－Short－Circuit Protection
－Offset－Voltage Null Capability
－Large Common－Mode and Differential Voltage Ranges
－No Frequency Compensation Required
－Low Power Consumption
－No Latch－Up
－Designed to Be Interchangeable With Fairchild μ A741

description

The $\mu \mathrm{A} 741$ is a general－purpose operational amplifier featuring offset－voltage null capability．
The high common－mode input voltage range and the absence of latch－up make the amplifier ideal for voltage－follower applications．The device is short－circuit protected and the internal frequency compensation ensures stability without external components．A low value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

The $\mu \mathrm{A} 741 \mathrm{C}$ is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．The $\mu \mathrm{A} 7411$ is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．The $\mu \mathrm{A} 741 \mathrm{M}$ is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ．

symbol

$\mu \mathrm{A} 741 \mathrm{M} .$. ．FK PACKAGE （TOP VIEW）

NC－No internal connection

$\mu A 741, \mu$ A741Y

GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

AVAILABLE OPTIONS								
$\mathrm{T}_{\text {A }}$	PACKAGED DEVICES							CHIP FORM (Y)
	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	$\begin{gathered} \hline \text { CERAMIC } \\ \text { DIP } \\ \text { (JG) } \\ \hline \end{gathered}$	PLASTIC DIP (P)	$\begin{gathered} \text { TSSOP } \\ \text { (PW) } \end{gathered}$	FLAT PACK (U)	
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$\mu \mathrm{A} 741 \mathrm{CD}$				$\mu \mathrm{A} 741 \mathrm{CP}$	MA741CPW		$\mu \mathrm{A} 741 \mathrm{Y}$
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	μ A741ID				$\mu \mathrm{A} 741 \mathrm{IP}$			
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$\mu \mathrm{A} 741 \mathrm{MFK}$	$\mu \mathrm{A} 741 \mathrm{MJ}$	$\mu \mathrm{A} 741 \mathrm{MJG}$			$\mu \mathrm{A} 741 \mathrm{MU}$	

The D package is available taped and reeled. Add the suffix R (e.g., $\mu A 741 C D R$).

schematic

Component	Count
Transistors	22
Resistors	11
Diode	1
Capacitor	1

$\mu A 741, \mu \mathrm{~A} 741 \mathrm{Y}$ GENERAL-PURPOSE OPERATIONÄL AMPLIFIERS

μ A741Y chip information

This chip, when properly assembled, displays characteristics similar to the $\mu \mathrm{A} 741 \mathrm{C}$. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

$\mu A 741, \mu \mathrm{~A} 741 \mathrm{Y}$
 GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

		μ A741C	μ A741I	μ A741M	UNIT
Supply voltage, $\mathrm{V}_{\mathrm{CC}+}$ (see Note 1)		18	22	22	V
Supply voltage, $\mathrm{V}_{\text {CC }}$ - (see Note 1)		-18	-22	-22	V
Differential input voltage, $\mathrm{V}_{\text {ID }}$ (see Note 2)		± 15	± 30	± 30	V
Input voltage, $\mathrm{V}_{\text {I }}$ any input (see Notes 1 and 3)		± 15	± 15	± 15	V
Voltage between offset null (either OFFSET N1 or OFFSET N2)	d $\mathrm{V}_{\text {CC }}$ -	± 15	± 0.5	± 0.5	V
Duration of output short circuit (see Note 4)		unlimited	unlimited	unlimited	
Continuous total power dissipation			Dissipation	Rating Table	
Operating free-air temperature range, T_{A}		0 to 70	-40 to 85	-55 to 125	${ }^{\circ} \mathrm{C}$
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	${ }^{\circ} \mathrm{C}$
Case temperature for 60 seconds	FK package			260	${ }^{\circ} \mathrm{C}$
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J, JG, or U package			300	${ }^{\circ} \mathrm{C}$
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, P, or PW package	260	260		${ }^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC} and $\mathrm{V}_{\mathrm{CC}}-$.
2. Differential voltages are at $\mathrm{IN}+$ with respect to $\mathrm{IN}-$.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V , whichever is less.
4. The output may be shorted to ground or either power supply. For the $\mu \mathrm{A} 741 \mathrm{M}$ only, the unlimited duration of the short circuit applies at (or below) $125^{\circ} \mathrm{C}$ case temperature or $75^{\circ} \mathrm{C}$ free-air temperature.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq \mathbf{2 5 ^ { \circ }} \mathrm{C}$ POWER RATING	DERATING FACTOR	$\begin{gathered} \text { DERATE } \\ \text { ABOVE TA }_{\mathrm{A}} \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ \text { POWER RATING } \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ \text { POWER RATING } \end{gathered}$
D	500 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$64^{\circ} \mathrm{C}$	464 mW	377 mW	N/A
FK	500 mW	$11.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$	500 mW	500 mW	275 mW
J	500 mW	$11.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$	500 mW	500 mW	275 mW
JG	500 mW	$8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	500 mW	500 mW	210 mW
P	500 mW	N/A	N/A	500 mW	500 mW	N/A
PW	525 mW	$4.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	336 mW	N/A	N/A
U	500 mW	$5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$57^{\circ} \mathrm{C}$	432 mW	351 mW	135 mW

$\mu A 741, \mu A 741 Y$ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	μ A741C			μ A741I, μ A741M			UNIT	
		MIN		TYP	MAX	MIN	TYP	MAX			
V_{10}	Input offset voltage		$\mathrm{V}_{\mathrm{O}}=0$	$25^{\circ} \mathrm{C}$		1	6		1	5	mV
		Full range				7.5			6		
$\Delta \mathrm{V}_{\mathrm{IO}}(\mathrm{adj})$	Offset voltage adjust range	$\mathrm{V}_{\mathrm{O}}=0$	$25^{\circ} \mathrm{C}$		± 15			± 15		mV	
IO	Input offset current	$\mathrm{V}_{\mathrm{O}}=0$	$25^{\circ} \mathrm{C}$		20	200		20	200	nA	
			Full range			300			500		
IB	Input bias current	$\mathrm{V}_{\mathrm{O}}=0$	$25^{\circ} \mathrm{C}$		80	500		80	500	nA	
			Full range			800			1500		
VICR	Common-mode input voltage range		$25^{\circ} \mathrm{C}$	± 12	± 13		± 12	± 13		V	
			Full range	± 12			± 12				
VOM	Maximum peak output voltage swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	± 12	± 14		± 12	± 14		V	
		$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	Full range	± 12			± 12				
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	± 10	± 13		± 10	± 13			
		$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	Full range	± 10			± 10				
AvD	Large-signal differential voltage amplification	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	20	200		50	200		V / mV	
		$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	Full range	15			25				
r_{i}	Input resistance		$25^{\circ} \mathrm{C}$	0.3	2		0.3	2		$\mathrm{M} \Omega$	
r_{0}	Output resistance	$\mathrm{V}_{\mathrm{O}}=0, \quad$ See Note 5	$25^{\circ} \mathrm{C}$		75			75		Ω	
C_{i}	Input capacitance		$25^{\circ} \mathrm{C}$		1.4			1.4		pF	
CMRR	Common-mode rejection ratio	$\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ICR }} \mathrm{min}$	$25^{\circ} \mathrm{C}$	70	90		70	90		dB	
			Full range	70			70				
kSVS	Supply voltage sensitivity $\left(\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{V}_{\mathrm{CC}}\right)$	$\mathrm{V}_{\mathrm{CC}}= \pm 9 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$	
			Full range			150			150		
IOS	Short-circuit output current		$25^{\circ} \mathrm{C}$		± 25	± 40		± 25	± 40	mA	
ICC	Supply current	$\mathrm{V}_{\mathrm{O}}=0$, No load	$25^{\circ} \mathrm{C}$		1.7	2.8		1.7	2.8	mA	
			Full range			3.3			3.3		
PD	Total power dissipation	$\mathrm{V}_{\mathrm{O}}=0$, No load	$25^{\circ} \mathrm{C}$		50	85		50	85	mW	
			Full range			100			100		

\dagger All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for the $\mu \mathrm{A} 741 \mathrm{C}$ is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, the $\mu \mathrm{A} 741 \mathrm{I}$ is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and the $\mu \mathrm{A} 741 \mathrm{M}$ is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
operating characteristics, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		$\mu \mathrm{A} 741 \mathrm{C}$			μ A7411, μ A741M			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
t_{r}	Rise time			$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \end{aligned}$	$R_{L}=2 \mathrm{k} \Omega,$ See Figure 1	0.3			0.3			$\mu \mathrm{s}$
	Overshoot factor	5\%				5\%						
SR	Slew rate at unity gain	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$ See Figure 1		0.5			0.5			V/us	

$\mu A 741, \mu \mathrm{~A} 741 \mathrm{Y}$ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\mu \mathrm{A} 41 \mathrm{Y}$			UNIT		
		MIN	TYP	MAX					
V_{10}	Input offset voltage			$\mathrm{V}_{\mathrm{O}}=0$			1	6	mV
$\Delta \mathrm{V}_{\text {IO }}$ (adj)	Offset voltage adjust range	$\mathrm{V}_{\mathrm{O}}=0$			± 15		mV		
${ }_{1} \mathrm{O}$	Input offset current	$\mathrm{V}_{\mathrm{O}}=0$			20	200	nA		
IIB	Input bias current	$\mathrm{V}_{\mathrm{O}}=0$			80	500	nA		
VICR	Common-mode input voltage range			± 12	± 13		V		
VOM	Maximum peak output voltage swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		± 12	± 14		V		
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		± 10	± 13				
AVD	Large-signal differential voltage amplification	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$		20	200		V/mV		
r_{i}	Input resistance			0.3	2		$\mathrm{M} \Omega$		
r_{0}	Output resistance	$\mathrm{V}_{\mathrm{O}}=0$,	See Note 5		75		Ω		
C_{i}	Input capacitance				1.4		pF		
CMRR	Common-mode rejection ratio	$\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {I }}$	min	70	90		dB		
kSVS	Supply voltage sensitivity ($\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{V}_{\mathrm{CC}}$)	$\mathrm{V}_{\mathrm{CC}}= \pm$	to $\pm 15 \mathrm{~V}$		30	150	$\mu \mathrm{V} / \mathrm{V}$		
IOS	Short-circuit output current				± 25	± 40	mA		
${ }^{\text {ICC }}$	Supply current	$\mathrm{V}_{\mathrm{O}}=0$,	No load		1.7	2.8	mA		
P_{D}	Total power dissipation	$\mathrm{V}_{\mathrm{O}}=0$,	No load		50	85	mW		

\dagger All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
operating characteristics, $\mathrm{V}_{\mathrm{CC}} \pm= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	$\mu \mathrm{A} 41 \mathrm{Y}$			UNIT	
		MIN	TYP	MAX			
tr_{r}	Rise time		$\begin{array}{ll} \mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, & \text { See Figure } 1 \end{array}$		0.3		$\mu \mathrm{s}$
	Overshoot factor			5\%			
SR	Slew rate at unity gain	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, & \text { See Figure } 1 \\ \hline \end{array}$		0.5		V/us	

$\mu A 741, \mu \mathrm{~A} 41 \mathrm{Y}$ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

PARAMETER MEASUREMENT INFORMATION

Figure 1. Rise Time, Overshoot, and Slew Rate

APPLICATION INFORMATION

Figure 2 shows a diagram for an input offset voltage null circuit.

Figure 2. Input Offset Voltage Null Circuit

TYPICAL CHARACTERISTICS \dagger

Figure 3

INPUT BIAS CURRENT vs
FREE-AIR TEMPERATURE

Figure 4

MAXIMUM PEAK OUTPUT VOLTAGE
vs
LOAD RESISTANCE

Figure 5
\dagger Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

$\mu A 741, \mu \mathrm{~A} 741 \mathrm{Y}$ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS

Figure 6

Figure 7

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY

TYPICAL CHARACTERISTICS

Figure 8

Figure 9

Figure 10

PACKAGE OPTION ADDENDUM

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
UA741CD	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
UA741CDE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
UA741CDG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
UA741CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
UA741CDRE4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
UA741CDRG4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
UA741CJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
UA741CJG4	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
UA741CP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
UA741CPE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
UA741CPSR	ACTIVE	SO	PS	8	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
UA741CPSRE4	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
UA741MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
UA741MJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
UA741MJB	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
UA741MJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
UA741MJGB	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

JG (R-GDIP-T8)

[^0]J ($\mathrm{R}-\mathrm{GDIP}-\mathrm{T} * *$)
CERAMIC DUAL IN-LINE PACKAGE
14 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

P (R-PDIP-T8)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

4040047-2/H 11/2006
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AA.

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
Low Power Wireless	www.ti.com/lpw

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

[^0]: NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. This package can be hermetically sealed with a ceramic lid using glass frit.
 D. Index point is provided on cap for terminal identification.
 E. Falls within MIL STD 1835 GDIP1-T8

