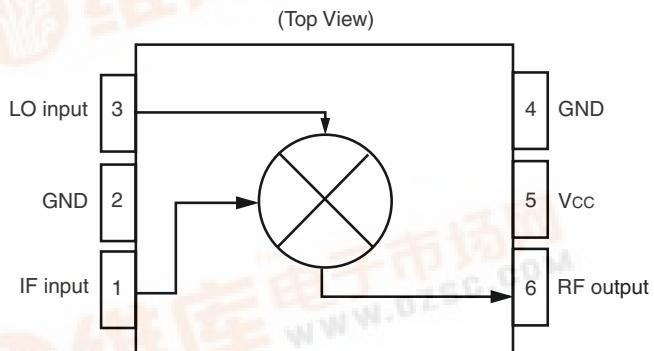


CEL


3 V SILICON RFIC
FREQUENCY UPCONVERTER

UPC8163TB

FEATURES

- RECOMMENDED OPERATING FREQUENCY:**
 $f_{RFOUT} = 0.8 \text{ GHz to } 2.0 \text{ GHz}$
 $f_{IFIN} = 50 \text{ MHz to } 300 \text{ MHz}$
- SUPPLY VOLTAGE:**
 $V_{CC} = 2.7 \text{ to } 3.3 \text{ V}$
- HIGH DENSITY SURFACE MOUNTING:**
6-pin super minimold package
- HIGH IP3:**
 $OIP3 = +9.5 \text{ dBm } @ f_{RFOUT} = 900 \text{ MHz}$
- MINIMIZED CARRIER LEAKAGE:**
Due to double balanced mixer

BLOCK DIAGRAM

DESCRIPTION

NEC's UPC8163TB is a silicon RFIC designed as a frequency upconverter for cellular/cordless telephone transmitter stages, and features improved intermodulation. This device is housed in a 6 pin super mini mold or SOT-363 package making it ideal for reducing system size. The UPC8163TB is manufactured using NEC's 20 GHz ft NESAT™ III silicon bipolar process.

NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.

APPLICATIONS

- Digital Cellular/Cordless Phones

ELECTRICAL CHARACTERISTICS

($T_A = 25^\circ\text{C}$, $V_{CC} = V_{RFOUT} = 3.0 \text{ V}$, $f_{IFIN} = 240 \text{ MHz}$, $P_{LOIN} = -5 \text{ dBm}$ unless otherwise specified)

PART NUMBER PACKAGE OUTLINE			UPC8163TB S06		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
I_{CC}	Circuit Current (no signal)	mA	11.5	16.5	23
CG	Conversion Gain $f_{RFOUT} = 0.9 \text{ GHz}$, $P_{IFIN} = -30 \text{ dBm}$ $f_{RFOUT} = 1.9 \text{ GHz}$, $P_{IFIN} = -30 \text{ dBm}$	dB dB	6 4	9 7	12 10
Psat	Saturated Output Power $f_{RFOUT} = 0.9 \text{ GHz}$ $f_{RFOUT} = 1.9 \text{ GHz}$	dBm dBm	-1.5 -4.5	0.5 -2	
OIP3	Output third Order Intercept Point, $f_{IFIN1} = 240 \text{ MHz}$ $f_{IFIN2} = 240.4 \text{ MHz}$ $P_{IFIN} = -20 \text{ dBm}$ $f_{RFOUT} = 0.9 \text{ GHz}$ $f_{RFOUT} = 1.9 \text{ GHz}$	dBm dBm			
NF	SSB Noise Figure $f_{RFOUT} = 0.9 \text{ GHz}$ $f_{RFOUT} = 1.9 \text{ GHz}$	dB dB		12.5 12.5	

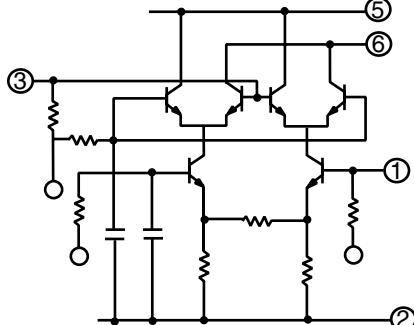
UPC8163TB

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

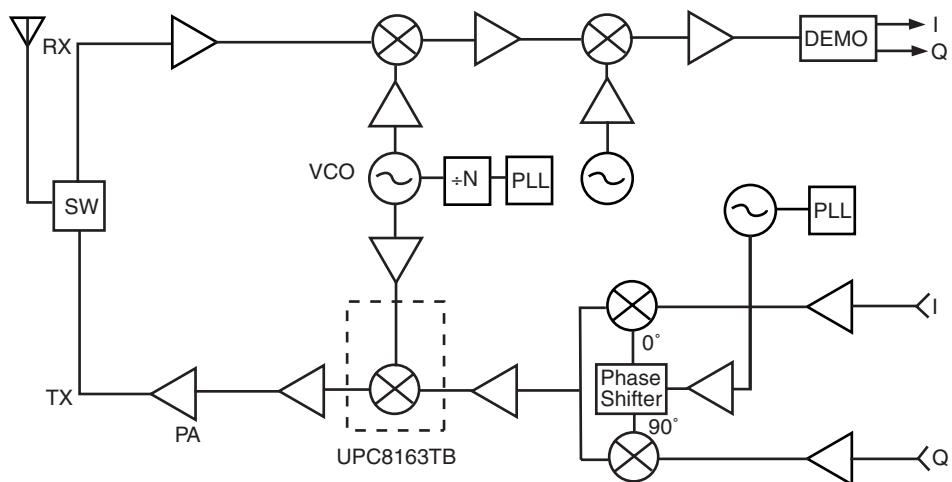
SYMBOLS	PARAMETERS	UNITS	RATINGS
V _{CC}	Supply Voltage ²	V	3.6
P _T	Total Power Dissipation ³	mW	200
P _{IN}	Input Power	dBm	+10
T _{OP}	Operating Temperature	°C	-40 to +85
T _{STG}	Storage Temperature	°C	-55 to +150

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage.
2. TA = 25°C, pins 5 and 6.
3. Mounted on a double-sided copperclad 50x50x1.6 mm epoxy glass PWB, TA = 85°C.

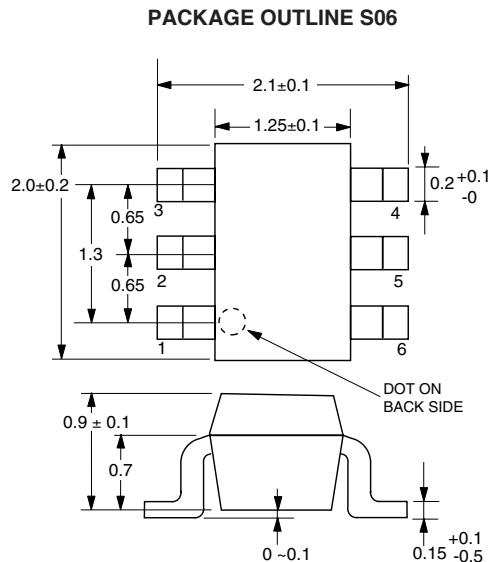

RECOMMENDED OPERATING CONDITIONS

SYMBOLS	PARAMETERS	UNITS	MIN	TYP	MAX
V _{CC}	Supply Voltage ¹	V	2.7	3.0	3.3
P _{LOIN}	Local Input Level ²	dBm	-10	-5	0
f _{RFOUT}	RF Output Frequency ³	GHz	0.8	—	2.0
f _{IFIN}	IF Input Frequency	MHz	50	—	300
T _{OP}	Operating Temperature	°C	-40	+25	+85


Notes:

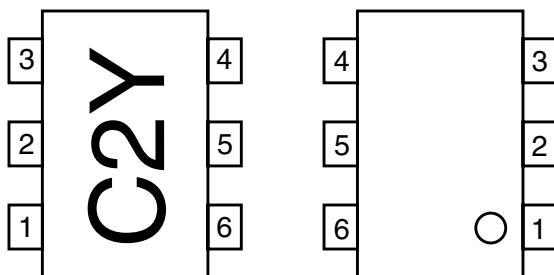
1. Same voltage applied to pins 5 and 6
2. Z_S = 50 Ω (without matching)
3. With external matching circuit

PIN FUNCTIONS


Pin No.	Pin Name	Applied Voltage	Pin Voltage	Description	Equivalent Circuit
1	IFINPUT	—	1.2	This pin is the IF input to double balanced mixer. The input is a high impedance.	
2 4	GND	0	—	GND pin. Ground pattern on the board should be as wide as possible. Trace length should be kept as short as possible to minimize ground impedance.	
3	LOINPUT	—	2.1	LO input pin. Recommended input level is -10 to 0 dBm.	
5	V _{CC}	2.7 to 3.3	—	Supply voltage pin.	
6	RFOUTPUT	Same bias as V _{CC} through external inductor	—	This pin is the RF output. This pin is designed as an open collector. Due to the high impedance output, this pin requires an external LC matching circuit.	

APPLICATION EXAMPLE

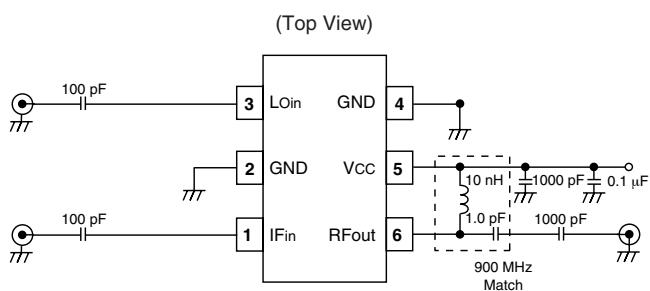
UPC8163TB


OUTLINE DIMENSIONS (Units in mm)

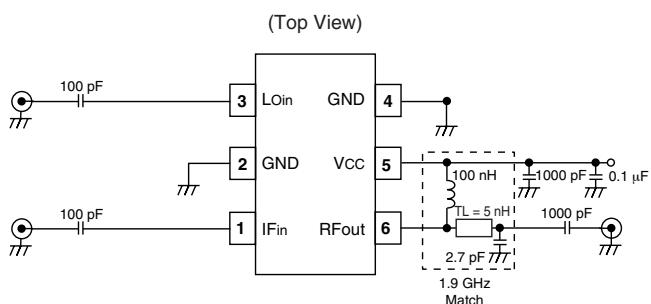
Note:
All dimensions are typical unless otherwise specified.

LEAD CONNECTIONS

(Top View) (Bottom View)


1. IF INPUT
2. GND
3. LO INPUT
4. GND
5. Vcc
6. RF OUTPUT

ORDERING INFORMATION


PART NUMBER	QUANTITY
UPC8163TB-E3-A	3K/Reel

Note: Embossed tape 8 mm wide. Pins 1,2,3 face tape perforation side.

TEST CIRCUIT 1 (RFout = 900 MHz)

TEST CIRCUIT 2 (RFout = 1.9 GHz)

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

EXCLUSIVE NORTH AMERICAN AGENT FOR **NEC** RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS

CEL CALIFORNIA EASTERN LABORATORIES • Headquarters • 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • Telex 34-6393 • FAX (408) 988-0279

24-Hour Fax-On-Demand: 800-390-3232 (U.S. and Canada only) • Internet: <http://WWW.CEL.COM>

DATA SUBJECT TO CHANGE WITHOUT NOTICE

□□□

02/14/2000

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb-free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	< 1000 PPM	-A	-AZ
		Not Detected	(*)
Mercury	< 1000 PPM	Not Detected	
Cadmium	< 100 PPM	Not Detected	
Hexavalent Chromium	< 1000 PPM	Not Detected	
PBB	< 1000 PPM	Not Detected	
PBDE	< 1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerning the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.

See CEL Terms and Conditions for additional clarification of warranties and liability.

