

SILICON TRANSISTOR μ PA800T

HIGH-FREQUENCY LOW NOISE AMPLIFIER NPN SILICON EPITAXIAL TRANSISTOR (WITH BUILT-IN 2 ELEMENTS) MINI MOLD

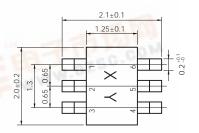
The μ PA800T has built-in 2 low-voltage transistors which are designed to amplify low noise in the VHF band to the UHF band.

FEATURES

- Low Noise
 NF = 1.9 dB TYP. @ f = 2 GHz, VcE = 1 V, Ic = 3 mA
- High Gain
 |S_{21e}|² = 6.5 dB TYP. @ f = 2 GHz, VcE = 1 V, Ic = 3 mA
- · A Mini Mold Package Adopted
- Built-in 2 Transistors (2 × 2SC4228)

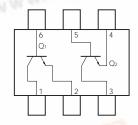
ORDERING INFORMATION

PART NUMBER	QUANTITY	PACKING STYLE
μРА800Т	Loose products (50 PCS)	Embossed tape 8 mm wide. Pin 6 (Q1 Base), Pin 5 (Q2 Base), Pin 4 (Q2 Emitter) face to perforation side of the tape.
μPA800T-T1	Taping products (3 KPCS/Reel)	THE AND SEL


Remark If you require an evaluation sample, please contact an NEC Sales Representative. (Unit sample quantity is 50 pcs.)


ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

PARAMETER	SYMBOL	RATING	UNIT
Collector to Base Voltage	Vсво	20	V
Collector to Emitter Voltage	VCEO	10	V
Emitter to Base Voltage	V _{EBO}	1.5	V
Collector Current	Ic	35	mA
Total Power Dissipation	Pr 250	150 in 1 element 200 in 2 elements ^{Note}	mW
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-65 to +150	°C


Note 110 mW must not be exceeded in 1 element.

PACKAGE DRAWINGS (Unit: mm)

PIN CONFIGURATION (Top View)

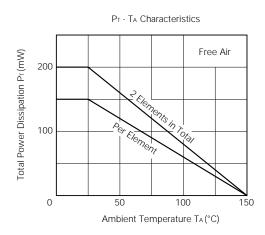
PIN CONNECTIONS

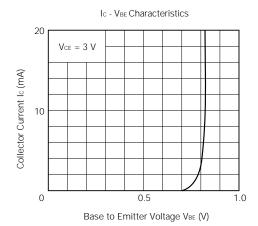
1. Collector (Q1) 2. Emitter (Q1) 3. Collector (Q2)

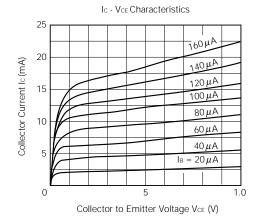
tor (Q1) 4. Emitter (Q2) r (Q1) 5. Base (Q2) tor (Q2) 6. Base (Q1)

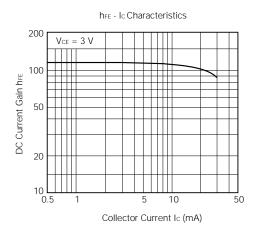
ELECTRICAL CHARACTERISTICS (TA = 25 °C)

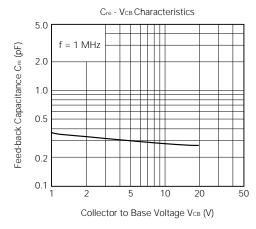
PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Collector Cutoff Current	Ісво	Vcb = 10 V, IE = 0			1.0	μΑ
Emitter Cutoff Current	Ієво	V _{EB} = 1 V, Ic = 0			1.0	μΑ
DC Current Gain	hfE	Vce = 3 V, Ic = 5 mA ^{Note 1}	80		200	
Gain Bandwidth Product	f⊤	VcE = 3 V, Ic = 5 mA	5.5	80		GHz
Feed-back Capacitance	Сге	Vcb = 3 V, IE = 0, f = 1 MHzNote 2			0.7	pF
Insertion Power Gain (1)	S _{21e} ²	VcE = 1 V, Ic = 3 mA, f = 2 GHz	4.5	6.5		dB
Insertion Power Gain (2)	S _{21e} ²	Vce = 3 V, Ic = 5 mA, f = 2 GHz	5.5	7.5		dB
Noise Figure (1)	NF	Vce = 1 V, Ic = 3 mA, f = 2 GHz		1.9	3.2	dB
Noise Figure (2)	NF	Vce = 3 V, Ic = 5 mA, f = 2 GHz		1.9	3.2	dB

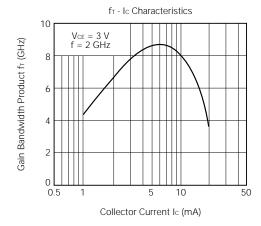

Notes 1. Pulse Measurement: Pw \leq 350 μ s, Duty cycle \leq 2 %

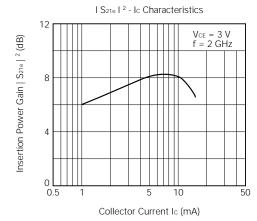

2. Measured with 3-pin bridge, emitter and case should be connected to guard pin of bridge.


hfe CLASSIFICATION

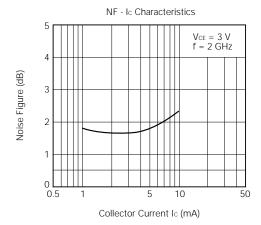

Rank	КВ		
Marking	RL		
h _{FE} Value	80 to 200		


TYPICAL CHARACTERISTICS (TA = 25 °C)









S-PARAMETERS

$V_{CE} = 3 V, I_{C} = 5 mA, Z_{O} = 5$	2 00	= 50	Zo =	mA,	= 5	lс	٧,	3	Vce =
---	------	------	------	-----	-----	----	----	---	-------

700.00

800.00

900.00 1000.00

1100.00

1200.00

1300.00

1400.00 1500.00

1600.00

1700.00

1800.00

1900.00

2000.00

.812

.774

.727

.680

.651

.616

.575

.546

.512

.481

.463

.440

.419

.394

-50.6

-57.1

-62.9

-69.3

-74.1

-79.8

-85.2

-90.6

-95.8

-100.6

-106.3

-111.8

-116.4

-121.2

2.905

2.830

2.694

2.597

2.479

2.392

2.302

2.207

2.110

2.034

1.989

1.903

1.854

1.779

131.1

124.4

119.2

114.1

109.3

104.8

101.1

96.0

92.1

88.8

85.5

82.2

78.9

75.5

.113

.128

.134

.146

.146

.155

.155

.160

.168

.165

.176

.173 .174

.173

61.7

55.7

55.6

53.7

50.3

49.8

46.2

46.7

43.6

45.5

45.3

43.8

43.5

43.7

.880

.846

.808

.790

.766

.741

.714

.708

.685

.676

.667

.649

.633

.630

-24.4

-27.2

-28.8 -31.8

-32.8

-34.9

-35.9

-36.8

-38.4

-40.1

-41.8

-42.3

-44.2

-45.2

$V_{CE} = 3 V, I_{C} = 5 n$	nA, $Zo =$	50 Ω						
FREQUENCY	S	511	S	21	S	12	S	22
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
100.00	.875	-18.6	14.087	161.1	.018	78.2	.958	-10.1
200.00	.762	-35.0	12.290	145.1	.034	68.6	.888	-17.7
300.00	.677	-47.2	10.888	133.6	.048	66.6	.800	-24.4
400.00	.565	-59.4	9.275	123.6	.055	65.8	.719	-26.7
500.00	.495	-67.5	8.300	115.7	.063	63.5	.669	-28.7
600.00	.425	-76.1	7.184	108.9	.074	61.1	.610	-30.3
700.00	.372	-81.6	6.454	104.8	.084	63.8	.600	-30.6
800.00	.327	-88.5	5.818	99.5	.089	62.7	.560	-31.3
900.00	.289	-93.6	5.231	95.5	.092	64.6	.543	-30.1
1000.00	.255	-100.5	4.820	92.0	.104	62.8	.519	-33.4
1100.00	.236	-105.2	4.444	88.8	.105	64.2	.512	-31.8
1200.00	.214	-112.2	4.142	85.3	.113	64.2	.497	-33.4
1300.00	.195	-117.6	3.842	83.2	.122	63.6	.476	-33.2
1400.00	.182	-123.8	3.554	79.3	.127	65.0	.481	-34.2
1500.00 1600.00	.165 .153	–129.9 –137.4	3.343 3.218	77.4 75.3	.139 .140	64.1	.467	-34.6 -34.8
1700.00	.133	-137.4 -144.3	3.091	73.6	.152	64.5 65.4	.466 .458	-34.6 -37.2
1800.00	.139	-144.3 -151.8	2.857	70.4	.162	64.3	.456	-37.2 -36.1
1900.00	.134	-157.0	2.764	68.7	.168	62.3	.451	-38.4
2000.00	.129	-164.7	2.624	66.4	.176	64.8	.445	-39.0
$V_{CE} = 3 V$, $I_{C} = 3 n$	nA, Zo = !	50 Ω						
FREQUENCY	S	11	S	21	S	12	S	22
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
100.00	.943	-13.4	9.384	165.9	.020	84.1	.969	-7.7
200.00	.868	-26.6	8.668	152.8	.038	77.2	.936	-13.8
300.00	.815	-37.7	8.165	142.9	.051	67.9	.876	-20.9
400.00	.717	-48.9	7.279	132.9	.062	63.9	.804	-23.5
500.00	.655	-56.8	6.780	125.5	.075	63.9	.764	-26.7
600.00	.577	-65.5	6.061	118.0	.084	60.0	.708	-29.7
700.00	.518	-71.2	5.504	112.8	.091	59.7	.685	-31.1
800.00	.468	-78.1	5.074	106.7	.098	57.0	.639	-32.0
900.00	.420 .380	-83.7 -90.6	4.632	102.8 98.3	.102 .105	59.0 56.6	.611 .592	-32.8 -35.0
1000.00 1100.00	.344	-94.8	4.340 3.951	96.3 94.8	.112	57.8	.579	-33.0 -34.1
1200.00	.321	-101.6	3.717	90.5	.121	59.0	.551	-35.0
1300.00	.291	-101.9	3.485	87.6	.128	58.7	.532	-35.9
1400.00	.273	-111.7	3.306	84.3	.135	59.8	.535	-36.6
1500.00	.250	-117.2	3.134	80.7	.140	58.0	.511	-37.5
1600.00	.228	-122.4	2.959	79.0	.145	59.5	.516	-37.7
1700.00	.219	-128.5	2.819	76.0	.153	59.0	.504	-39.0
1800.00	.199	-135.3	2.699	73.9	.161	58.4	.493	-39.9
1900.00	.193	-139.6	2.572	71.9	.163	60.3	.489	-41.4
2000.00	.182	-146.9	2.474	68.3	.175	59.8	.482	-41.4
VcE = 3 V, Ic = 1 n	nA, Zo = !	50 Ω						
FREQUENCY	S	11	S	21	S.	12	S	22
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
100.00	1.023	-7.6	3.505	172.1	.025	86.4	.995	-4.6
200.00	.983	-16.1	3.400	163.3	.039	79.3	.986	-7.8
300.00	.975	-22.4	3.368	157.3	.061	74.6	.976	-12.8
400.00	.922	-31.8	3.219	149.1	.075	70.7	.936	-15.1
500.00	.899	-36.9	3.186	143.3	.093	66.4	.922	-18.8
600.00	.849	-44.7	3.046	135.7	.105	62.2	.885	-22.5

NEC μ PA800T

[MEMO]

NEC μ PA800T

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.