

8. The voltage specified is the modulation pin voltage.
7. The receiver will not reliably hold a DC level. See the HP3 Series Receiver Module Data Guide for the 5. Does not change over the $3-13 \mathrm{VDC}$ supply.
6. Into 50 ohms. 100 serial channels on the PS versions only

1. Over the entire operating voltage range.
2. With the PDN pin low. Notes

PERFORMANCE DATA

PERFORMANCE DATA

TYPICAL PERFORMANCE GRAPHS

These performance parameter are based on module operation a $25^{\circ} \mathrm{C}$ from a 5 OVDC supply untes						
$25^{\circ} \mathrm{C}$ from a 5.0 VDC sup						
illustrates						
necessaryoperation. It it is recommended all						

Figure 2: Test / Basic Application Circuit $25^{\circ} \mathrm{C}$ from a 5.0 VDC supply unless
otherwise noted. Figure 2
illustrates the connections
necessary for testing and
operation. It is recommended all
ground pins be connected to the
ground plane. The pins marked NC
have no electrical connection. te uo!̣eıədo əןnpou uo pəseq әде These performance parameters

Pin		Name	Description			
SMD	SIP					
1	1	GND	50－ohm RF Output			
2	2	ANT	Analog Ground（SMD only）			
3		GND	No Electrical Connection．Soldered for physical support only．			
4		NC	Channel Select 0			
5	3	CS0	CS1／SS CLOCK			
7	5	CS2／SS when in parallel channel selection mode，clock input for serial channel selection mode．				
8	6	Channel Select 2／Serial Select Data．Channel Select 2 when in parallel channel selection mode，data input for serial channel selection mode．				
9	7	PDN	Clear－To－Send．This line will go high when the transmitter is ready to accept data．			
10	8	Vower Down．Pulling this line low will place the receiver				
into a low－current state．The module will not be able to						
receive a signal in this state．				$	$	Supply Voltage
:---:						

sи！				
	（K｜uO）aWs	ON		
		$\forall \perp \forall \square$	01	21
		ヨaOW	6	H
	$\longleftarrow<$	${ }^{\circ} \wedge$	8	01
（моך әл！！०Н） имод дәмод		NOd	\angle	6
ındıno puәs－0ヶ－ハеәノ		S 10	9	8
／ટ ねəəəડ｜əииечว		$\forall 1$ VOSS ／ZSO	G	L
 		$\begin{aligned} & \text { yכO7О SS } \\ & \text { / ISO } \end{aligned}$	†	9
0 ЮәəәS ə๐ииечว		OSO	ε	g
ındıno \pm ¢y muo－09		IN \forall	乙	乙
punorg bopeut		ONS	1	
uo！dupsea		amen	pouula	$\begin{aligned} & \text { QWS } \\ & \text { u!d } \end{aligned}$

is being sent redundantly，there is generally no need to monitor the CTS line or minimum of 10 mS after raising the PDN line high before transmitting data．If data е ц！ем pınoys $!$ ！！

 1ndino sio

 greatly simplifies user interface．The microcontroller reads the channel selection frequency．An on－board microcontroller manages the PLL programming and

 The modulated 12.00 MHz reference frequency is applied to the Phase－Locked eliminates the need for code balancing． wide modulation bandwidth and near DC modulation capability．This also modulation inside the loop bandwidth provides fast start－up，while allowing a bandwidth，and then used to directly modulate the reference．Direct reference the frequency reference for the transmitter．Incoming data is filtered to limit the A precision 12.00 MHz Voltage Controlled Crystal Oscillator（VCXO）serves as

Figure 9：HP－3 Series Transmitter Block Diagram

＇səəелədo عdH әцł цэ！чм u！̣ әио әцł se

 capable of transmitting both analog（FM）and digital（FSK）information．FM／FSK
 When the PDN line is pulled to ground，the transmitter will enter into a lo
current $(<15 \mu \mathrm{~A})$ power－down mode．During this time，the transmitter is off

 NId Nad $\operatorname{\exists H} \perp$ ⿹NISn oul｜ldans eut

 priority during design．

 The HP3 incorporates a precision，low－dropout
 accept data．This is acknowledged by the

 the external channel－selection lines and
sets the frequency synthesizer to the
 line is taken high． applied to the V_{Cc} line or when the PDN

 transmitter is ready to transmit data．

is required，the HP3 is probably not the best choice，as it is optimized for data．

 is over－driven．The actual level of the input waveform should be adjusted to
 to allow the start－up time desired．Since the modulation voltage applied to the large enough to ensure the passage of all desired frequencies and small enough to achieve the best performance．The size of the coupling capacitor should be within 0 to $5 \mathrm{~V}_{\text {P－P }}$ and should，in most cases，be AC－coupled into the DATA line
 transmitter＇s DATA line．The HP3 is a single supply device and，as such，is not
 S7VNפIS ⿹O7甘NV ⿹NILIndNI

 The HP3 does not encode or packetize the data in any manner．This and NRZ data，to be sent at rates from 100bps to 56 kbps ． such considerations and allows virtually any signal，including PWM，Manchester，
 Many RF products require a fixed data rate or place tight constraints on the mark

FCC test lab can easily attenuate the transmitter to the maximum legal limit．

 transmitter may be higher than FCC regulations allow．It is intentionally set high Depending on the type of antenna being used，the output power of the
K!!^!
 Channel 50 is not counted as a usable channel since data errors may occur as transmitters also defaul operation. When programmed properly, the dwell time on this default channel can be less than $200 \mu \mathrm{~S}$ NOTE: When the module is powered up in the Serial Mode, it will default to channel 50 until changed

 There is no maximum time for this process, only the minimum times that must be Figure 13: PLL Serial Data Timing

The Serial Mode is straightforward; however, minimum timings and bit order must be followed. Loading is initiated by taking the clock line high and the data line low as shown. The eight-bit channel number is then clocked-in one bit at a time, with the LSB first.	1) Loading begins when clock line is high and data line is taken low 2) Ensure that edge is fully risen prior to high-clock transition 3) Both lines high triggers automatic latch
(TO) Time between packets or p (T1) Data-LO / Clock-HI to Data- (T2) Clock-LO to Clock-HI (T3) Clock-HI to Clock-LO (T4) Data-HI / Clock-HI Total Packet Time \qquad \qquad \qquad \qquad	or to data startup ... min min. \min min.

> In addition to the Parallel Mode, PS versions of the HP3 also feature 100 serially selectable channels. The Serial Mode is entered when the MODE line is left open or held high. In this condition, CS1 and CS2 become a synchronous serial port, with CS1 serving as the clock line and CS2 as the data line. The module is easily programmed by sending and latching the binary number (0 to 000) of the desired channel (see the adjacent Serial Channel Selection Table). With no additional effort, the module's microprocessor handles the complex PLL loading functions. Serial Selection allowing channel selection via DIP switches or a product's processor. performs all PLL loading functions, eliminating external programming and A ' 0 ' represents ground and a ' 1 ' the supply. The on-board microprocesso CS1, and CS2, as shown in the table. Table 2: Parallel Channel Selection Table mode, channel selection is deter-
mined by the logic states of pins CSO, grounding the MODE line. In this

 Parallel Selection
All HP3 transmitt

for the link.
 objects provide many different signal reflection paths．Multipath cancellation

 understood．Multipath is a term used to refer to the signal cancellation effects Although technically it is not interference，multipath is also a factor to be
 interference is less common than those mentioned previously，but in severe frequency，regardless of the coding of the transmitted signal．This type of important to remember that only one transmitter at a time can occupy a own products if more than one transmitter is active in the same area．It is frequency or from near－band high－power devices．It can even come from your High－level interference is caused by nearby products sharing the same overall range． interference will produce noise and hashing on the output and reduce the link＇s External interference can manifest itself in a variety of ways．Low－leve can help to determine if and at what level design－specific interference is present． approached with care．Comparing your own design with a Linx evaluation board power supplies，motors，crystals，and other potential sources of noise must be is straightforward；however，products containing components such as switching eliminate all radiated and conducted interference paths．For many products，this careful attention to layout，grounding，filtering，and bypassing in order to eliminate interference from noise sources on the board．This means paying Interference may come from internal or external sources．The first step is to effects can be minimized by better understanding its characteristics．
 The RF spectrum is crowded and the potential for conflict with other unwanted SNOI』甘पヨดISNOつ ヨONヨપヨコロヨNI data or implement a more sophisticated scheme to correct it． an error is detected，the protocol designer may wish to simply discard the corrupt data．A simple checksum or CRC could be used for basic error detection．Once packets．This allows errors to be managed without affecting large amounts of the data packet，so it is generally wise to structure the data being sent into small Errors from interference or changing signal conditions can cause corruption of Application Note AN－00160． process．To learn more about protocol considerations，we suggest you read Linx interference and contention must be understood and allowed for in the design distinct differences between a wired and a wireless environment．Issues such as

transmission line as described in the following section. antennas, such as a helical, use a 50 -ohm coax or 50 -ohm microstrip
transmission line as described in the following section. bandwidth characteristics. For longer runs or to avoid detuning narrow bandwidth
 The trace from the module to the antenna should be kept as short as possible. -sциедеш the designer to carefully evaluate and qualify the impact and suitability of such compounds can considerably impact RF performance, it is the responsibility of
 Many Linx customers have done this successfully; however, there are a wide

 supplies, and high-speed bus lines. Make sure internal wiring is routed away especially high-frequency circuitry such as crystal oscillators, switching power much as reasonably possible, be isolated from other components on your PCB AM / OOK receivers are particularly subject to noise. The module should, as - əlqissod se મous se әq pue

The module's ground lines should each have their own via to the ground plane on the product's circuit board. has numerous signal-bearing traces and vias that could short or couple to traces Do not route PCB traces directly under the module. The underside of the module

No conductive items should be placed within 0.15 in of the module's top or sides. and is strongly discouraged. board. The use of prototyping or "perf" boards will result in horrible performance During prototyping, the module should be soldered to a properly laid-out circuit same layer as the module, just bare PCB. ground or traces under the module on the Kue әq Łои pinous әдәц」 'גәңеן pəssnos!p әq

 design rules, you will be on the path to RF success э!seq әmos 6u!ләsqo pue səןd!
 performance and ensure reliable operation. The antenna can also be influenced

91 ə6ed

 exceed the times listed below．

 If the recommended pad guidelines have been followed，the pads will protrude

| | גət！msueג」 pouu！d |
| :---: | :---: | automated assembly．

The following pad layout diagram is designed to facilitate both hand and
uo！̣onpord
prototyping and small volume
production． 10f 6u！̣әрооs puey yo！nb Kıə＾

 the module have been provided to

 \begin{tabular}{l}
reliable function of the modules．The following procedures should be reviewed

with and practiced by all assembly personnel．

HAND ASSEMBLY

\hline $\begin{array}{l}\text { Pads located on the bottom of the } \\
\text { module are the primary mounting } \\
\text { surface．Since these pads are }\end{array}$ Soldering Iron

reliable function of the modules．The following procedures should be reviewed

with and practiced by all assembly personnel．

HAND ASSEMBLY

\hline $\begin{array}{l}\text { Pads located on the bottom of the } \\
\text { module are the primary mounting } \\
\text { surface．Since these pads are }\end{array}$

reliable function of the modules．The following procedures should be reviewed

with and practiced by all assembly personnel．

HAND ASSEMBLY

\hline $\begin{array}{l}\text { Pads located on the bottom of the } \\
\text { module are the primary mounting } \\
\text { surface．Since these pads are }\end{array}$

reliable function of the modules．The following procedures should be reviewed

with and practiced by all assembly personnel．

HAND ASSEMBLY

\hline $\begin{array}{l}\text { Pads located on the bottom of the } \\
\text { module are the primary mounting } \\
\text { surface．Since these pads are }\end{array}$

reliable function of the modules．The following procedures should be reviewed

with and practiced by all assembly personnel．

HAND ASSEMBLY

\hline $\begin{array}{l}\text { Pads located on the bottom of the } \\
\text { module are the primary mounting } \\
\text { surface．Since these pads are }\end{array}$ Tipering Iron
\end{tabular} components internally，the assembly procedures are critical to ensuring the The modules are housed in a hybrid SMD package that supports hand or

SヨNI7ヨロInけ NOI』OnOOYd

 －。 － 1
two discrete antennas or antenna switch losses are unacceptable, it may be more appropriate to utilize cases, where the characteristics of the Tx and Rx antennas need to be different microprocessor, but the user may also make the selection manually. In some Generally, the Tx or Rx status of a switch will be controlled by a product's switch that has high isolation and low loss at the desired frequency of operation. the most popular are switches from Macom and NEC. Look for an antenna

 ә|би!s е әхецs ol snoәбеұиелре иәみо s! !!
 In cases where a transmitter and receiver

ANTENNA SHARING Application Note AN-00500 "Antennas: Design, Application, Performance" cost, size, and cosmetic requirements of the product. You may wish to review

It is usually best to utilize a basic quarter-wave whip until your prototype product as much as is practical. or a reduction in antenna efficiency, the receiver's antenna should be optimized Unlike the transmitter antenna, where legal operation may mandate attenuation

 A receiver antenna should be optimized for the frequency or band in which the
 easily be accomplished by using the LADJ line or a T-pad attenuator. For more sed, then some attenuation of the output power will likely be needed. This can achieve full legal output power for maximum range. If an efficient antenna is as a loop trace or helical, to meet size, cost, or cosmetic requirements and still than the legal limits. This allows the designer to use an inefficient antenna, such help ensure maximum performance and FCC compliance antenna, such as those from Linx, will task. A professionally designed

 кя рәи!етяо әq иәно иег әоиешионәд antenna. While adequate antenna

 иб!səр рәуоорәло иәщо рие

 antenna. offer a preferable alternative to the often-problematic "printed"

 requiring the use of expensive equipment, including a network production. In addition, printed styles are difficult to engineer,
 applications. They are also very sensitive to changes in layout and antennas are generally inefficient and useful only for short-range
 styles. The element can be made self-resonant or externally
resonated with discrete components, but its actual layout is product's PCB. This makes it the most cost-effective of antenna A loop- or trace-style antenna is normally printed directly on a

 overall antenna size while maintaining reasonable Many of these styles utilize helical elements to reduce the
 - .

 Its size and natural radiation resistance make it well matched to
 antenna's overall length. Since a full wavelength is often quite
 connectorized mounting styles. and reduced-height whip-style antennas in permanent and

 and stability. A low-cost whip is can be easily fabricated from a

product by RF makes the effort more than worthwhile．
 frequency selected，and physical packaging．While some extra cost and design effort are still dependent on many factors，such as the choice of antennas，correct use of the frustration that is typically experienced with a discrete design is eliminated．Approval is All Linx modules are designed with the approval process in mind and thus much of the of the module to your application． product abroad，you should contact Linx Technologies to determine the specific suitability to allow all international standards to be met．If you are considering the export of your

 6091－9tOLZ QW＇e！qumpoつ
peoy s\｜！！pueyeo sct

with the technical standards of Part 15，should be addressed to： procedures used to test intentional radiators，such as Linx RF modules，for compliance Questions regarding interpretations of the Part 2 and Part 15 rules or measurement clearly placed on each product manufactured． Once your completed product has passed，you will be issued an ID number that is to be certifications that the product may require at the same time，such as UL，Class A／B，etc． independent testing laboratories across the country．Many labs can also provide other screening，and final compliance testing is then performed by one of the many identification number．This is a relatively painless process．Linx offers full FCC pre－ radiates RF energy be approved，that is，tested for compliance and issued a unique www．linxtechnologies．com．In brief，these rules require that any device that intentionally included with Linx evaluation kits or may be obtained from the Linx Technologies website， Washington or from your local government bookstore．Excerpts of applicable sections are strongly recommended that a copy be obtained from the Government Printing Office in however，all regulations applicable to this module are contained in Volume 0－19．It is 47 of the Code of Federal Regulations（CFR）．Title 47 is made up of numerous volumes； the Federal Communications Commission（FCC）．The regulations are contained in Title regulations governing RF devices and the enforcement of them are the responsibility of In the United States，the approval process is actually quite straightforward．The completed product． clear idea of what is involved in obtaining the necessary approvals to legally market your desire is not only to expedite the design process，but also to assist you in achieving a uncertainty and even fear of the approval and certification process．Here at Linx，our manufacturers have avoided incorporating RF into their products as a result of possible and what is legally acceptable in the country where operation is intended．Many When working with RF，a clear distinction must be made between what is technically
> with all laws governing its use in the country of operation． the sale or operation of the device，and agrees to utilize the component in keeping worldwide．The purchaser understands that approvals may be required prior to 15 compliance；however，they are not approved by the FCC or any other agency external components to function．The modules are intended to allow for full Part NOTE：Linx RF modules are designed as component devices that require

LEGAL CONSIDERATIONS

	O0S00－NV
	09100－NV
	gstoo－NV
	OtLOO－NV
	0ع100－NV
	9ZL00－NV
	00LOO－NV
ヨ7L1 ELON NOILVOITddV	ELON

 Simple＂is more than just a motto，it＇s our

 technical support，are offered because we recognize | -1 |
| :--- |
| |
| 0 |
| 0 |
| 0 |
| 0 |
| \vdots |
| |

 notice that Linx offers a variety of services（such as similar to those shown at the right．
 әио риәшшоэәд оł щ！
 of the steps necessary to ensure a successful RF is still important，however，to have an objective view

 아 рәрәәи әq II！м ұиәш！！umos pue донә ןеио！！！！pe dimension to any product．It also means that Adding an RF stage brings an exciting new

ACHIEVING A SUCCESSFUL RF IMPLEMENTATION

Printed in U．S．A． © 2008 by Linx Technologies，Inc．The stylized Linx logo

ләш！е｜כs！ด
www．linxtechnologies．com
PHONE：（541）471－6256
FAX：（541）471－6251
乙es 640 ＇NITYヨN
－ONI ‘ऽヨlפOTONHOヨ XNIT
U．S．CORPORATE HEADQUARTERS
IIII WIRELESS MADE SIIPLE

