

UNITRODE

Plug and Play, 18-Line SCSI Active Terminator

FEATURES

- Complies with SCSI and SCSI-2 Standards
- 8pF Channel Capacitance during Disconnect
- SCSI Plug and Play, Dual Low Disconnect, Logic Low Command Disconnects All Termination Lines
- Meets SCSI Hot Plugging Capability
- –650mA Sourcing Current for Termination
- +200mA Sinking Current for Active Negation
- 200μA Supply Current in Disconnect Mode
- Trimmed Termination Current to 7%
- Trimmed Impedance to 7%
- Provides Active Termination for 18 Lines

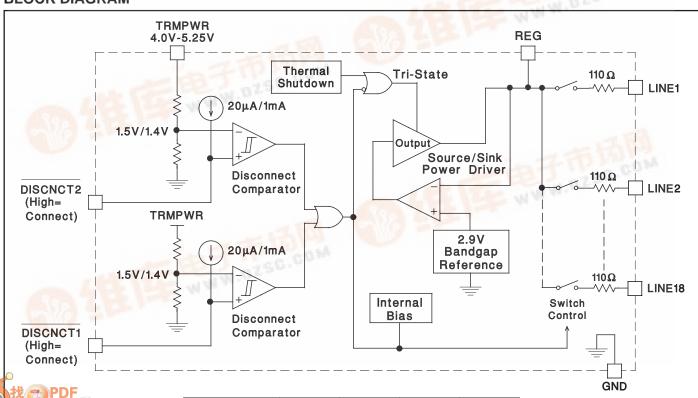
DESCRIPTION

The UC5607 provides 18 lines of active termination for a SCSI (Small Computer Systems Interface) parallel bus. The SCSI standard recommends active termination at both ends of the cable segment.

The UC5607 provides a low disconnect feature which will disconnect all terminating resistors, and will disable the regulator, greatly reducing standby power. The output channels remain high impedance even without Termpwr applied.

The UC5607 terminator is specially designed with two disconnect pins for full SCSI Plug and Play (PnP) applications.

Custom power packages are utilized to allow normal operation at full power conditions (2 Watts).


Internal circuit trimming is utilized, first to trim the impedance to a 7% tolerance, and then most importantly, to trim the output current to a 7% tolerance, as close to the max SCSI spec as possible, which maximizes noise margin in fast SCSI operation.

Other features include thermal shutdown and current limit.

This device is offered in low thermal resistance versions of the industry standard 28 pin wide body SOIC, and 28 pin PLCC, as well as 24 pin DIP.

BLOCK DIAGRAM

Circuit Design Patented

Connect

1

0

DISCNCT1

DISCNCT2

Connect

0

1

Connect

1

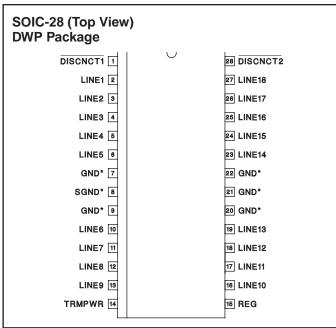
1

Disc

UDG-94124

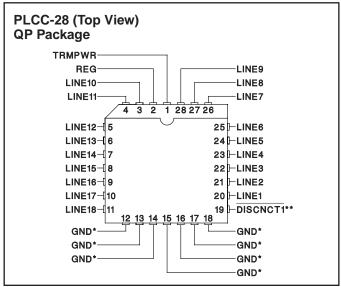
0

0

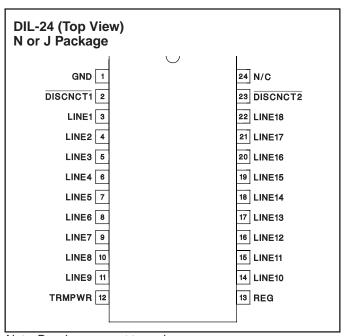

ABSOLUTE MAXIMUM RATINGS

Termpwr Voltage	/
Signal Line Voltage	/
Regulator Output Current	١
Storage Temperature)
Operating Temperature55°C to +150°C)
Lead Temperature (Soldering, 10 Sec.) +300°C)

Unless otherwise specified all voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal. Consult Packaging Section of Unitrode Integrated Circuits databook for thermal limitations and considerations of packages.


RECOMMENDED OPERATING CONDITIONS

Termpwr Voltage	3.8V to 5.25V
Signal Line Voltage	
Disconnect Input Voltage	0V to Termpwr


* DWP package pin 8 serves as signal ground; pins 7, 8, 9, 20, 21, 22 serve as heatsink/ground.

CONNECTION DIAGRAMS

* QP package pins 12 - 18 serve as both heatsink and signal ground.

^{**} DISCNCT2 is internally tied to ground.

Note: Drawings are not to scale.

ELECTRICAL CHARACTERISTICS Unless otherwise stated, these specifications apply for $T_A = 0$ °C to 70°C. TRMPWR = 4.75V, DISCNCT1 = DISCNCT2 = 2.2V. $T_A = T_J$.

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT S
Supply Current Section	,			1		•
Termpwr Supply Current	All termination lines = Open	All termination lines = Open		30	45	mA
	All termination lines = 0.5V			420	470	mA
Power Down Mode	DISCNCT1 = DISCNCT2 = 0V			300	500	μΑ
Output Section (Terminator Li	ines)					
Terminator Impedance	$\Delta I_{LINE} = -5mA$ to $-15mA$	$T_J = 25^{\circ}C$	102	110	118	Ohms
		$0^{\circ}\text{C} < \text{T}_{\text{J}} < 70^{\circ}\text{C}$	97	110	129	Ohms
Output High Voltage	V _{TRMPWR} = 4V (Note 1)	T _J = 25°C	2.6	2.9	3.1	V
		$0^{\circ}\text{C} < \text{T}_{\text{J}} < 70^{\circ}\text{C}$	2.55	2.9	3.2	V
Max Output Current V _{LINE} = 0.5V	$V_{LINE} = 0.5V$	$T_J = 25^{\circ}C$	-19.5	-21.9	-22.4	mA
	$0^{\circ}\text{C} < \text{T}_{\text{J}} < 70^{\circ}\text{C}$	-18.5	-21.9	-22.4	mA	
Max Output Current	V _{LINE} = 0.5V, TRMPWR = 4V (Note 1)	$T_J = 25^{\circ}C$	-18.0	-21.9	-22.4	mA
		$0^{\circ}\text{C} < \text{T}_{\text{J}} < 70^{\circ}\text{C}$	-17.0	-21.9	-22.4	mA
Output Leakage	Output Leakage DISCNCT1 = DISCNCT2 = 0V, TRMPWR = 0V to 5.25V			10	400	nA
Output Capacitance	DISCNCT1 = $\overline{DISCNCT2}$ = 0V (Note 2)			8	10	pF
Regulator Section						
Regulator Output Voltage	All Termination Lines = 5V	TJ = 25°C	2.7	2.9	3.1	V
		0°C < T _J < 70°C	2.55	2.9	3.2	V
Line Regulation TRMPWR = 4V to 6V			10	20	mV	
Load Regulation I _{REG} = +100mA to -100mA			20	50	mV	

Note 1: Measuring each termination line while other 17 are low (0.5V).

Note 2: Guaranteed by design. Not 100% tested in production.

APPLICATION INFORMATION

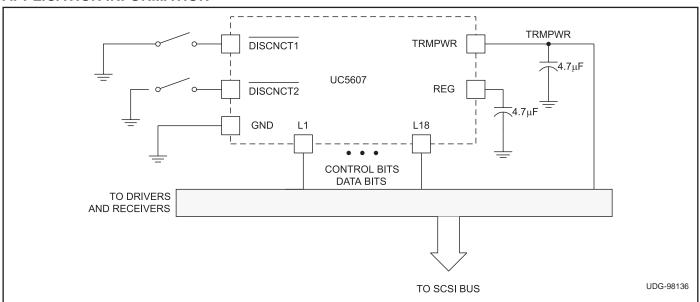


Figure 1: Typical SCSI Bus Configuration Utilizing UC5607 Device

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated