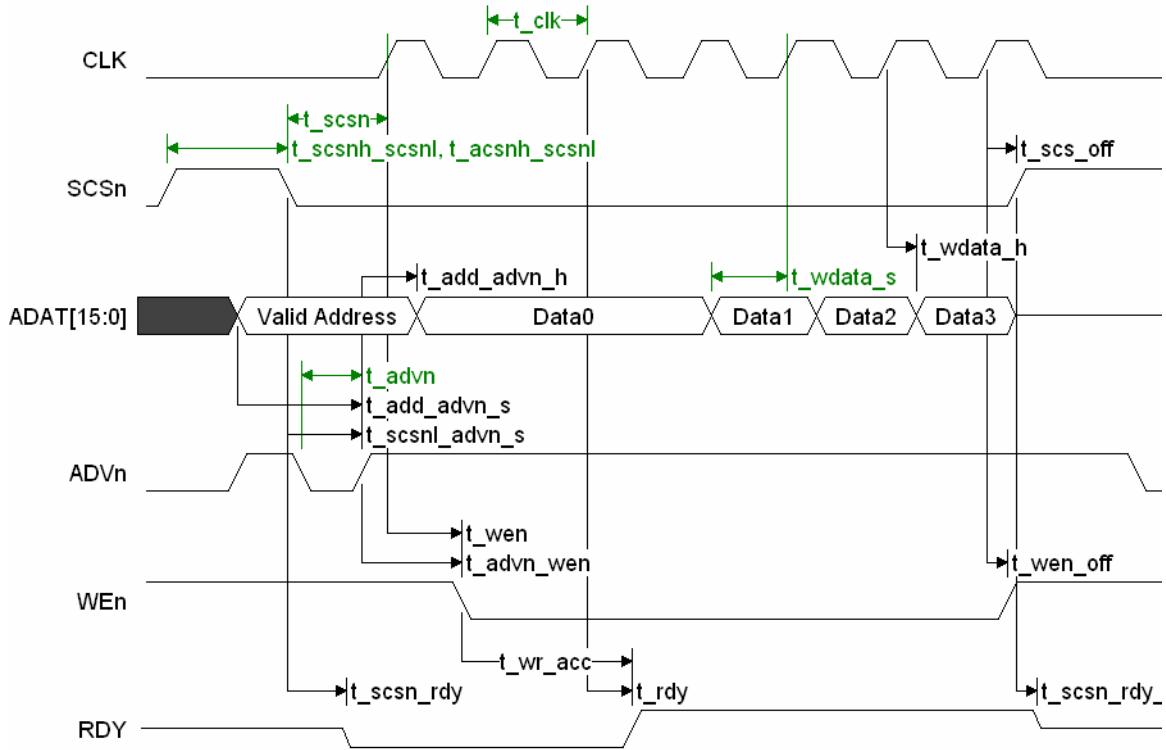


| PARAMETER      |                                                                       | MIN | MAX   | UNIT    |
|----------------|-----------------------------------------------------------------------|-----|-------|---------|
| t_acsnh_acsnl  | Delay time, ACSn high to ACSn low                                     | 8   |       | ns      |
| t_scsnh_acsnl  | Delay time, SCSn high to ACSn low                                     | 8   |       | ns      |
| t_add_advn_h   | Address Hold to ADVn high                                             | 0.8 |       | ns      |
| t_acsnl_advn_s | ACSn low Setup to ADVn high                                           | 18  |       | ns      |
| t_add_advn_s   | Address Setup to ADVn high                                            | 18  |       | ns      |
| t_advn         | ADVn low pulse                                                        | 7   |       | ns      |
| t_advn_wen     | ADVn to WEn low                                                       | 1   |       | ns      |
| t_wr_acc       | WEn low to RDY high (16-bit Register Access)                          | 3   | 5     | Sys Clk |
|                | WEn low to RDY high (32-bit Register Access) 1 <sup>st</sup> 16-bit   | 2   | 4     | Sys Clk |
|                | WEn low to RDY high (32-bit Register Access) 2 <sup>nd</sup> 16-bit   | 3   | 7     | Sys Clk |
|                | WEn low to RDY high (FIFO Access, with DMAREQ) 1 <sup>st</sup> 16-bit | 3   | 4     | Sys Clk |
|                | WEn low to RDY high (FIFO Access, with DMAREQ) 2 <sup>nd</sup> 16-bit | 3   | 4     | Sys Clk |
| t_acsn_rdy     | ACSn low to RDY low                                                   |     | 7     | ns      |
| t_acsn_rdy_z   | ACSn high to RDY high-Z                                               |     | 7     | ns      |
| t_wen_datav    | Delay time, WEn low to Data valid                                     |     | 1-5ns | Sys Clk |

## Synchronous Burst Read Access



**Notes:** RDY going low is asynchronous to t\_scsn\_rdy. Going high, it is synchronous to CLK. Read Data output and RDY going high are synchronous to CLK. Valid Data Time programmable through Device Wait Count Register. Wait Count is not used for non-DMA synchronous reads.


| PARAMETER      | MIN                                              | MAX            | UNIT                |
|----------------|--------------------------------------------------|----------------|---------------------|
| t_clk          | Cycle Time (max 67.5 MHz)                        | 14.8           | ns                  |
| t_scsnh_scsnl  | Delay time, SCSn high to SCSn low                | 8              | ns                  |
| t_acsnh_scsnl  | Delay time, ACSn high to SCSn low                | 8              | ns                  |
| t_scsn         | Delay time, SCSn low to first rising edge of CLK | 3ns            | 1+3ns CLK           |
| t_scs_off      | CLK to SCSn high                                 | 4              | ns                  |
| t_rdata        | Read data output delay                           | 2.2            | 9.2 ns              |
| t_rdy          | RDY output delay                                 | 2.2            | 8.2 Ns              |
| t_advn         | ADVn low pulse                                   | 7              | Ns                  |
| t_advn_oen     | ADVn high to OEn low                             | 3              | Ns                  |
| t_oen_off      | CLK to OEn high                                  | 4              | Ns                  |
| t_oen          | OEn setup to CLK high                            | 3.75           | Ns                  |
|                | OEn hold time                                    | 0              |                     |
| t_rd_acc       | Valid Data Time (with DMAREQ)                    | 1 <sup>1</sup> | 32 <sup>2</sup> CLK |
| t_add_advn_h   | Addr Hold time to ADVn high                      | 0.8            | Ns                  |
| t_scsnl_advn_s | SCSn low Setup to ADVn high                      | 12             | Ns                  |
| t_add_advn_s   | Address Setup to ADVn high                       | 12             | Ns                  |
| t_scsn_rdy     | SCSn low to RDY valid low                        |                | 7 ns                |
| t_scsn_rdy_z   | SCSn high to RDY high-Z                          |                | 7 ns                |
| t_oen_data_z   | OEn high to Data high-Z                          |                | 8 ns                |

<sup>1</sup>Device Wait Count Register = 0 or 1.<sup>2</sup>Device Wait Count Register = 31.

# TUSB6015ZQE

SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

## Synchronous Burst Write Access



**Note:** RDY going low is asynchronous to  $t_{scsn\_rdy}$ . Going high, it is synchronous to CLK. Valid Data Time programmable through Device Wait Count Register. For Wait Count values other than 0 or 1 (when DMAREQ is used),  $t_{wr\_acc}$  = Wait Count + 1.

| PARAMETER            |                                                  | MIN            | MAX             | UNIT    |
|----------------------|--------------------------------------------------|----------------|-----------------|---------|
| $t_{clk}$            | Cycle Time (max 67.5 MHz)                        | 14.8           |                 | ns      |
| $t_{scsnh\_scsnl}$   | Delay time, SCSn high to SCSn low                | 8              |                 | ns      |
| $t_{acsnh\_scsnl}$   | Delay time, ACSn high to SCSn low                | 8              |                 | ns      |
| $t_{scs}$            | Delay time, SCSn low to first rising edge of CLK | 3ns            | 1+3ns           | CLK     |
| $t_{scs\_off}$       | CLK to SCSn high                                 | 1+3ns          |                 | Sys Clk |
| $t_{wdata\_s}$       | Data setup to CLK high                           | 3.75           |                 | ns      |
| $t_{wdata\_h}$       | Data hold time                                   | 0.6            |                 | ns      |
| $t_{rdy}$            | CLK to RDY output delay                          | 2.2            | 8.2             | ns      |
| $t_{add\_advn\_h}$   | Address Hold                                     | 0.8            |                 | ns      |
| $t_{scsnl\_advn\_s}$ | SCSn low Setup to ADVn high                      | 12             |                 | ns      |
| $t_{add\_advn\_s}$   | Address Setup to ADVn high                       | 12             |                 | ns      |
| $t_{advn}$           | ADVn low pulse                                   | 7              |                 | ns      |
| $t_{advn\_wen}$      | ADVn high to WEn low                             | 1+3ns          |                 | CLK     |
| $t_{wen\_off}$       | CLK to WEn high                                  | 1+3ns          |                 | Sys Clk |
| $t_{wen}$            | WEn setup to CLK high                            | 3.75           |                 | ns      |
| $t_{wen}$            | WEn hold time                                    | 0              |                 |         |
| $t_{wr\_acc}$        | Valid Data Time (with DMAREQ)                    | 1 <sup>1</sup> | 32 <sup>2</sup> | CLK     |
| $t_{scsn\_rdy}$      | SCSn low to RDY valid low                        |                | 7               | ns      |
| $t_{scsn\_rdy\_z}$   | SCSn high to RDY high-Z                          |                | 7               | ns      |

<sup>1</sup>Device Wait Count Register = 0 or 1.

<sup>2</sup>Device Wait Count Register = 31.

## Pin Descriptions

| TERMINAL      |      | TYPE                         | I/O | RESET STATE     | DESCRIPTION                                                                                                                                                                        |
|---------------|------|------------------------------|-----|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME          | BALL |                              |     |                 |                                                                                                                                                                                    |
| VDD15         | A1   | Supply                       | -   | -               | Digital core power supply, 1.5 V                                                                                                                                                   |
| VSS           | A2   | Supply                       | -   | -               | Ground                                                                                                                                                                             |
| CLK_24_SEL    | A3   | LVCMOS Failsafe <sup>1</sup> | I   | In with Pull-up | CLKIN_19_2_24 Frequency Select at Reset<br>CLK 24 SEL = HIGH, 19.2 MHz<br>CLK 24 SEL = LOW, RSVD<br><br>If GPIO6 is low at reset, this pin will have no effect on clock selection. |
| CLKIN_38_4    | A4   | LVCMOS Failsafe <sup>1</sup> | I   | In              | System Clock In. Connect directly to ground if not used.                                                                                                                           |
| CLKIN_19_2_24 | A5   | LVCMOS Failsafe <sup>1</sup> | I   | In              | System Clock In. Connect directly to ground if not used.                                                                                                                           |
| VSS           | A6   | Supply                       | -   | -               | Ground                                                                                                                                                                             |
| VDD18         | A7   | Supply                       | -   | -               | IO Power Supply, 1.8 V                                                                                                                                                             |
| OEn           | A8   | LVCMOS Failsafe <sup>1</sup> | I   | In with Pull-up | Output Enable                                                                                                                                                                      |
| VDD15         | A9   | Supply                       | -   | -               | Digital core power supply, 1.5 V                                                                                                                                                   |
| VSSREF        | B1   | Supply                       | -   | -               | Ground reference for the reference circuits                                                                                                                                        |
| GPIO7         | B2   | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | GPIO 7                                                                                                                                                                             |
| VDD15         | B3   | Supply                       | -   | -               | Digital core power supply, 1.5 V                                                                                                                                                   |
| VSS           | B4   | Supply                       | -   | -               | Ground                                                                                                                                                                             |
| VDD18         | B5   | Supply                       | -   | -               | IO Power Supply, 1.8 V                                                                                                                                                             |
| GPIO2_DMAREQ2 | B6   | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | GPIO 2 / DMA Request 2                                                                                                                                                             |
| ADAT15        | B7   | LVCMOS                       | I/O | In with Pull-up | Multiplexed ADDRESS.15/DATA.14                                                                                                                                                     |
| ADAT16        | B8   | LVCMOS                       | I/O | In with Pull-up | Multiplexed ADDRESS.16/DATA.15                                                                                                                                                     |
| VSS           | B9   | Supply                       | -   | -               | Ground                                                                                                                                                                             |
| VDDA3P3       | C1   | Supply                       | -   | -               | 3.3V Analog Supply                                                                                                                                                                 |
| R1            | C2   | Bias                         | I   | -               | High precision external resistor used for calibration. (R1 value: 10.7 K +/- 1%)                                                                                                   |
| GPIO4_DMAREQ4 | C4   | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | GPIO 4 / DMA Request 4                                                                                                                                                             |
| VDD15         | C5   | Supply                       | -   | -               | Digital core power supply, 1.5 V                                                                                                                                                   |
| ADVn          | C6   | LVCMOS Failsafe <sup>1</sup> | I   | In with Pull-up | Address Valid                                                                                                                                                                      |
| ADAT12        | C7   | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.12/DATA.11                                                                                                                                                     |
| ADAT14        | C8   | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.14/DATA.13                                                                                                                                                     |

# TUSB6015ZQE

SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

|               |    |                                 |     |                 |                                                                                                    |
|---------------|----|---------------------------------|-----|-----------------|----------------------------------------------------------------------------------------------------|
| CLK           | C9 | LVCMOS<br>Failsafe <sup>1</sup> | I   | In with Pull-up | NOR Interface Clock                                                                                |
| DP            | D1 | USB                             | I/O | -               | USB Differential Pair                                                                              |
| VDDCM1P5      | D2 | Supply                          | -   | -               | 1.5V PLL Supply                                                                                    |
| VSSCM1P5      | D3 | Supply                          | -   | -               | 1.5V PLL Ground                                                                                    |
| TEST          | D4 | LVCMOS                          | I   | -               | Test Mode. Under normal operation this signal should be tied directly to GND.                      |
| GPIO1         | D5 | LVCMOS<br>Failsafe <sup>1</sup> | I/O | In with Pull-up | GPIO 1                                                                                             |
| WEn           | D6 | LVCMOS<br>Failsafe <sup>1</sup> | I   | In with Pull-up | Write Enable                                                                                       |
| ADAT13        | D7 | LVCMOS<br>Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.13/DATA.12                                                                     |
| ADAT11        | D8 | LVCMOS<br>Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.11/DATA.10                                                                     |
| VDD15         | D9 | Supply                          | -   | -               | Digital core power supply, 1.5 V                                                                   |
| VSSA1P5       | E1 | Supply                          | -   | -               | 1.5V Analog Ground                                                                                 |
| DM            | E2 | USB                             | I/O | -               | USB Differential Pair                                                                              |
| VDDA1P5       | E3 | Supply                          | -   | -               | 1.5V Analog Supply                                                                                 |
| VSSA3P3       | E4 | Supply                          | -   | -               | 3.3V Analog Ground                                                                                 |
| VSS           | E5 | Supply                          | -   | -               | Ground                                                                                             |
| ADAT2         | E6 | LVCMOS<br>Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.2/DATA.1                                                                       |
| GPIO5_DMAREQ5 | E7 | LVCMOS<br>Failsafe <sup>1</sup> | I/O | In with Pull-up | GPIO 5 / DMA Request 5                                                                             |
| GPIO3_DMAREQ3 | E8 | LVCMOS<br>Failsafe <sup>1</sup> | I/O | In with Pull-up | GPIO 3 / DMA Request 3                                                                             |
| VSS           | E9 | Supply                          | -   | -               | Ground                                                                                             |
| VDDD1P5       | F1 | Supply                          | -   | -               | 1.5V Digital Supply                                                                                |
| ID            | F2 | USB                             | I   | -               | Should be left floating as a USB device.                                                           |
| VBUS          | F3 | USB                             | I   | -               | USB VBUS                                                                                           |
| VSSD1P5       | F4 | Supply                          | -   | -               | 1.5V Digital Ground                                                                                |
| GPIO6         | F5 | LVCMOS<br>Failsafe <sup>1</sup> | I/O | In with Pull-up | GPIO 6 / Input Clock Source Select at reset.<br>GPIO6 = HIGH, 19.2/24 MHz<br>GPIO6 = LOW, 38.4 MHz |
| ADAT1         | F6 | LVCMOS<br>Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.1/DATA.0                                                                       |
| ADAT10        | F7 | LVCMOS<br>Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.10/DATA.9                                                                      |
| ADAT9         | F8 | LVCMOS<br>Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.9/DATA.8                                                                       |
| VDD15         | F9 | Supply                          | -   | In with Pull-up | Digital core power supply, 1.5 V                                                                   |
| VSS           | G1 | Supply                          | -   | -               | Ground                                                                                             |
| 1.5V_SWEN     | G2 | LVCMOS                          | O   | 0               | Switch Enable for 1.5V supply for Vbat/Vbus                                                        |

|           |    |                              |     |                 |                                                                       |
|-----------|----|------------------------------|-----|-----------------|-----------------------------------------------------------------------|
|           |    | Failsafe <sup>1</sup>        |     |                 | Switch, if applicable                                                 |
| 3.3V_SWEN | G3 | LVCMOS Failsafe <sup>1</sup> | O   | 0               | Switch Enable for 3.3V supply for Vbat/Vbus Switch, if applicable     |
| ACSn      | G4 | LVCMOS Failsafe <sup>1</sup> | I   | In with Pull-up | Asynchronous Chip Select                                              |
| ADAT3     | G5 | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.3/DATA.2                                          |
| ADAT4     | G6 | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.4/DATA.3                                          |
| RDY       | G7 | LVCMOS tri-state             | O   | high z          | Ready                                                                 |
| SCSn      | G8 | LVCMOS                       | I   | In with Pull-up | Synchronous Chip Select                                               |
| VSS       | G9 | Supply                       | -   | -               | Ground                                                                |
| RSTn      | H1 | LVCMOS Failsafe <sup>1</sup> | I   | In with Pull-up | Reset Active Low                                                      |
| CPEN      | H2 | LVCMOS Failsafe <sup>1</sup> | O   | 0               | 5V Charge Pump Enable, if applicable                                  |
| SLEEP     | H3 | LVCMOS Failsafe <sup>1</sup> | O   | 0               | Use for external power supply low power mode when idle, if applicable |
| GPIO0     | H4 | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | GPIO 0                                                                |
| ADAT5     | H5 | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.5/DATA.4                                          |
| ADAT6     | H6 | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.6/DATA.5                                          |
| ADAT7     | H7 | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.7/DATA.6                                          |
| ADAT8     | H8 | LVCMOS Failsafe <sup>1</sup> | I/O | In with Pull-up | Multiplexed ADDRESS.8/DATA.7                                          |
| VDD18     | H9 | Supply                       | -   | -               | IO Power Supply, 1.8 V                                                |
| VDD18     | J1 | Supply                       | -   | -               | IO Power Supply, 1.8 V                                                |
| VSS       | J2 | Supply                       | -   | -               | Ground                                                                |
| VDD15     | J3 | Supply                       | -   | -               | Digital core power supply, 1.5 V                                      |
| VSS       | J4 | Supply                       | -   | -               | Ground                                                                |
| DMAREQ1   | J5 | LVCMOS Failsafe <sup>1</sup> | O   | 1               | DMA Request 1                                                         |
| VDD18     | J6 | Supply                       | -   | -               | IO Power Supply, 1.8 V                                                |
| DMAREQ0   | J7 | LVCMOS Failsafe <sup>1</sup> | O   | 1               | DMA Request 0                                                         |
| VSS       | J8 | Supply                       | -   | -               | Ground                                                                |
| INT       | J9 | LVCMOS Failsafe <sup>1</sup> | O   | 1               | Interrupt                                                             |

<sup>1</sup>Failsafe means that the signal can toggle when VDD18 is not present without damaging the device.

# TUSB6015ZQE

SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

---

## External Components

### USB PHY Voltage and Current Bias Resistor Pin: R1

This signal must connect to a precision external resistance to set the internal operating reference currents and cable driver output currents. A resistance of  $10.7\text{ k}\Omega \pm 1\%$  (temperature coefficient  $\pm 100\text{ppm}/^\circ\text{C}$ ) is necessary to meet requirements set forth in the Universal Serial Bus Revision 2.0 specification.

The side of the resistor not connected to the R1 signal should connect through a low impedance path to the circuit board ground plane.

### USB PHY Voltage and Current Reference Ground: VSSREF

This signal is the reference ground for the voltage and current reference circuitry internal to the Data/Port macro. This signal must connect to the low impedance circuit board ground plane.

### USB PHY Power Connections: VDDCM1P5, VDDA1P5, VDDD1P5, VDDA3P3

Decoupling capacitors are required to suppress high-frequency switching noise and stabilize the supply voltage. A decoupling capacitor is most effective when it is close to the chip. This minimizes the inductance of the circuit board wiring and interconnects.

The USB 2.0 PHY Macro has two power rails, 1.5V (VDDCM1P5, VDDD1P5, VDDA1P5) and 3.3V (VDDA3P3). Each power connection has its own associated ground connection, 1.5V (VSSCM1P5, VSSD1P5, VSSA1P5) and 3.3V (VSSA3P3). Each supply is isolated from the others to provide noise isolation.

A combination of high-frequency capacitors near each terminal is suggested, such as paralleled  $1\mu\text{F}$ ,  $0.01\mu\text{F}$ , and  $0.001\mu\text{F}$  capacitors. A lower frequency  $10\mu\text{F}$  filter capacitor is also recommended. A series inductor on the analog supplies is also recommended. All ground pins must connect through a low impedance path to the circuit board ground plane. All grounds can be connected to each other.

- VDDCM1P5 (Common Module 1.5V Supply) - (1)  $1\mu\text{F}$ , (1)  $0.1\mu\text{F}$ ,  $0.01\mu\text{F}$ , (1)  $0.001\mu\text{F}$ , (1)  $10\mu\text{F}$
- VSSCM1P5 (Common Module Ground)
- VDDD1P5 (Digital 1.5V Supply) - (1)  $0.1\mu\text{F}$ , (1)  $0.001\mu\text{F}$ , (1)  $10\mu\text{F}$
- VSSD1P5 (Digital 1.5V Ground)
- VDDA1P5 (Analog 1.5V Supply) - (1)  $0.1\mu\text{F}$ , (1)  $0.001\mu\text{F}$ , (1)  $10\mu\text{F}$ , with a series inductor between the main supply and the device, the caps between the inductor and the device.
- VSSA1P5 (Analog 1.5V Ground)
- VDDA3P3 (Analog 3.3V Supply) - (1)  $0.1\mu\text{F}$ , (1)  $0.001\mu\text{F}$ , (1)  $10\mu\text{F}$ , with a series inductor between the main supply and the device, the caps between the inductor and the device.
- VSSA3P3 (Analog 3.3V Ground)

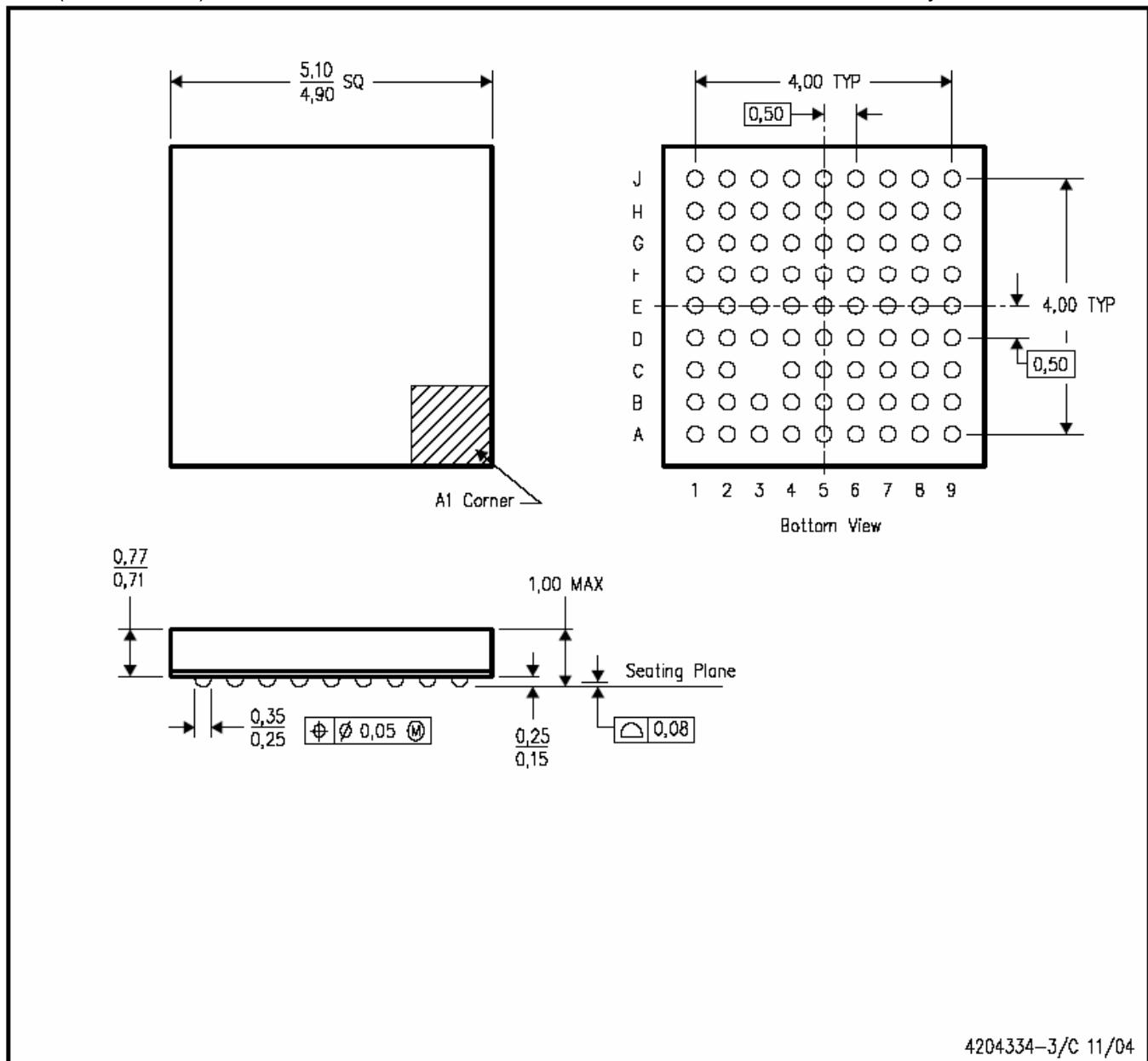
## **Digital Power Connections: VDD18, VDD15**

The digital portion of the TUSB6015 has two power rails, 1.5V (VDD15) and 1.8V (VDD18). There is one digital ground connection (VSS). Each supply is isolated from the others to provide noise isolation.

A combination of high-frequency capacitors near each terminal is suggested, such as paralleled 0.01uF and 0.001uF capacitors. A lower frequency 10uF filter capacitor is also recommended. All ground pins must connect through a low impedance path to the circuit board ground plane. All grounds can be connected to each other.

- VDD15 (Digital Core Voltage 1.5V Supply) - (5) 0.1μf, (5) 0.001μf, (1) 10μf
- VDD18 (Digital IO Voltage 1.8V Supply) - (5) 0.1μf, (5) 0.001μf, (1) 10μf
- VSS (Digital Ground)

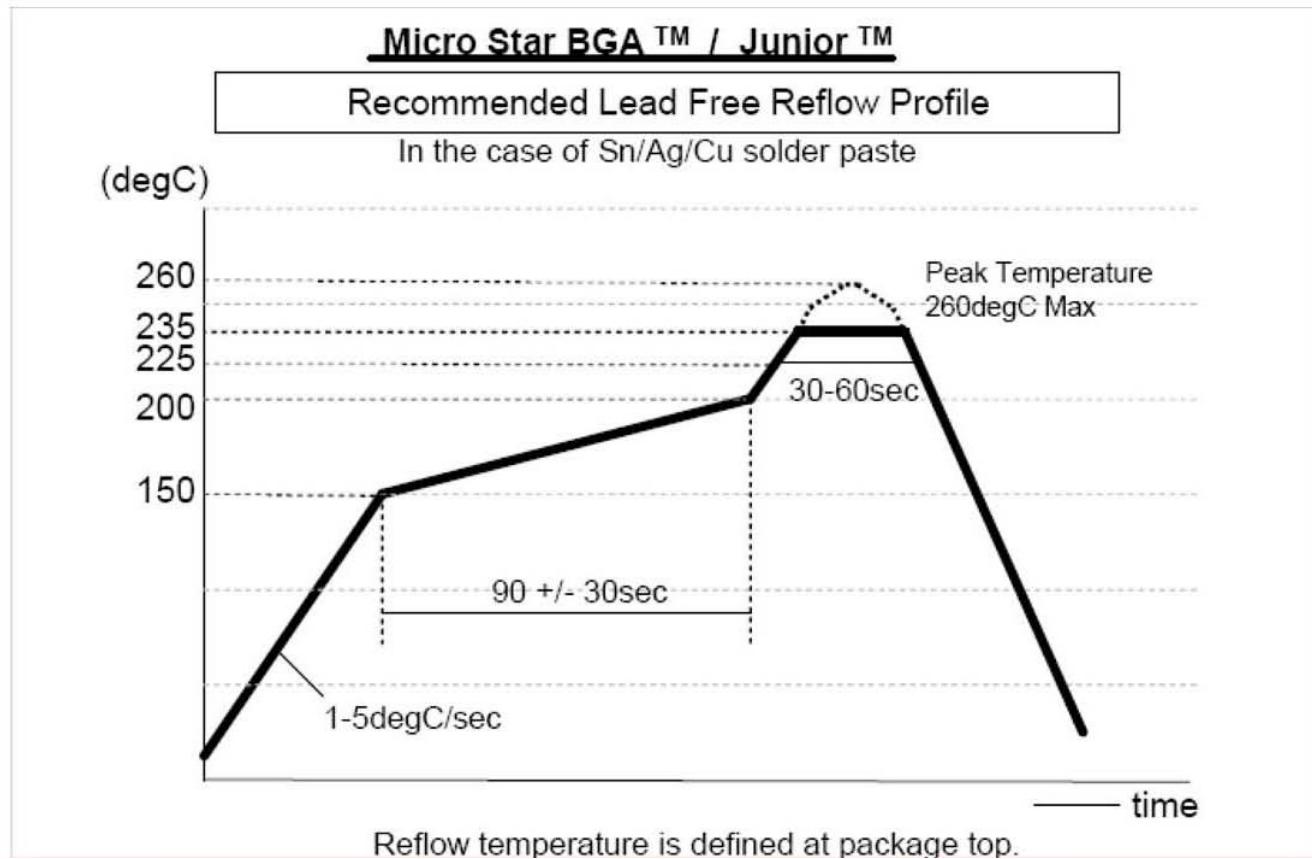
**TUSB6015ZQE**


SLLS937  
REVISION 1.4 SEPTEMBER 12, 2008

## Mechanical Characteristics

TUSB6015 uses an 80-pin u\*BGA package. The lead-free solder ball composition is Sn/Ag1.2Cu0.5. The substrate plating on the die side where the die bonds to is NiAu, The substrate finish on the bottom side where the solder balls attach to is bare Cu.

ZQE (S-PBGA-N80)


## Plastic Ball Grid Array



NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-225  
D. This package is lead-free.

4204334-3/C 11/04

## Reflow Conditions



## **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| <b>Products</b>  |                                                                    | <b>Applications</b> |                                                                          |
|------------------|--------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------|
| Amplifiers       | <a href="http://amplifier.ti.com">amplifier.ti.com</a>             | Audio               | <a href="http://www.ti.com/audio">www.ti.com/audio</a>                   |
| Data Converters  | <a href="http://dataconverter.ti.com">dataconverter.ti.com</a>     | Automotive          | <a href="http://www.ti.com/automotive">www.ti.com/automotive</a>         |
| DSP              | <a href="http://dsp.ti.com">dsp.ti.com</a>                         | Broadband           | <a href="http://www.ti.com/broadband">www.ti.com/broadband</a>           |
| Interface        | <a href="http://interface.ti.com">interface.ti.com</a>             | Digital Control     | <a href="http://www.ti.com/digitalcontrol">www.ti.com/digitalcontrol</a> |
| Logic            | <a href="http://logic.ti.com">logic.ti.com</a>                     | Military            | <a href="http://www.ti.com/military">www.ti.com/military</a>             |
| Power Mgmt       | <a href="http://power.ti.com">power.ti.com</a>                     | Optical Networking  | <a href="http://www.ti.com/opticalnetwork">www.ti.com/opticalnetwork</a> |
| Microcontrollers | <a href="http://microcontroller.ti.com">microcontroller.ti.com</a> | Security            | <a href="http://www.ti.com/security">www.ti.com/security</a>             |
|                  |                                                                    | Telephony           | <a href="http://www.ti.com/telephony">www.ti.com/telephony</a>           |
|                  |                                                                    | Video & Imaging     | <a href="http://www.ti.com/video">www.ti.com/video</a>                   |
|                  |                                                                    | Wireless            | <a href="http://www.ti.com/wireless">www.ti.com/wireless</a>             |

Mailing Address: Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

**TUSB6015ZQE**

SLLS937  
REVISION 1.4 SEPTEMBER 10, 2008

---

**PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package Type                     | Package Drawing | Pins | Package Qty | Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|----------------------------------|-----------------|------|-------------|-------------------------|------------------|------------------------------|
| TUSB6015IZQE     | ACTIVE                | BGA MI<br>CROSTA<br>R JUNI<br>OR | ZQE             | 80   | 360         | Green (RoHS & no Sb/Br) | SNAGCU           | Level-3-260C-168 HR          |
| TUSB6015IZQER    | ACTIVE                | BGA MI<br>CROSTA<br>R JUNI<br>OR | ZQE             | 80   | 2500        | Green (RoHS & no Sb/Br) | SNAGCU           | Level-3-260C-168 HR          |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

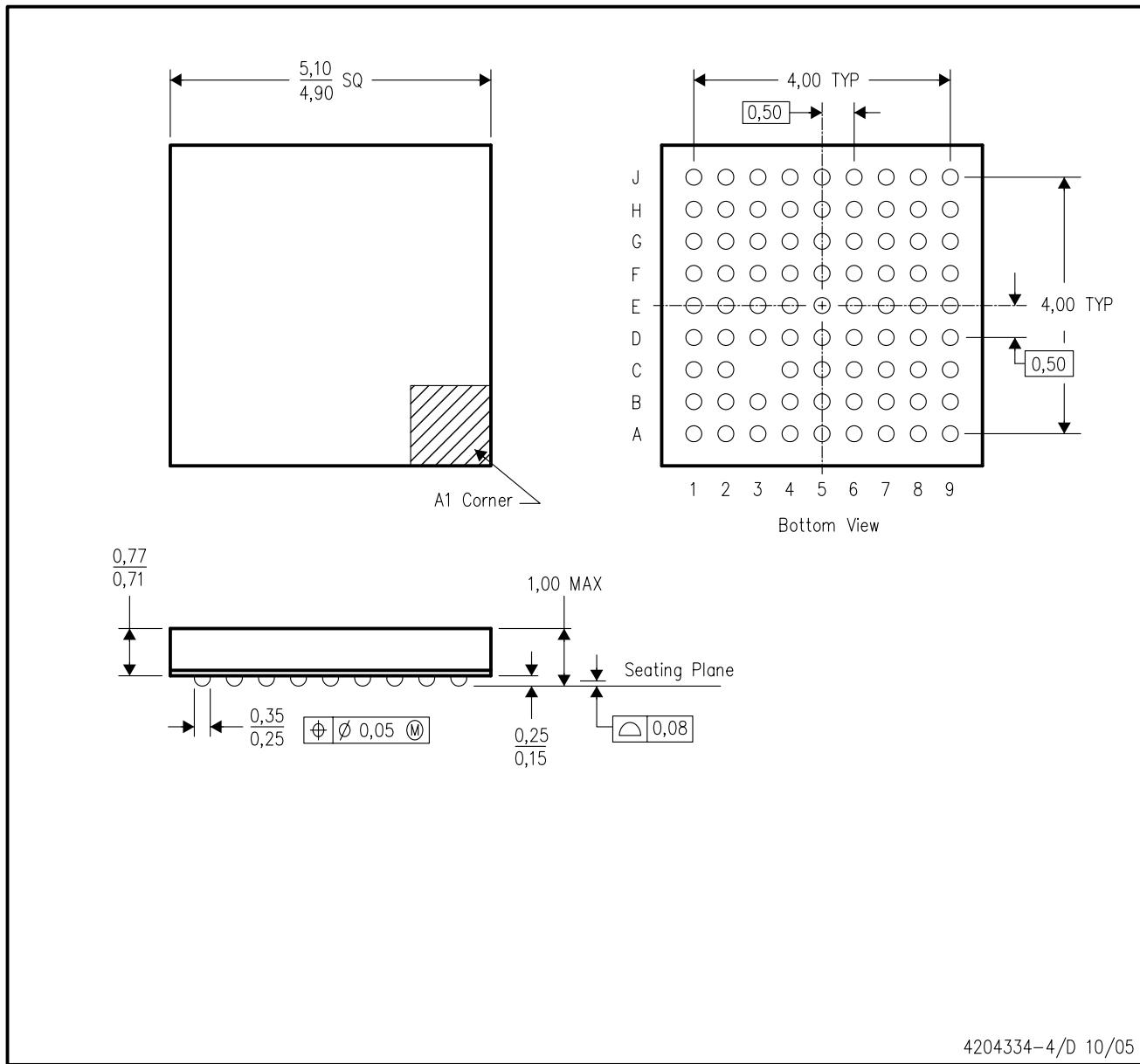
**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

**Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## MECHANICAL DATA

ZQE (S-PBGA-N80)

PLASTIC BALL GRID ARRAY



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This is a lead-free solder ball design.

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

### Products

|                             |                                                                    |
|-----------------------------|--------------------------------------------------------------------|
| Amplifiers                  | <a href="http://amplifier.ti.com">amplifier.ti.com</a>             |
| Data Converters             | <a href="http://dataconverter.ti.com">dataconverter.ti.com</a>     |
| DSP                         | <a href="http://dsp.ti.com">dsp.ti.com</a>                         |
| Clocks and Timers           | <a href="http://www.ti.com/clocks">www.ti.com/clocks</a>           |
| Interface                   | <a href="http://interface.ti.com">interface.ti.com</a>             |
| Logic                       | <a href="http://logic.ti.com">logic.ti.com</a>                     |
| Power Mgmt                  | <a href="http://power.ti.com">power.ti.com</a>                     |
| Microcontrollers            | <a href="http://microcontroller.ti.com">microcontroller.ti.com</a> |
| RFID                        | <a href="http://www.ti-rfid.com">www.ti-rfid.com</a>               |
| RF/IF and ZigBee® Solutions | <a href="http://www.ti.com/lprf">www.ti.com/lprf</a>               |

### Applications

|                    |                                                                          |
|--------------------|--------------------------------------------------------------------------|
| Audio              | <a href="http://www.ti.com/audio">www.ti.com/audio</a>                   |
| Automotive         | <a href="http://www.ti.com/automotive">www.ti.com/automotive</a>         |
| Broadband          | <a href="http://www.ti.com/broadband">www.ti.com/broadband</a>           |
| Digital Control    | <a href="http://www.ti.com/digitalcontrol">www.ti.com/digitalcontrol</a> |
| Medical            | <a href="http://www.ti.com/medical">www.ti.com/medical</a>               |
| Military           | <a href="http://www.ti.com/military">www.ti.com/military</a>             |
| Optical Networking | <a href="http://www.ti.com/opticalnetwork">www.ti.com/opticalnetwork</a> |
| Security           | <a href="http://www.ti.com/security">www.ti.com/security</a>             |
| Telephony          | <a href="http://www.ti.com/telephony">www.ti.com/telephony</a>           |
| Video & Imaging    | <a href="http://www.ti.com/video">www.ti.com/video</a>                   |
| Wireless           | <a href="http://www.ti.com/wireless">www.ti.com/wireless</a>             |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated