UTC 75185

LINEAR INTEGRATED CIRCUIT

MULTIPLE RS-232 DRIVERS AND RECEIVERS

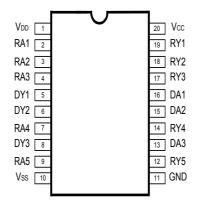
DESCRIPTION

The UTC 75185 complies with the requirements of the TIA/EIA232-F and ITU (formerly CCITT) v.28 standards. These standards are for data interchange between a host computer and peripheral at signaling rates up to 20kbit/s. The switching speeds of the UTC 75185 are fast enough to support rates up to 120kbite/s with lower capacitive loads (shorter cables). Interoperability at the higher signaling rates cannot be assured unless the designer has design control of the cable and the interface circuits at both ends. For interoperability at signaling rates to 120kbit/s, use of ITA/EIA-423-B (ITU v.10) and TIA/EIA-422-B (ITU v.11) standards are recommended.

The UTC 75185 is Characterized for operation over the temperature range of 0°C to 70°C.

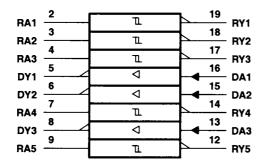
FEATURES

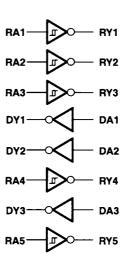
- *Single chip with easy interface between UART and Serial-Port connector of IBMTM, PC/ATTM and Compatibles.
- *Three drivers and five receivers meet or exceed the requirements of TIA/EIA-232-F and ITU v.28 standards.
- *Designed to support data rates up to 120 kbps
- *ESD protection meets or exceeds 10 kV on RS-232 pins and 5 kV on all other pins (Human-Body Model)



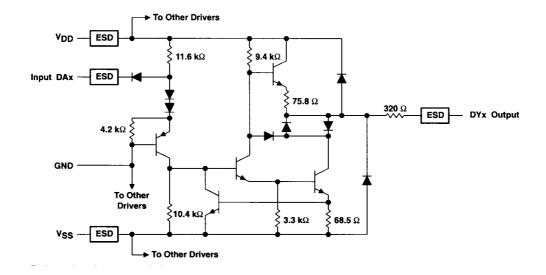
UNISONIC TECHNOLOGIES CO., LTD.

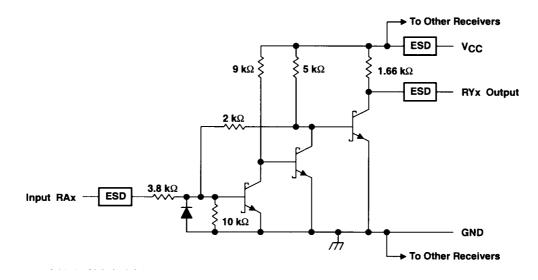
QW-R113-003,B


PIN CONFIGURATIONS


PIN DESCRIPTION

PIN NO	SYMBOL	NAME AND FUNCTION
1	VDD	Supply Voltage
2	RA1	First Receiver Input
3	RA2	Second Receiver Input
4	RA3	Third Receiver Input
5	DY1	First Driver Output
6	DY2	Second Driver Output
7	RA4	Fourth Receiver Input
8	DY3	Third Driver Output
9	RA5	Fifth Receiver Input
10	Vss	Supply Voltage
11	GND	Ground
12	RY5	Fifth Receiver Output
13	DA3	Third Driver Input
14	RY4	Fourth Receiver Output
15	DA2	Second Driver Input
16	DA1	First Driver Input
17	RY3	Third Receiver Output
18	RY2	Second Receiver Output
19	RY1	First Receiver Output
20	Vcc	Supply Voltage


LOGIC SYMBOL AND LOGIC DIAGRAM


This symbol is in accordance with ANSI/IEEE std 91-1984 and IEC Publication 617-12

CIRCUIT OF DRIVERS (Resistor value shown are nominal.)

CIRCUIT OF EACH RECEIVER (Resistor value shown are nominal.)

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE

RANGE (unless otherwise specified)

SYMBOL	VALUE	UNIT
VDD	15	V
Vss	-15	V
Vcc	10	V
Vı	-15 to 7	V
Vı	-30 to 30	V
Vo	-15 to 15	V
lo	20	mA
$\theta_{\sf JA}$	97	°C/W
	67	
	10	kV
	5	kV
	600	V
	300	V
Tstg	-65 to +150	°C
TL	260	°C
	VDD Vss Vcc Vi Vi Vo Io θJA	Vod 15 Vss -15 Vcc 10 Vi -15 to 7 Vi -30 to 30 Vo -15 to 15 Io 20 θ _{JA} 97 67 10 5 600 300 Tstg -65 to +150

Note 1: All voltage are with respect to the network ground terminal.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply voltage	VDD	7.5	9	15	V
Supply voltage	Vss	-7.5	-9	-15	V
Supply voltage	Vcc	4.5	5	5.5	V
High level input voltage (driver only)	Vih	1.9			V
Low level input voltage (driver only)	VIL			0.8	V
High level output current					mA
DRIVER	Іон			-6.0	
RECEIVER				-0.5	
Low level output current					mA
DRIVER	loL			6	
RECEIVER				16	
Operating free-air temperature	TA	0		70	°C

Note 2: The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

Note 3: RS-232 pins are tested with respect to ground and each other.

Note 4: Per MIL-PRF-38535.

Note 5: RS-232 pins are tested with respect to ground.

PARAMETER	SYMBOL	TEST CON	TEST CONDITIONS				UNIT
			Vdd	Vss			
Supply current from VDD		No load.	9	-9		15	mA
		All inputs at 1.9V	12	-12		19	
	las		15	-15		25	mA
	IDD	No load. All inputs at 0.8V	9	-9		4.5	
			12	-12		5.5	
			15	-15		9	
Supply current from Vss		No load.	9	-9		-15	mA
		All inputs at 1.9V	12	-12		-19	
	laa		15	-15		-25	
	Iss	No load.	9	-9		-3.2	mA
		All inputs at 0.8V	12	-12		-3.2	
			15	-15		-3.2	
Supply current from Vcc	Icc	No load. All inputs	at 5V,	√cc=5V		30	mA

DRIVER ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (VDD=9V, Vss=-9V, Vcc=5V, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
High level output voltage	Vон	V _I L=0.8V, R _L =3 kΩ (Figure 1)	6	7.5		V
Low level output voltage (note 6)	Vol	Vıн=1.9V, RL=3 kΩ (Figure		-7.5	-6	V
		1)				
High level input current	Іін	V _I =5V (Figure 2)			10	μΑ
Low level input current	lıL	V ₁ =0V (Figure 2)			-1.6	mA
High level short circuit output current	los(H)	VIL=0.8V, Vo=0V(Figure 1)	-4.5	-12	-19.5	mA
(note 7)						
Low level short circuit output current	los(L)	VIH=2V, Vo=0V(Figure 1)	4.5	12	19.5	mA
Output resistance (note 8)	ro	V _{DD} =Vss=Vcc=0V	300			Ω
		Vo=-2 to 2V				

Note 6: The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this datasheet for logic levels only (e.g. if -10V is a maximum, the typical value is a more negative voltage).

DRIVER SWITCHING CHARACTERISTICS (V_{DD}=12V, Vss=-12V, Vcc=5V, T_A=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation delay time, low to high level output	t PLH	RL=3 to 7 k Ω , C _L =15pF (Figure 3)		315	500	ns
Propagation delay time, high to low level output	tPHL	RL=3 to 7 k Ω , C _L =15pF (Figure 3)		75	175	ns
Transition time, low to high level output	tтьн	RL=3 to 7 k Ω , C _L =15pF (Figure 3)		60	100	ns
	(ILH	RL=3 to 7 k Ω , C _L =2500pF (Note 9,Figure 3)		1.7	2.5	μS

Note 7: Output short circuit conditions must maintain the total power dissipation below absolute maximum ratings.

Note 8: Test conditions are those specified by TIA/EIA232-F and as listed above.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Transition time high to low level output	tтнь	RL=3 to 7 k Ω , C _L =15pF (Figure 3)		40	75	ns
		RL=3 to 7 k Ω , C _L =2500pF (Note 10, Figure 3)		1.5	2.5	μS

Note 9: Measured between -3V and 3V points of the output waveform (TIA/EIA-232-F conditions), all unused inputs

RECEIVER ELECTRICAL CHARACTERISTICS OVER RECOMMENDED

OPERATING CONDITIONS (T_A=25°C, Vcc=5V, Vpp=9V, Vss=-9V)

PARAMETER	SYMBOL	TEST CO	MIN	TYP	MAX	UNIT	
Positive going threshold voltage		(Figure 5)					V
	VT+	TA=25°0	3	1.75	1.9	2.3	
		TA=0°C	to 70°C	1.55		2.3	
Negative going threshold voltage	VT-			0.75	0.97	1.25	V
Input hysteresis(VT+ - VT-)	Vhys			0.5			V
High level output voltage	Vон	Iон=-0.5mA	VIH=0.75V	2.6	4	5	V
	VOH		Inputs Open	2.6			
Low level output voltage	Vol	Vi=3V, IoL=10mA			0.2	0.45	V
High level input current	Іін	V ₁ =25V (Figure 5)		3.6		8.3	mA
	IIH	V ₁ =3V (Figure 5)		0.43			
Low level input current	lu.	V _I =-25V (Figure 5)		-3.6		-8.3	mA
	lıL	V ₁ =-3V (Figure 5)		-0.43			
Short-circuit output current	los	(Figure 4)			-3.4	-12	mA

RECEIVER SWITCHING CHARACTERISTICS (VDD=12V, Vss=-12V, Vcc=5V, T_A=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation delay time, low to high level output	tPLH	RL=5 k Ω , CL=50pF (Figure 6)		107	500	ns
Propagation delay time, high to low level output	tPHL			42	150	ns
Transition time low to high level output	tTLH			175	525	ns
Transition time high to low level output	tTHL			16	60	ns

Note 10: Measured between 3V and -3V points of the output waveform (TIA/EIA-232-F conditions), all unused inputs

Figure 1. Driver test circuit for Voh, Vol, Ios(h), Ios(L)

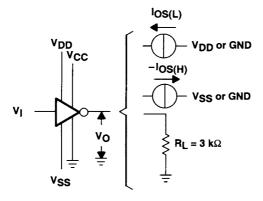


Figure 2. Driver test circuit for IIH, IIL

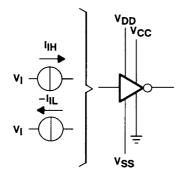
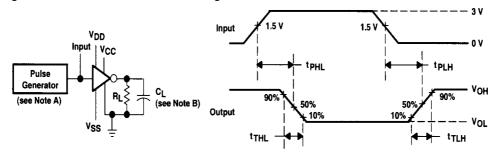



Figure 3. Driver test circuit and voltage waveforms

Note 1. The pulse generator has the following characteristics: tw=25 μ s, PRR=20kHz, Zo=50 Ω , tr=tf<50ns. Note 2. CL includes probe and jig capacitance.

Figure 4. Receiver test circuit for los

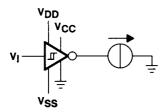
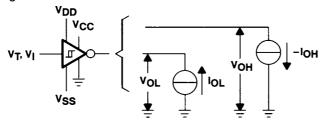
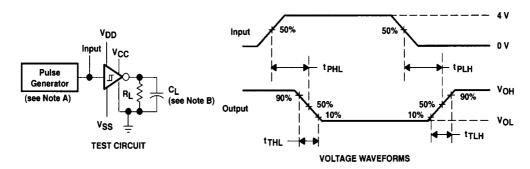
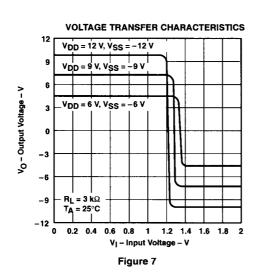
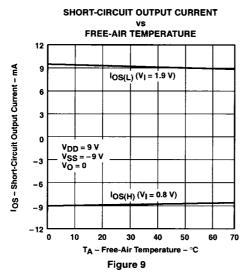
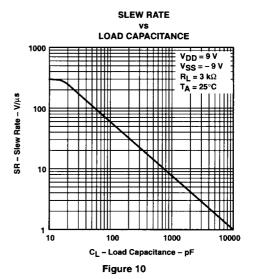


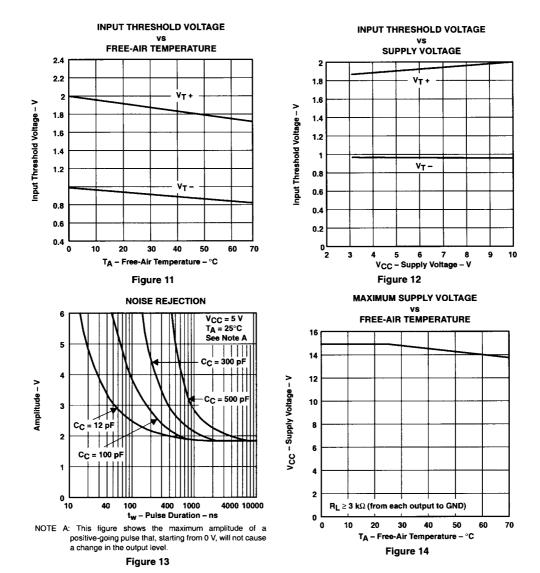
Figure 5. Receiver test circuit for VT, VOH, VOL


Figure 6. Receiver propagation and transition times



Note 1. The pulse generator has the following characteristics: $tw=25\mu s$, PRR=20kHz, $Z_0=50\Omega$, $Z_0=50\Omega$, tr=tf<50ns. Note 2. CL includes probe and jig capacitance.



OUTPUT CURRENT vs OUTPUT VOLTAGE 20 V_{DD} = 9 V V_{SS} = -9 V T_A = 25°C 16 $v_{OL}(v_l) = 1.9 v$ 12 10-Output Current - mA 8 0 -8 Load Line -12 $\overrightarrow{V_{OH}}(V_I = 0.8 \text{ V})$ -16 -20 L -12 0 12 16 Vo - Output Voltage - V Figure 8

10

QW-R113-003,A

APPLICATION INFORMATION

Figure 15. Power-Supply protection to meet Power-Off fault conditions of TIA/TIA-232-F

Diodes placed in series with the VDD and VSS leads protect the UTC 75185 in the fault condition in which the device outputs are shorted to $\pm 15V$ and the power supplies are at low and provide low-impedance paths to ground.

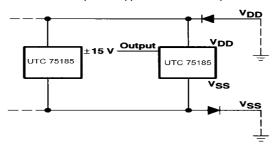
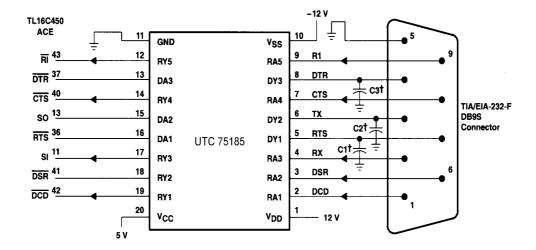



Figure 16. Typical Connection

"†": See Figure 10 to select the correct values for the loading capacitors (C1, C2, and C3), which are required to meet the RS-232 maximum slew-rate requirement of 30V/µs. The value of the loading capacitors required depends upon the line length and desired slew rate, but typically is 330 pF.

QW-R113-003,A

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC

UNISONIC TECHNOLOGIES CO., LTD.