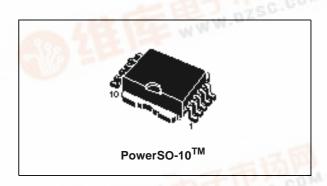


VN330SP-32-E

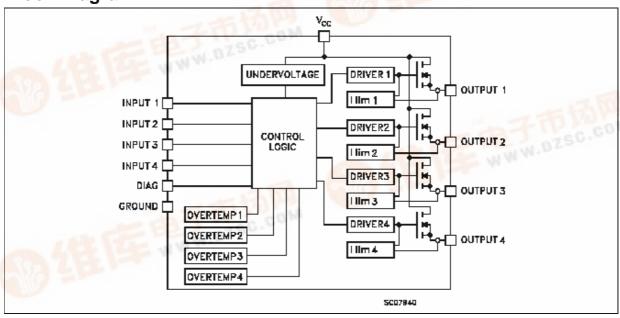
QUAD HIGH SIDE SMART POWER SOLID STATE RELAY


General Features

Туре	V _{demag} (*)	R _{DSon} (*)	I _{out} (*)	V _{CC}
VN330SP-32-E	V _{CC} -55V	0.32Ω(**)	1A	36V
(*)Per channel.				

(*)Per channel. (**)at TJ = 85 ℃

Features


- **OUTPUT CURRENT: 1A PER CHANNEL**
- DIGITAL INPUT CLAMPED AT 32V MINIMUM **VOLTAGE**
- SHORTED LOAD AND OVER-TEMPERATURE PROTECTIONS
- BUILT-IN CURRENT LIMITER
- UNDERVOLTAGE SHUT-DOWN
- **OPEN DRAIN DIAGNOSTIC OUTPUT**
- FAST DEMAGNETIZATION OF INDUCTIVE LOADS

Description

The VN330SP-32-E is a monolithic device made using STMicroelectronics VIPower Technology, intended for driving four indipendent resistive or inductive loads with one side connected to ground. Active current limitation avoids dropping the system power supply in case of shorted load. Built-in thermal shut-down protects the chip from overtemperature and short circuit. The open drain diagnostic output indicates over-temperature conditions.

Block Diagram

September 2005

Rev 3 1/14

Table 1. Absolute Maximum Rating

Symbol	Parameter	Value	Unit	
V _{CC}	Power supply voltage	45	V	
-V _{CC}	Reverse supply voltage -0.3			
I _{OUT}	Output current (continuos) Internally limite		Α	
I _R	Reverse output current (per channel) -6		Α	
I _{IN}	Input current (per channel)	± 10	mA	
I _{DIAG}	Diag pin current	± 10	mA	
V _{ESD}	Electrostatic discharge (R = 1.5KW; C = 100pF)	2000	V	
E _{AS}	Single pulse avalanche energy per channel not simultaneously <i>Figure 3</i> .	400	mJ	
P _{tot}	Power dissipation at T _C <= 25°C	Internally limited	W	
TJ	Junction operating temperature	Internally limited	°C	
T _{stg}	Storage Temperature	-55 to 150	°C	

Figure 1. Connection Diagram (Top View)

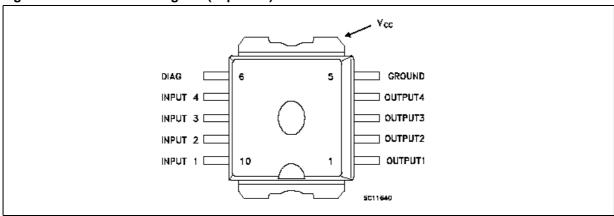
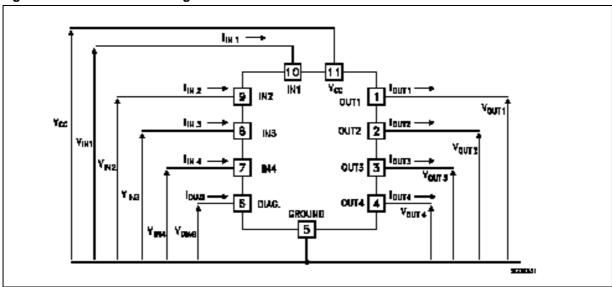



Figure 2. Current and Voltage Conventions

VN330SP-32-E

Table 2. Thermal data

Symbol	ol Parameter		Max Value	Unit
R _{thJC}	Thermal resistance junction-case (Note:1)	Max	2	°C/W
R _{thJA}	Thermal resistance junction-ambient (Note:2)	Max	50	°C/W

Note: 1.Per channel

Note: 2.When mounted using minimum recommended pad size on FR-4 board

Electrical Chracteristics (10V < V_{CC} < 36V; -25°C < T_{J} < 125°C; unless otherwise specified)

Table 3. Power Section

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{CC}	Supply voltage		10		36	V
		I _{OUT} = 0.5A; T _J = 125°C			0.4	Ω
R _{ON}	On state resistance	I _{OUT} = 0.5A; T _J = 85°C			0.32	Ω
		$I_{OUT} = 0.5A; T_J = 25^{\circ}C$			0.2	Ω
l-	Cupply ourrant	All channels OFF; V _{IN} = 30V;			1	mA
I _S	Supply current	On state; $T_J = 125^{\circ}C I_{OUT1}I_{OUT4} = 0V$			10	mA
V _{demag}	Output voltage at turn-off	$I_{OUT} = 0.5A; L_{LOAD} >= 1mH$	V _{CC} -65	V _{CC} -55	V _{CC} -45	V

Table 4. Logical Input

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level voltage				2	V
V _{IH}	Input high level voltage .	Note:3	3.5			V
V _{I(HYST)}	Input hysteresis voltage			0.5		V
l	Input current	V _{IN} = 0 to 30V			600	μΑ
I _{IN}	input current	$V_{IN} = 0$ to 2V	25			μΑ
I _{LGND}	Output current in ground disconnection	$V_{CC} = V_{INn} = GND = DIAG = 24V;$ $T_J = 25^{\circ}C$			25	mA
V	Input clamp voltage	I _{IN} = 1mA	32	36		V
V_{ICL}	Note:3	I _{IN} = -1 mA		-0.7		V

Note: 3. The input voltage is internally clamped at 32V minimum, it is possible to connect the input pins to an higher voltage via an external resistor calculate to not exceed 10mA

577

Table 5. Switching ($V_{CC} = 24V$)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
		I _{OUT} = 0.5A, Resistive Load Input rise				
1	Turn-on delay time of	time < 0.1µs,				
t _{d(ON)}	Output current	$T_J = 25$ °C		30	40	μs
		$T_J = 125$ °C			60	μs
		I _{OUT} = 0.5A, Resistive Load Input rise				
+	Rise time of Output	time $< 0.1 \mu s$,				
t _r	current	$T_J = 25$ °C		50	100	μs
		$T_J = 125$ °C			115	μs
		I _{OUT} = 0.5A, Resistive Load Input rise				
4	Turn-off delay time of	time $< 0.1 \mu s$,				
t _{d(OFF)}	Output current	$T_J = 25$ °C		20	30	μs
		$T_J = 125$ °C			40	μs
		I _{OUT} = 0.5A, Resistive Load Input rise				
	Fall time of Output	time < 0.1µs,				
t _f	current	$T_J = 25$ °C		8	15	μs
		$T_J = 125$ °C			20	μs
(di/dt) _{on}	Turn on current clans	I _{OUT} = 0.5A,			0.5	A/μs
(di/di/on	Turn-on current slope	$I_{OUT} = I_{LIM}, T_J = 25$ °C			2	A/μs
(di/dt) _{off}	Turn-off current slope	I _{OUT} = 0.5A,			2	A/μs
(di/dt/off	rum-on current slope	$I_{OUT} = I_{LIM}, T_J = 25$ °C			4	A/μs

Table 6. Protections

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{DIAG} (*)	Status voltage output low	I _{DIAG} = 5mA (Fault condition)			1	V
\/(*)	Ctatus alama valtaga	I _{DIAG} = 1mA	32	36		V
V _{SCL} (*)	Status clamp voltage	I _{DIAG} = -1mA		-0.7		V
V _{USD}	Undervoltage shut down		5		8	V
I _{LIM}	DC Short circuit current	$V_{CC} = 24V; R_{LOAD} < 10m\Omega$	1		2.5	Α
I _{OVPK}	Peak short circuit current	$V_{CC} = 24V; V_{IN} = 30V; R_{LOAD} < 10m\Omega$			4	Α
I _{DIAGH}	Leakage on diag pin in high state	V _{DIAG} = 24V			100	μΑ
I _{LOAD}	Output leakage current	V _{CC} = 10 to 36V; V _{IN} = V _{IL} 4 Channels in Parallel			25	μΑ
t _{SC}	Delay time of current limiter				100	μs
T _{TSD}	Thermal shut down temperature		150	170		°C
T_{R}	Thermal reset temperature		135	155		°C

^(*)Status determination > 100ms after the switching edge.

Note: If INPUT pin is floating the corrisponding channel will automatically switch OFF. If GND pin is disconnected, the channel will switch OFF provided $V_{\rm CC}$ not exceed 36V.

577

Figure 3. Avalance Energy Test Circuit

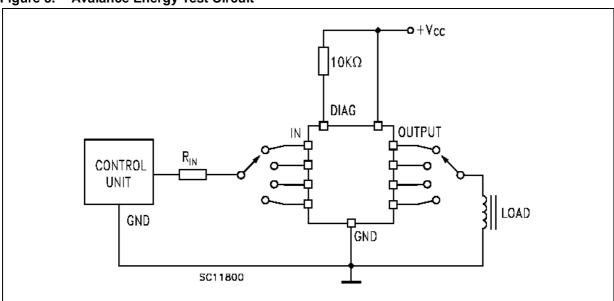


Figure 4. Peak Short Circuit Test Diagram

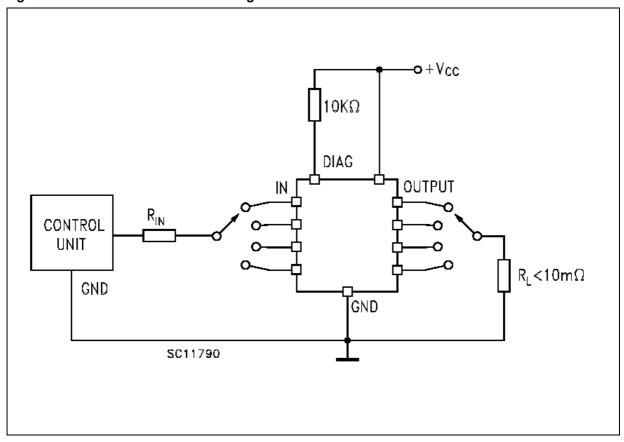


Table 7. Truth Table

Conditions	INPUTn	OUTPUTn	Diagnostic
Name al an austicu	L	L	Н
Normal operation	Н	Н	Н
Ou combo mo m o modulmo	L	L	Н
Overtemperature	Н	L	L
Lindomioltogo	L	L	Н
Undervoltage	Н	L	Н
Shorted load	L	L	Н
(Current limitation)	Н	Н	Н

Figure 5. Switching Waveforms

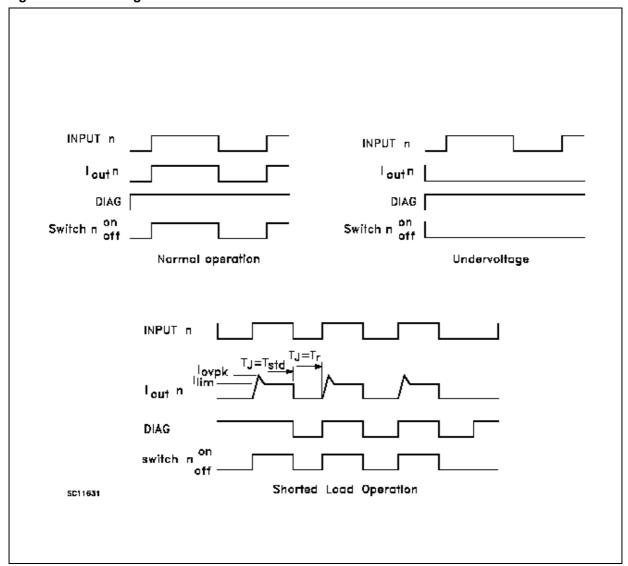


Figure 6. Switching Parameter Test Conditions

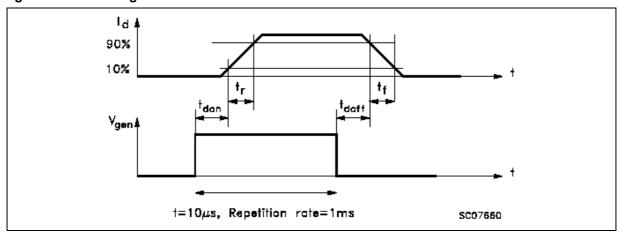
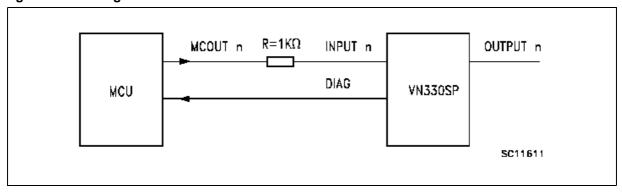
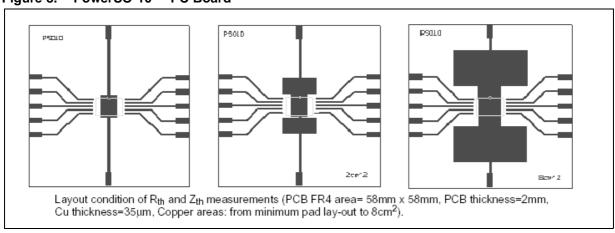




Figure 7. Driving Circuit

PowerSO-10TM Thermal Data

Figure 8. PowerSO-10TM PC Board

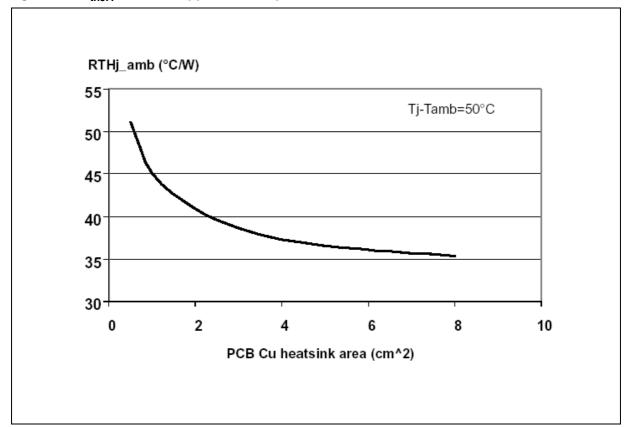


Figure 9. R_{thJA} Vs. PBC copper area in open box free air condition

Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Table 8. PowerSO-10TM Mechanical Data

Symbol		millimeters	
Зушьы	Min	Тур	Max
A	3.35		3.65
A (*)	3.4		3.6
A1	0.00		0.10
В	0.40		0.60
B (*)	0.37		0.53
С	0.35		0.55
C (*)	0.23		0.32
D	9.40		9.60
D1	7.40		7.60
E	9.30		9.50
E2	7.20		7.60
E2 (*)	7.30		7.50
E4	5.90		6.10
E4 (*)	5,90		6.30
e		1.27	
F	1.25		1.35
F (*)	1.20		1.40
Ĥ.	13.80		14.40
H (*)	13.85		14.35
h		0.50	
L	1.20		1.80
L (*)	0.80		1.10
а	0°		8°
α (*)	2°		8°

Note: (*) Muar only POA P013P

Figure 10. PowerSO-10TM Package Dimensions

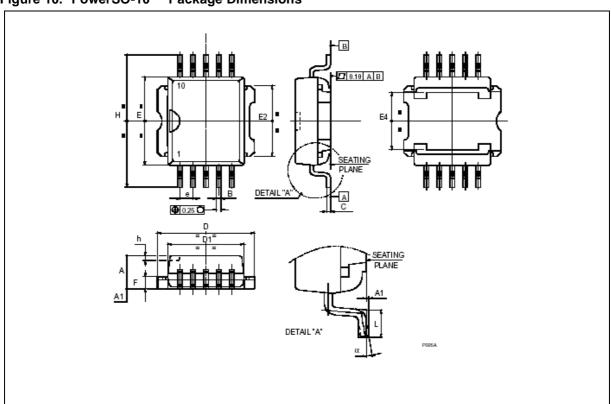


Figure 11. PowerSO-10TM Suggested Pad and Tube Shipment (No Suffix)

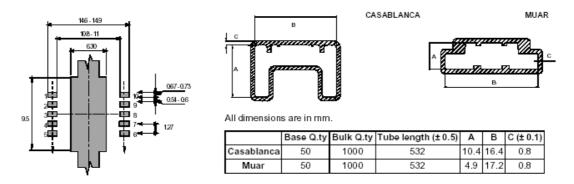
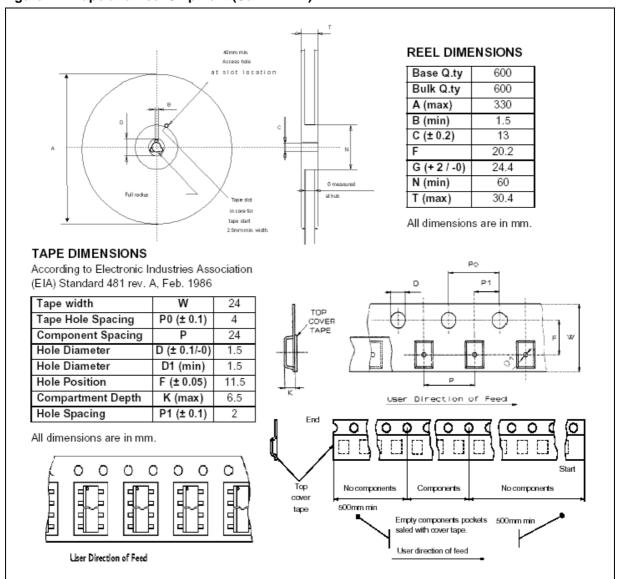



Figure 12. Tape and Reel Shipment (Suffix "TR")

Table 9. Order Codes

Package	Tube	Tape and Reel	
PowerSO-10 TM	VN330SP-32-E	VN330SPTR-32-E	

VN330SP-32-E

Table 10. Revision History

Date	Revision	Changes
5-Sep-2005	3	Final release

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

