



ADD-A-PAK

### PRODUCT SUMMARY

|             |       |
|-------------|-------|
| $I_{F(AV)}$ | 400 A |
|-------------|-------|

### MECHANICAL DESCRIPTION

The Generation 5 of ADD-A-PAK module combine the excellent thermal performance obtained by the usage of direct bonded copper substrate with superior mechanical ruggedness, thanks to the insertion of a solid copper baseplate at the bottom side of the device.

The Cu baseplate allow an easier mounting on the majority of heatsink with increased tolerance of surface roughness and improved thermal spread.

The Generation 5 of ADD-A-PAK module is manufactured without hard mold, eliminating in this way any possible direct stress on the leads.

The electrical terminals are secured against axial pull-out: they are fixed to the module housing via a click-stop feature already tested and proved as reliable on other Vishay HPP modules.

### FEATURES

- 175 °C  $T_J$  operation
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- UL pending
- Totally lead (Pb)-free, RoHS compliant
- Designed and qualified for industrial level



**RoHS**  
COMPLIANT

### DESCRIPTION

The VSKCS409.. Schottky rectifier common cathode has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in high current switching power supplies, plating power supplies, UPS systems, converters, freewheeling diodes, welding, and reverse battery protection.

### MAJOR RATINGS AND CHARACTERISTICS

| SYMBOL      | CHARACTERISTICS              | VALUES      | UNITS |
|-------------|------------------------------|-------------|-------|
| $I_{F(AV)}$ | Rectangular waveform         | 400         | A     |
| $V_{RRM}$   |                              | 150         | V     |
| $I_{FSM}$   | $t_p = 5 \mu s$ sine         | 20 000      | A     |
| $V_F$       | 200 Apk, $T_J = 125^\circ C$ | 0.79        | V     |
| $T_J$       | Range                        | - 55 to 175 | °C    |

### VOLTAGE RATINGS

| PARAMETER                            | SYMBOL    | VSKCS409/150P | UNITS |
|--------------------------------------|-----------|---------------|-------|
| Maximum DC reverse voltage           | $V_R$     | 150           | V     |
| Maximum working peak reverse voltage | $V_{RWM}$ |               |       |

# VSKCS409/150P

Vishay High Power Products Schottky Rectifier, 400 A



## ABSOLUTE MAXIMUM RATINGS

| PARAMETER                                           | SYMBOL      | TEST CONDITIONS                                                                                                           |                                                                     | VALUES | UNITS |  |
|-----------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------|-------|--|
| Maximum average forward current                     | $I_{F(AV)}$ | per module                                                                                                                |                                                                     | 400    |       |  |
| per leg                                             |             | 50 % duty cycle at $T_J = 94^\circ\text{C}$ , rectangular waveform                                                        |                                                                     | 200    |       |  |
| Maximum peak one cycle non-repetitive surge current | $I_{FSM}$   | 5 $\mu\text{s}$ sine or 3 $\mu\text{s}$ rect. pulse                                                                       | Following any rated load condition and with rated $V_{RRM}$ applied | 20 000 | A     |  |
|                                                     |             | 10 ms sine or 6 ms rect. pulse                                                                                            |                                                                     | 2300   |       |  |
| Non-repetitive avalanche energy                     | $E_{AS}$    | $T_J = 25^\circ\text{C}$ , $I_{AS} = 1.8$ Amps, $L = 1$ mH                                                                |                                                                     | 15     | mJ    |  |
| Repetitive avalanche current                        | $I_{AR}$    | Current decaying linearly to zero in 1 $\mu\text{s}$<br>Frequency limited by $T_J$ maximum $V_A = 1.5 \times V_R$ typical |                                                                     | 1      | A     |  |

## ELECTRICAL SPECIFICATIONS

| PARAMETER                       | SYMBOL         | TEST CONDITIONS                                                                   |                           | VALUES | UNITS      |  |
|---------------------------------|----------------|-----------------------------------------------------------------------------------|---------------------------|--------|------------|--|
| Maximum forward voltage drop    | $V_{FM}^{(1)}$ | 200 A                                                                             | $T_J = 25^\circ\text{C}$  | 0.98   | V          |  |
|                                 |                | 400 A                                                                             |                           | 1.23   |            |  |
|                                 |                | 200 A                                                                             | $T_J = 125^\circ\text{C}$ | 0.79   |            |  |
|                                 |                | 400 A                                                                             |                           | 1.03   |            |  |
| Maximum reverse leakage current | $I_{RM}^{(1)}$ | $T_J = 25^\circ\text{C}$                                                          | $V_R = \text{Rated } V_R$ | 6      | mA         |  |
|                                 |                | $T_J = 125^\circ\text{C}$                                                         |                           | 85     |            |  |
| Maximum junction capacitance    | $C_T$          | $V_R = 5$ V <sub>DC</sub> (test signal range 100 kHz to 1 MHz) $25^\circ\text{C}$ |                           | 6000   | pF         |  |
| Typical series inductance       | $L_S$          | From top of terminal hole to mounting plane                                       |                           | 5.0    | nH         |  |
| Maximum voltage rate of change  | $dV/dt$        | Rated $V_R$                                                                       |                           | 10 000 | V/ $\mu$ s |  |
| RMS insulation voltage          | $V_{INS}$      | 50 Hz, circuit to base, all terminals shorted (1 s)                               |                           | 3500   | V          |  |

### Note

(1) Pulse width < 300  $\mu\text{s}$ , Duty cycle < 2 %

## THERMAL - MECHANICAL SPECIFICATIONS

| PARAMETER                                            | SYMBOL            | TEST CONDITIONS                      |  | VALUES      | UNITS |
|------------------------------------------------------|-------------------|--------------------------------------|--|-------------|-------|
| Maximum junction and storage temperature range       | $T_J$ , $T_{Stg}$ |                                      |  | - 55 to 175 | °C    |
| Maximum thermal resistance, junction to case per leg | $R_{thJC}$        | DC operation                         |  | 0.36        | °C/W  |
| Maximum thermal resistance, case to heatsink         | $R_{thCS}$        | Mounting surface, smooth and greased |  | 0.1         |       |
| Approximate weight                                   |                   |                                      |  | 110         | g     |
| Mounting torque $\pm 10\%$                           | to heatsink       |                                      |  | 4           | oz.   |
|                                                      | busbar            |                                      |  | 5           | Nm    |
| Case style                                           |                   | JEDEC                                |  | 4           |       |
|                                                      |                   |                                      |  | TO-240AA    |       |

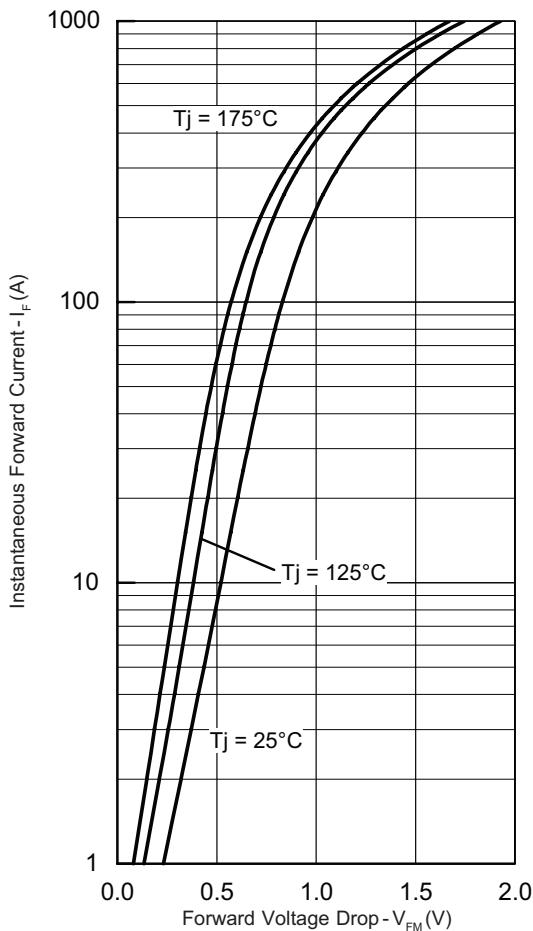



Fig. 1 - Maximum Forward Voltage Drop Characteristics

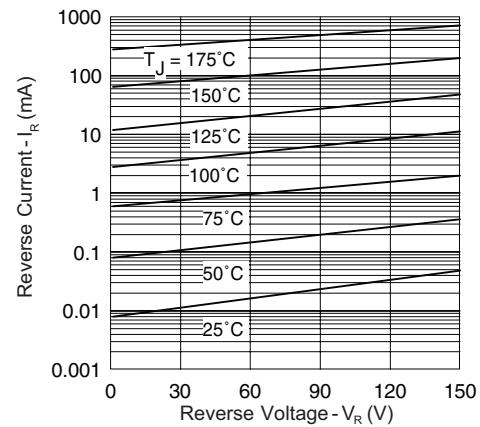



Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage



Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

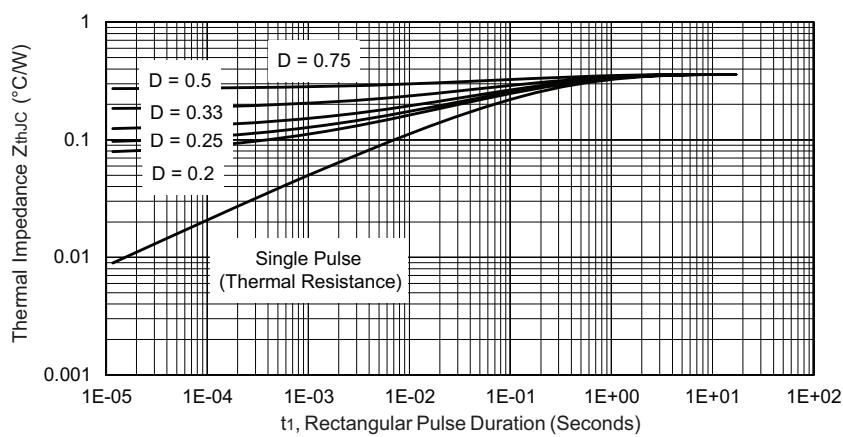



Fig. 4 - Maximum Thermal Impedance  $Z_{thJC}$  Characteristics

# VSKCS409/150P

Vishay High Power Products Schottky Rectifier, 400 A

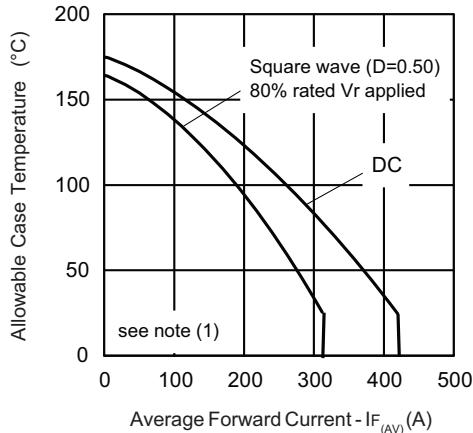



Fig. 5 - Maximum Allowable Case Temperature vs.  
Average Forward Current

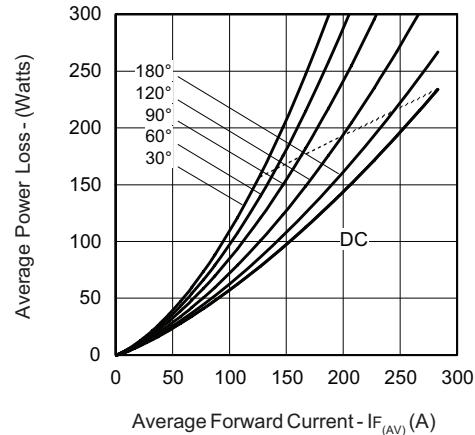



Fig. 6 - Forward Power Loss Characteristics

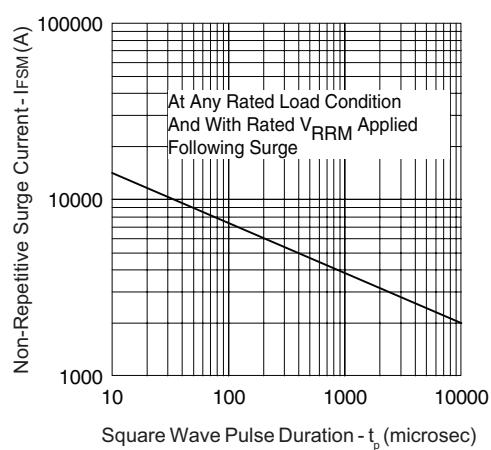



Fig. 7 - Maximum Non-Repetitive Surge Current

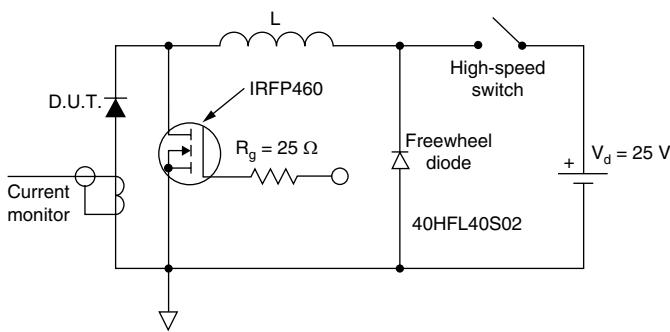
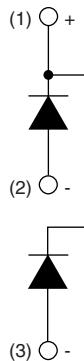



Fig. 8 - Unclamped Inductive Test Circuit


## Note

(1) Formula used:  $T_C = T_J - (P_d + P_{dREV}) \times R_{thJC}$ .  
 $P_d = \text{Forward power loss} = I_{F(AV)} \times V_{FM}$  at  $(I_{F(AV)}/D)$  (see fig. 6);  
 $P_{dREV} = \text{Inverse power loss} = V_{R1} \times I_R (1 - D)$ ;  $I_R$  at  $V_{R1} = 80\%$  rated  $V_R$

**ORDERING INFORMATION TABLE**

| Device code | VS  | KC  | S   | 40  | 9   | / | 150 | P   |
|-------------|-----|-----|-----|-----|-----|---|-----|-----|
|             | (1) | (2) | (3) | (4) | (5) |   | (6) | (7) |

- (1)** - Vishay HPP
- (2)** - Circuit configuration:  
KC = ADD-A-PAK - 2 diodes/common cathode
- (3)** - S = Schottky diode
- (4)** - Average rating (x 10)
- (5)** - Product silicon identification
- (6)** - Voltage rating (150 = 150 V)
- (7)** - Lead (Pb)-free

**CIRCUIT CONFIGURATION**


| LINKS TO RELATED DOCUMENTS |                                                                               |
|----------------------------|-------------------------------------------------------------------------------|
| Dimensions                 | <a href="http://www.vishay.com/doc?95174">http://www.vishay.com/doc?95174</a> |



## Legal Disclaimer Notice

Vishay

### Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.