Product Data Sheet

VS-500A Voltage Controlled Saw Oscillator

Features

- Output Frequencies from 155 MHz to 800 MHz
- Low Jitter < 1 ps rms in the 12kHz to 20MHz range
- < 1ps rms jitter in 50kHz to 80MHz range
- 3.3V (see VS-500) or 5.0V operation
- Ideal for clock smoothing, frequency translation, clock and data retiming applications
- 10K ECL, PECL logic levels with fast transition times
- · Complementary outputs
- · Low profile, surface mount package
- · Output disable feature

Applications

- 2.5, 10 Gbit/s FEC and standard SONET/SDH Clock Smoothing and Frequency Translation
- 10 Gigabit Ethernet Clock Smoothing
- Frequency Translation

Description

The VS-500A is a SAW based voltage controlled oscillator that operates at the fundamental frequency of the internal SAW filter. This resonator is a high-Q quartz device that enables the circuit to achieve low phase jitter performance over a wide operating temperature range. The oscillator is housed in a hermetically sealed J-lead surface mount package offered on tape and reel. It has an output disable to facilitate on-board testing.

Pin Information

Table 1. Pin Function							
Pin	Symbol	Function	6 5 4				
1	Vc	VCSO Control Voltage	0 3 4				
2	OD	Output Disable	TOP VIEW				
3	GND	Case and electrical ground	- IOP VIEW				
4	Output	VCSO Output					
5	COutput	VCSO Complimentary Output	1 2 3				
6	Vcc	Power Supply Voltage (5.0 V ±10%)					

^{1.} By setting OD low, the outputs are disabled and OUT is held high while Complementary OUT is held low. The threshold for Output Disable is 1.4V above pin 3. Output Disable should not be driven above mid supply and during normal operation, should be left floating (use with an open collector or 3-State gate for interfacing with standard logic).

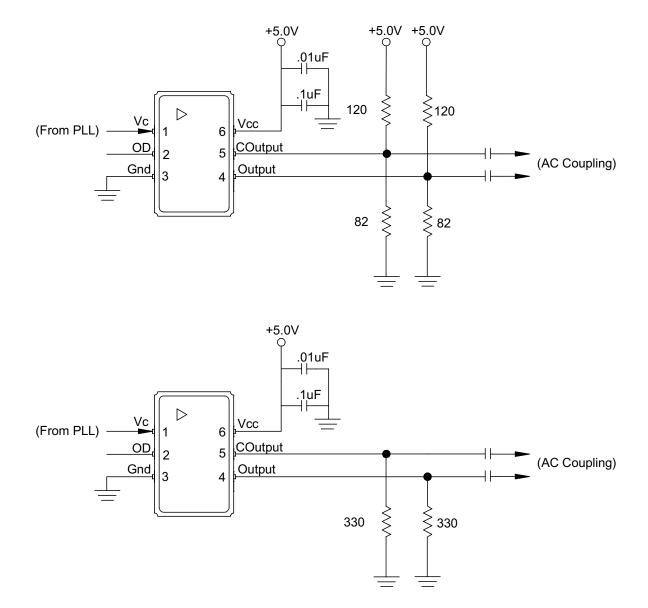
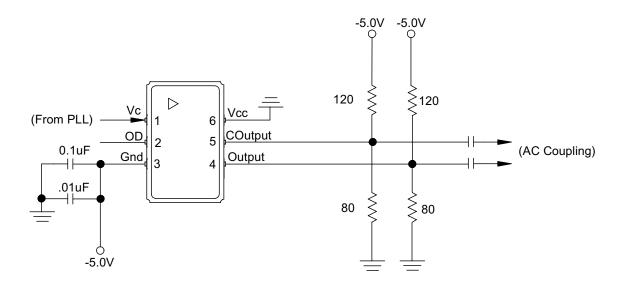
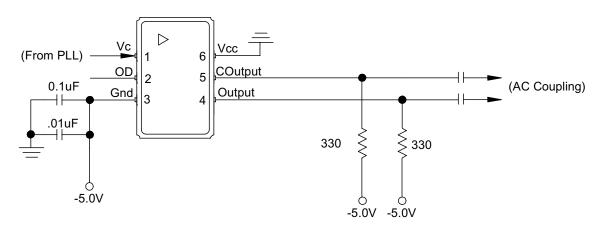

Performance Characteristics

Table 2. Electrical Performance @ 25°C								
Parameter	Symbol	Minimum	Typical	Maximum	Units			
Center Frequency, see ordering information	Fn	155		800	MHz			
Operating Temperature	Тор	-40	25	+85	°C			
Supply Current (no load)	Icc		55	70	mA			
Supply Voltage	V _{CC}	4.5	5	5.5	V			
Absolute Pull Range over -40 to 85°C (Vc= 0.5 to 4.5)	APR	±50	-	-	ppm			
Positive Gain Transfer @ 155.52MHz (Frequency vs Control voltage)	Kv	-	350	-	ppm/V			
Positive Gain Transfer @ 622.080MHz (Frequency vs Control voltage)	Kv	-	200	-	ppm/V			
Linearity	Lin		±3		%			
Frequency Stability, -40 to 85 wrt 25°C	FSTAB		±150		ppm			
Output Level Low¹	Vol	V _{CC} -1.95	-	V _{CC} -1.63	V			
Output Level High ¹	Vон	V _{CC} -0.98	-	V _{CC} -0.75	V			
Output Rise Time ²	t _R		250	400	ps			
Output Fall Time ²	t _F		250	400	ps			
Jitter @ 155.520 MHz, 12 KHz to 20 MHz			0.439		ps, rms			
Jitter @ 622.080 MHz, 12 KHz to 20 MHz			0.276		ps, rms			
Jitter @ 622.080 MHz, 50 KHz to 80 MHz			0.293		ps, rms			
Spurious Suppression		-50	-60		dB			
Data Symmetry	SYM	45	49/51	55	%			
Control Voltage Input Impedance	Zc	8	10	12	ΚΩ			
Control Voltage Modulation Bandwidth	BW	-	500	-	kHz			
Output Current	lout	-	-	20	mA			

^{1.} Output Levels are standard 10K ECL and are fully 100K ECL compatible.


^{2.} Transition times are measured from 20% to 80% of a full 10K ECL level swing.


Table 3. Typical Single Side-Band Phase Noise (dBc/Hz)									
Offset from Carrier	Offset from Carrier 100 Hz 1kHz 10kHz 100kHz								
VS-500A 622.080 -62 -85 -109 -127									

Note 2: To diasble output, connect Output Disable to ground. To enable output, leave pin 2 floating or open.

Figure 1 PECL Operation

Note1: Conductive lid will be @ -5V for ECL configuration

Note 2: To diasble output, connect Output Disable to -5V. To enable output, leave pin 2 floating or open.

Figure 2. ECL Operation

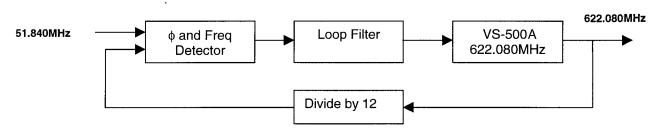


Figure 3. Typical Frequency Translation Diagram

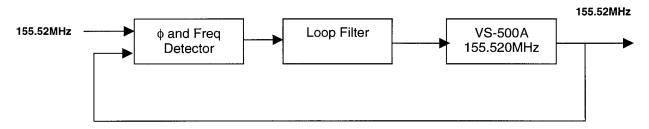


Figure 4. Typical Clock Smoothing Diagram

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Table 4. Absolute Maximum Ratings							
Parameter	Symbol	Ratings	Unit				
Power Supply	Vcc	0 to 8	V				
Output Current ¹	lout	20	mA				
Output Current ²	lout	50	mA				
Voltage Control Range ¹	Vc	0 to Vcc	V				
Voltage Control Range ²	Vc	-0.5 to Vcc+0.5	V				
Storage Temperature	Ts	-55 to 125	°C				
Soldering Temp./Time	TLS	220/10	°C/Seconds				

¹ Limts beyond which performance can not be guaranteed.

Qualification Conformance

The VS-500A family passes the following Mil-Std qualification.

Table 5. Environmental Compliance							
Parameter	Conditions						
Mechanical Shock	MIL-STD-883, Method 2002						
Mechanical Vibration	MIL-STD-883, Method 2007						
Solderability	MIL-STD-883, Method 2003						
Gross and Fine Leak	MIL-STD-883, Method 1014						
Resistance to Solvents	MIL-STD-883, Method 2016						

² Limits beyond which device life may be impaired.

Handling Precautions

Although ESD protection circuitry has been designed into the VS-500A proper precautions should be taken when handling and mounting. VI employs a human body model and a charged-device model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance = 1.5Kohms and capacitance = 100pF is widely used and therefore can be used for comparison purposes.

Table 6. ESD Ratings							
Model Minimum							
Human Body Model	1500V						
Charged Device Model	1000V						

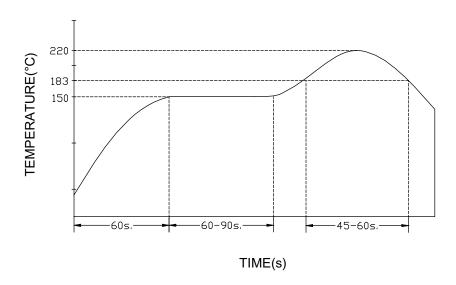


Figure 5. Suggested IR profile

VI qualification includes aging at various extreme temperatures, shock and vibration, temperature cycling and IR reflow simulation. The conditions a device can withstand are well understood and devices can be subjected to the profile in figure 5. This profile shows a ramp up condition to prevent thermal shock, a preheat period in which the flux is activated, a ramp up to 183°C which is the reflow temperature of Sn/Pb eutectic and a gradual cool down. The time above 183°C should not exceed 60 seconds and the peak temperature should be no more than 220°C for 10 seconds. The VS-500A's are 100% screened for hermiticity so an aqueous wash is not an issue.

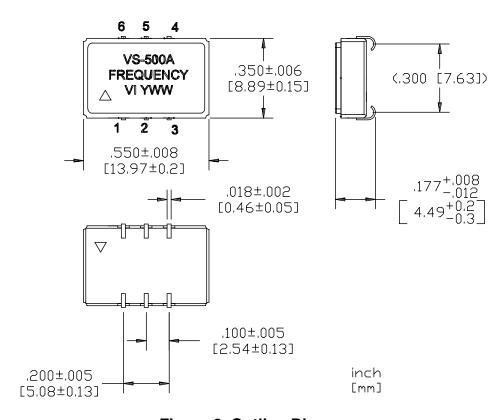


Figure 6. Outline Diagram

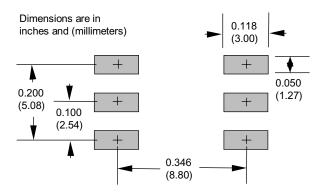


Figure 7. Suggested Pad Layout

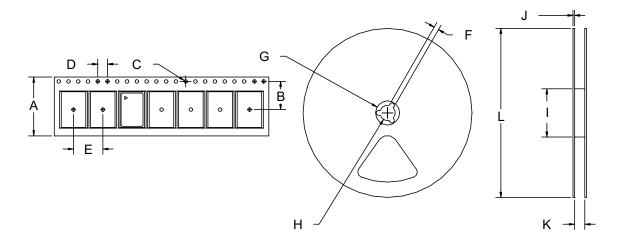


Figure 8. Tape Reel Drawing

Table 7. Tape and Reel Dimensions (mm)													
Tape Dime	Tape Dimensions Reel Dimensions								# Per Reel				
Product	Α	В	С	D	Е	F	G	Н	I	J	K	L	
VS-500A	24	11.5	1.5	4	12	1.78	21	13	100	5	25	330	200

Ordering Information

Table 8. Available Frequencies (MHz)							
155.520	156.250	161.1328	166.6286				
177.7371	311.040	622.080	624.7048				
625. 000	627.3296	644.5313	666.5143				
669.1281	669.3265	690.5692	719.7344				
759.410	765.5906	767.250	777.600				

Other frequencies available upon request

For additional information please contact:

 USA: Vectron International • 267 Lowell Road, Hudson, NH 03051
 ... Tel: 1-88-VECTRON-1 • Fax: 1-888-FAX-VECTRON

 EUROPE:
 ... Tel: 49 (0) 3328 4784 17 ĈFax: 49 (0) 3328 4784 30

www.vectron.com

ASIA: Tel: +86 21 28909740 / 41 / 42 ĜFax: +86 21 28909240 / 2890999