
MOSEL VITELIC

V62C51864
8K X 8 STATIC RAM**PRELIMINARY****Features**

- High-speed: 35, 70 ns
- Ultra low DC operating current of 5mA (max.)
- Low Power Dissipation:
 - TTL Standby: 2 mA (Max.)
 - CMOS Standby: 15 μ A (Max.)
- Fully static operation
- All inputs and outputs directly compatible
- Three state outputs
- Ultra low data retention current ($V_{CC} = 2V$)
- Single 5V \pm 10% Power Supply
- Packages
 - 28-pin 600 mil PDIP
 - 28-pin 330 mil SOP (450 mil pin-to-pin)

Description

The V62C51864 is a 65,536-bit static random access memory organized as 8,192 words by 8 bits. It is built with MOSEL VITELIC's high performance CMOS process. Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

Functional Block Diagram**Device Usage Chart**

Operating Temperature Range	Package Outline		Access Time (ns)		Power		Temperature Mark
	P	F	35	70	L	LL	
0°C to 70°C	•	•	•	•	•	•	Blank
-40°C to +85°C	•	•	•	•	•	•	I

Pin Descriptions**A₀-A₁₂ Address Inputs**

These 13 address inputs select one of the 8,192 x 8-bit words in the RAM.

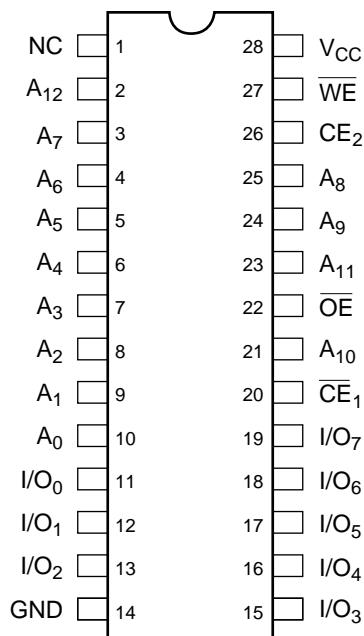
CE₁, CE₂ Chip Enable Inputs

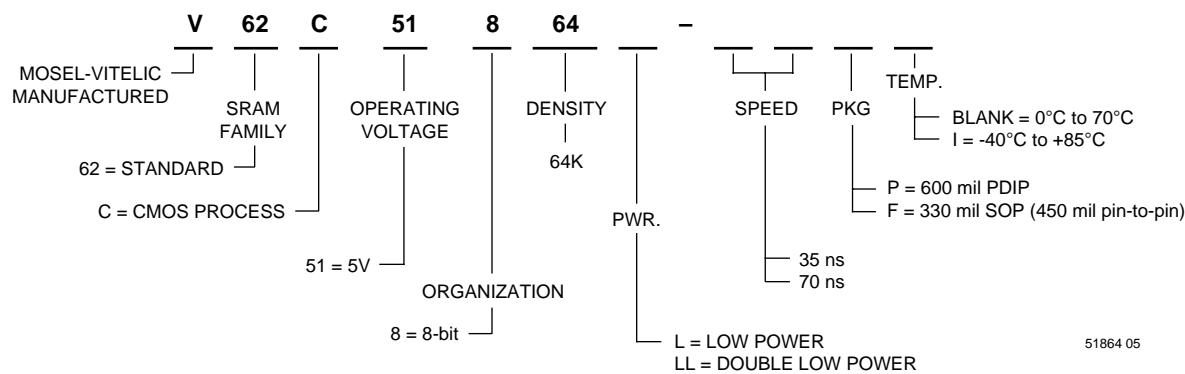
CE₁ is active LOW and CE₂ is active HIGH. Both chip enables must be active to read from or write to the device. If either chip enable is not active, the device is deselected and is in a standby power mode. The I/O pins will be in the high-impedance state when deselected.

OE Output Enable Input

The Output Enable input is active LOW. When OE is LOW with CE₁ LOW, CE₂ HIGH, and WE HIGH, data of the selected memory location will be available on the I/O pins. When OE is HIGH, the I/O pins will be in the high impedance state.

WE Write Enable Input


An active LOW input, WE input controls read and write operations. When CE₁ and WE inputs are both LOW with CE₂ HIGH, the data present on the I/O pins will be written into the selected memory location.


I/O₀-I/O₇ Data Input/Output Ports

These 8 bidirectional ports are used to read data from and write data into the RAM.

V_{CC} Power Supply**GND Ground**

Pin Configuration
28-Pin Plastic DIP/SOP
Top View

Part Number Information**Absolute Maximum Ratings (1)**

Symbol	Parameter	Commercial	Industrial	Units
V_{CC}	Supply Voltage	-0.5 to +7	-0.5 to +7	V
V_N	Input Voltage	-0.5 to +7	-0.5 to +7	V
V_{DQ}	Input/Output Voltage Applied	$\frac{V_{CC}}{2} + 0.5$	$V_{CC} + 0.5$	V
T_{BIAS}	Temperature Under Bias	-10 to +125	-65 to +135	°C
T_{STG}	Storage Temperature	-55 to +125	-65 to +150	°C

NOTE:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Capacitance*

$T_A = 25^\circ\text{C}$, $f = 1.0\text{MHz}$

Symbol	Parameter	Conditions	Max.	Unit
C_{IN}	Input Capacitance	$V_I = 0V$	6	pF
C_{OUT}	Output Capacitance	$V_O = 0V$	8	pF

NOTE:

* This parameter is guaranteed and not tested.

Truth Table

Mode	\overline{CE}_1	CE_2	\overline{OE}	\overline{WE}	I/O Operation
Standby	H	X	X	X	High Z
Standby	X	L	X	X	High Z
Output Disable	L	H	H	H	High Z
Read	L	H	L	H	D_{OUT}
Write	L	H	X	L	D_{IN}

NOTE:

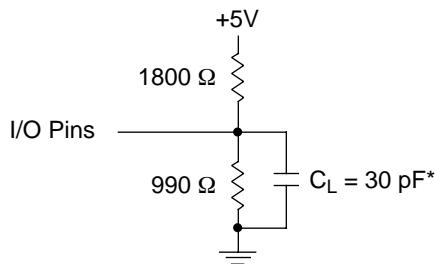
X = Don't Care, L = LOW, H = HIGH

DC Electrical Characteristics (over all temperature ranges, $V_{CC} = 5V \pm 10\%$)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
V_{IL}	Input LOW Voltage ^(1,2)		-0.5	—	0.8	V
V_{IH}	Input HIGH Voltage ⁽¹⁾		2.2	—	6	V
I_{IL}	Input Leakage Current	$V_C = \text{Max.}$, $V_{IN} = 0V$ to V_{CC}	-5	—	5	μA
I_{OL}	Output Leakage Current	$V_C = \text{Max.}$, $\overline{CE} = V_{IH}$, $V_{OUT} = 0V$ to V_{CC}	-5	—	5	μA
V_{OL}	Output LOW Voltage	$V_C = \text{Min.}$, $I_{OL} = 2.1\text{mA}$	—	—	0.4	V
V_{OH}	Output HIGH Voltage	$V_C = \text{Min.}$, $I_{OH} = -1\text{mA}$	2.4	—	—	V

Symbol	Parameter	Power	Com. ⁽⁴⁾	Ind. ⁽⁴⁾	Units
I_{CC}	Operating Power Supply Current, $\overline{CE} = V_{IL}$, $CE_2 = V_{IH}$, Output Open, $V_C = \text{Max.}$, $f = 0$	READ	5	6	mA
		WRITE	0	50	
I_{CC1}	Average Operating Current, $\overline{CE} = V_{IL}$, $CE_2 = V_{IH}$, Output Open, $V_{CC} = \text{Max.}$, $f = f_{MAX}^{(3)}$		60	70	mA
I_{SB}	TTL Standby Current $\overline{CE}_1 \geq V_{IH}$, $CE_2 \leq V_{IL}$, $V_{CC} = \text{Max.}$	L	3	4	mA
		LL	2	3	
I_{SB1}	CMOS Standby Current, $\overline{CE}_1 \geq V_{CC} - 0.2V$, $CE_2 \leq 0.2V$, $V_{IN} \geq V_{CC} - 0.2V$ or $V_N \leq 0.2V$, $V_{CC} = \text{Max.}$	L	60	70	μA
		LL	15	30	

NOTES:


1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. V_{IL} (Min.) = -3.0V for pulse width < 20ns.

3. $f_{MAX} = 1/\tau_{RC}$.

4. Maximum values.

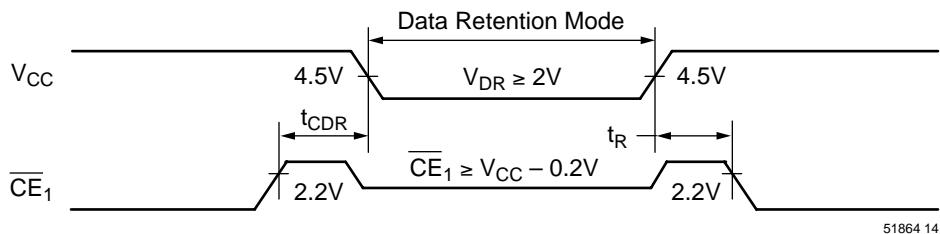
AC Test Conditions

Input Pulse Levels	0 to 3V
Input Rise and Fall Times	5 ns
Timing Reference Levels	1.5V
Output Load	see below

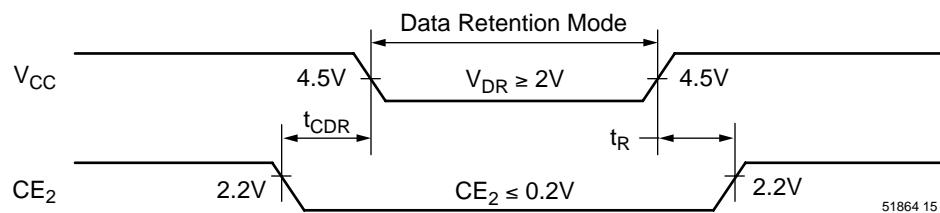
AC Test Loads and Waveforms

* Includes scope and jig capacitance

Key to Switching Waveforms


WAVEFORM	INPUTS	OUTPUTS
—	MUST BE STEADY	WILL BE STEADY
—	MAY CHANGE FROM H TO L	WILL BE CHANGING FROM H TO L
—	MAY CHANGE FROM L TO H	WILL BE CHANGING FROM L TO H
—	DON'T CARE: ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN
—	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE

Data Retention Characteristics


Symbol	Parameter	Power	Min.	Typ. ⁽²⁾	Max.	Units
V_{DR}	V_{CC} for Data Retention $\overline{CE}_1 \geq V_{CC} - 0.2V, \overline{CE}_2 \leq 0.2V,$ $V_{IN} \geq V_{CC} - 0.2V, \text{ or } V_N \leq 0.2V$		2.0	—	5.5	V
I_{CCDR}	Data Retention Current $CE_1 \geq V_{DR} - 0.2V, \overline{CE}_2 \leq 0.2V,$ $V_{IN} \geq V_{CC} - 0.2V, \text{ or } V_N \leq 0.2V$	Com'l	L	—	0.5	50
			LL	—	0.5	10
		Ind.	L	—	—	70
			LL	—	—	20
t_{CDR}	Chip Deselect to Data Retention Time		0	—	—	ns
t_R	Operation Recovery Time (see Retention Waveform)	$t_R^{(1)}$	—	—	—	ns

NOTES:

1. t_{RC} = Read Cycle Time
2. $T_A = +25^\circ C$.

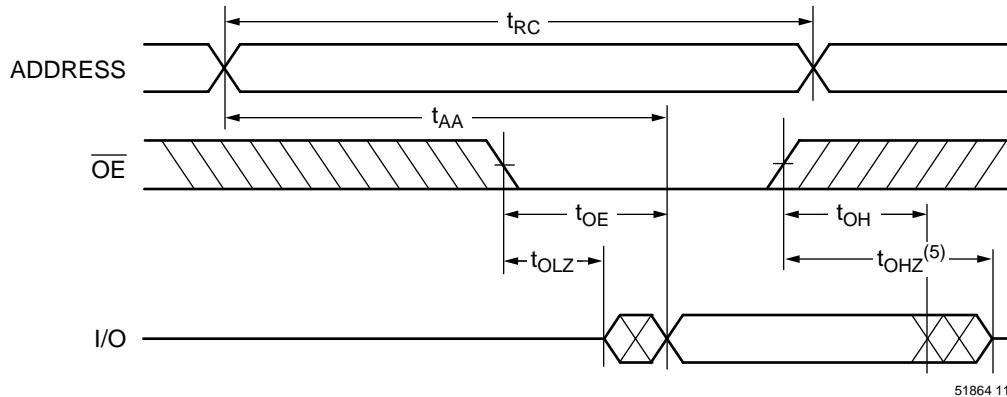
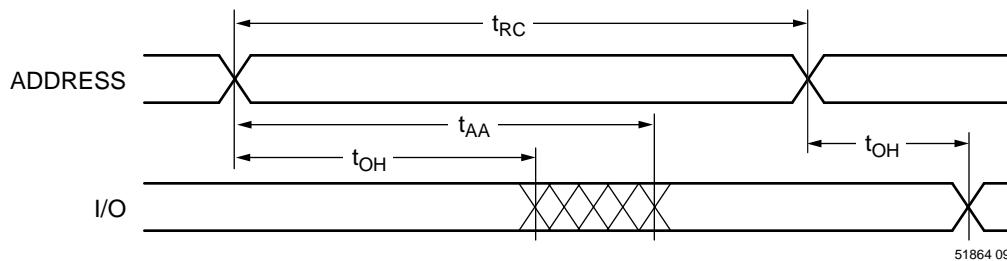
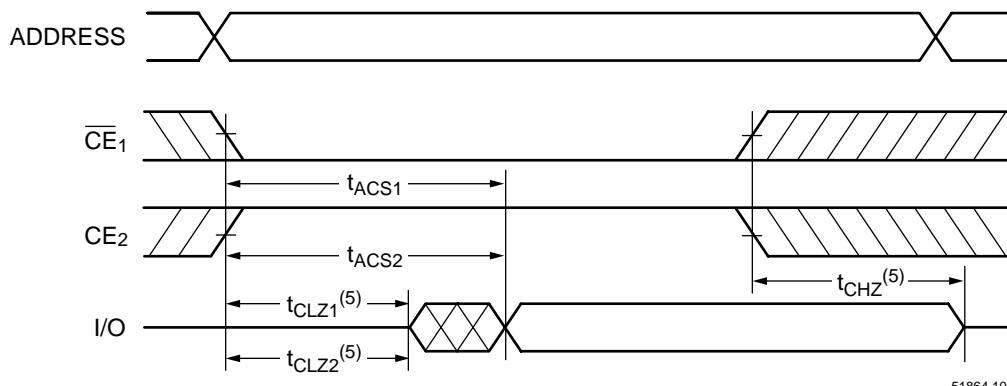
Low V_{CC} Data Retention Waveform (1) (\overline{CE}_1 Controlled)

51864 14

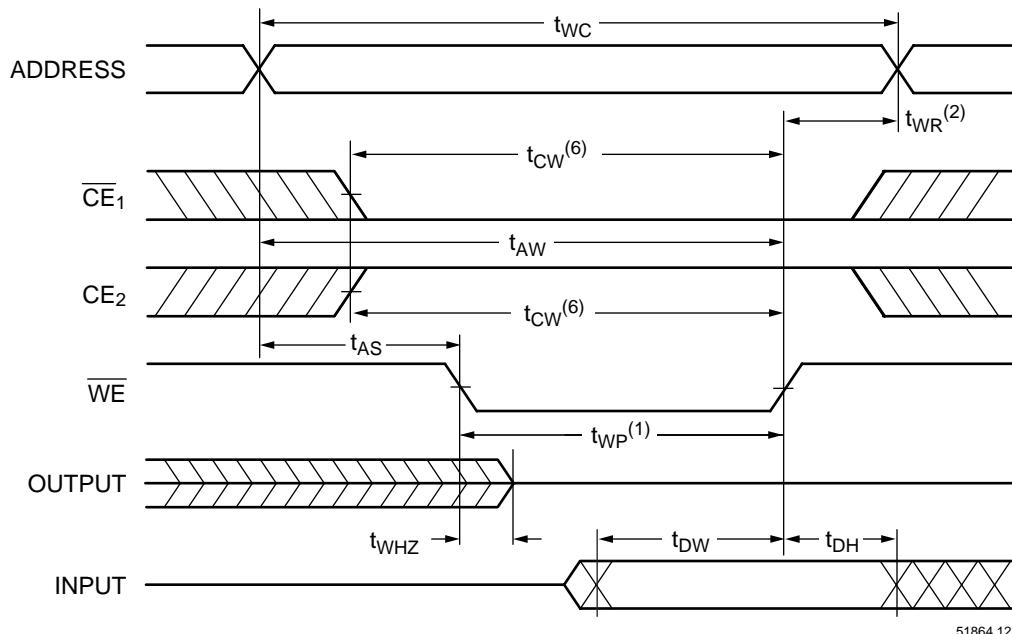
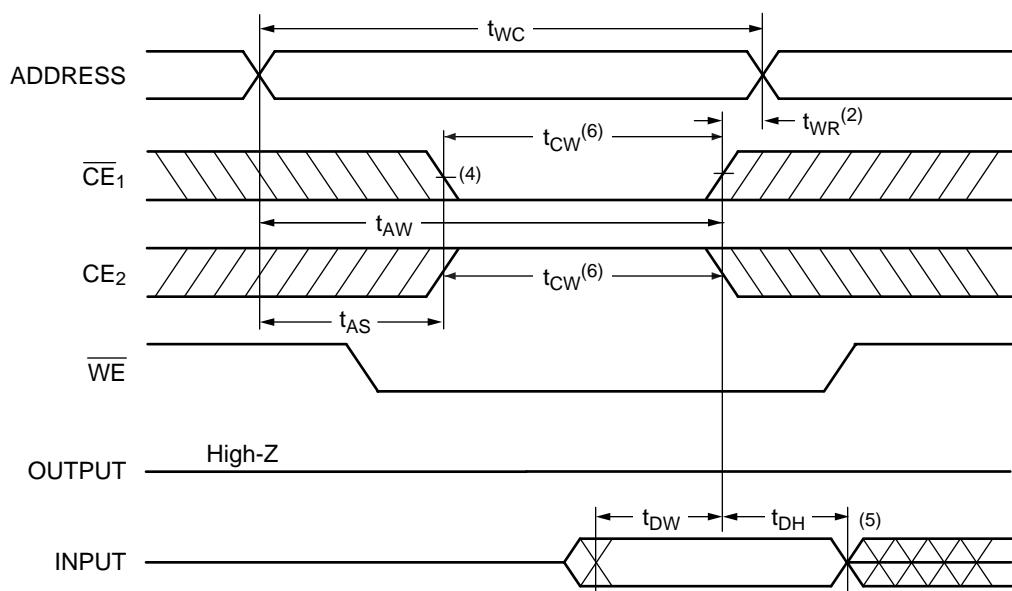
Low V_{CC} Data Retention Waveform (2) (CE_2 Controlled)

51864 15

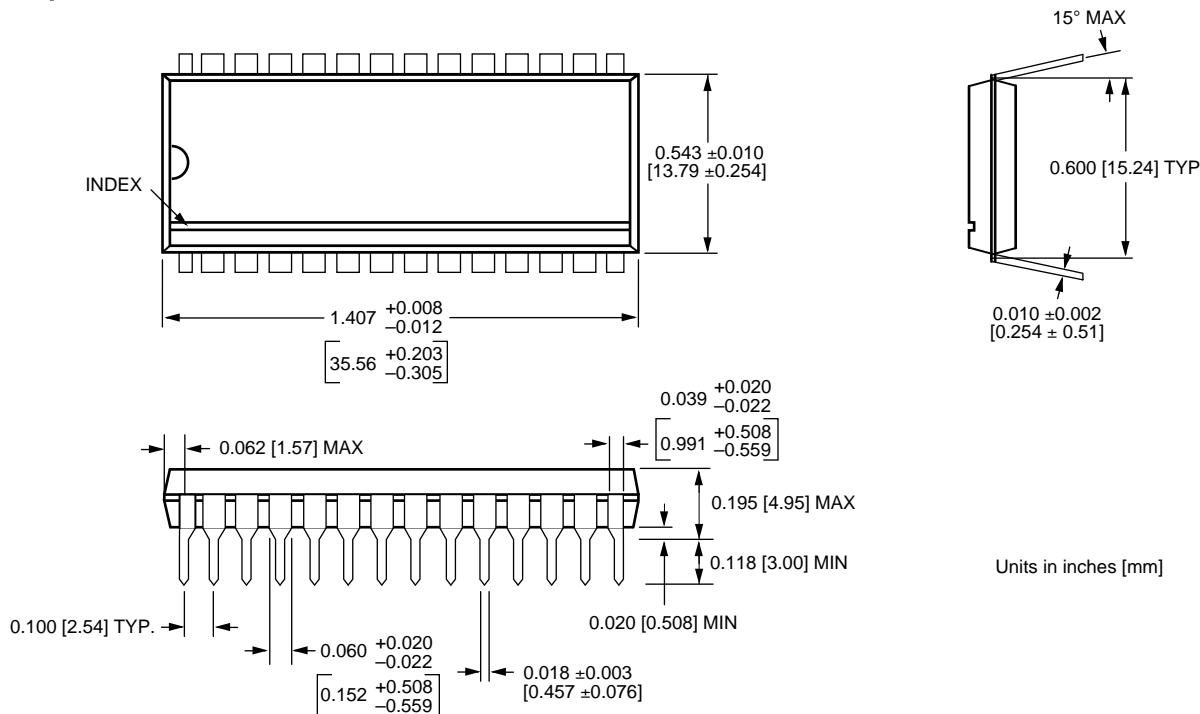
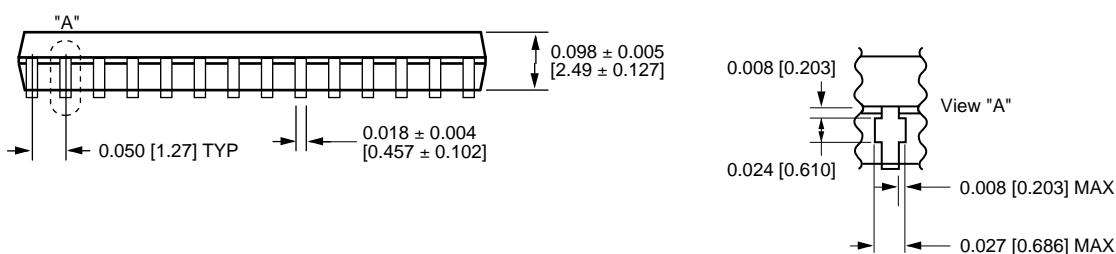
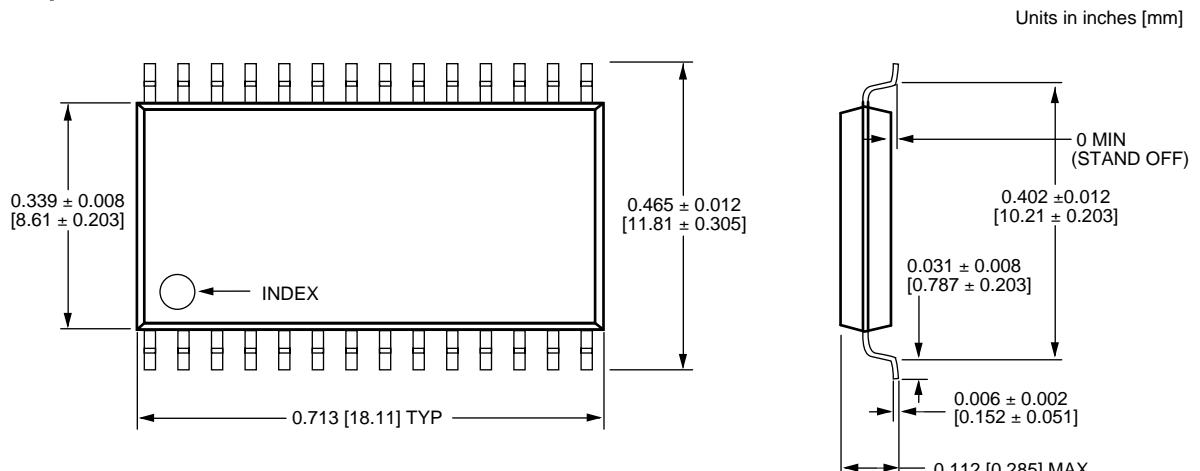
AC Electrical Characteristics




(over all temperature ranges)

Read Cycle



Parameter Name	Parameter	-35		-70		Unit
		Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	35	—	70	—	ns
t_{AA}	Address Access Time	—	35	—	70	ns
t_{ACS1}	Chip Enable Access Time	—	35	—	70	ns
t_{ACS2}	Chip Enable Access Time	—	35	—	70	ns
t_{OE}	Output Enable to Output Valid	—	15	—	30	ns
t_{CLZ1}	Chip Enable to Output in Low Z	5	—	5	—	ns
t_{CLZ2}	Chip Enable to Output in Low Z	5	—	5	—	ns
t_{OLZ}	Output Enable to Output in Low Z	5	—	5	—	ns
t_{CHZ}	Chip Disable to Output in High Z	0	20	0	20	ns
t_{OHZ}	Output Disable to Output in High Z	0	20	0	20	ns
t_{OH}	Output Hold from Address Change	5	—	5	—	ns

Write Cycle




Parameter Name	Parameter	-35		-70		Unit
		Min.	Max.	Min.	Max.	
t_{WC}	Write Cycle Time	35	—	70	—	ns
t_{CW}	Chip Enable to End of Write	35	—	70	—	ns
t_{AS}	Address Setup Time	0	—	0	—	ns
t_{AW}	Address Valid to End of Write	35	—	70	—	ns
t_{WP}	Write Pulse Width	25	—	50	—	ns
t_{WR}	Write Recovery Time	0	—	0	—	ns
t_{WHZ}	Write to Output High-Z	0	20	0	25	ns
t_{DW}	Data Setup to End of Write	25	—	30	—	ns
t_{DH}	Data Hold from End of Write	0	—	0	—	ns
t_{OW}	Output Active from End of Write	5	—	5	—	ns

Switching Waveforms (Read Cycle)**Read Cycle 1^(1, 2)****Read Cycle 2^(1, 2, 4)****Read Cycle 3^(1, 3, 4)****NOTES:**

1. $\overline{WE} = V_{IH}$.
2. $\overline{CE}_1 = V_{IL}$ and $CE_2 = V_{IH}$.
3. Address valid prior to or coincident with \overline{CE} transition LOW and/or CE transition HIGH.
4. $\overline{OE} = V_{IL}$.
5. Transition is measured ± 500 mV from steady state with $C = 5$ pF. This parameter is guaranteed and not 100% tested.

Switching Waveforms (Write Cycle)**Write Cycle 1 (\overline{WE} Controlled)⁽⁴⁾****Write Cycle 2 (\overline{CE} Controlled)⁽⁴⁾****NOTES:**

1. The internal write time of the memory is defined by the overlap of \overline{CE}_1 and \overline{CE}_2 active and \overline{WE} low. Both signals must be active to initiate and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
2. t_{WR} is measured from the earlier of \overline{CE}_1 or \overline{WE} going HIGH, or \overline{CE}_2 going LOW at the end of the write cycle.
3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
4. $\overline{OE} = V_{IL}$ or V_{IH} . However it is recommended to keep \overline{OE} at V_{IH} during write cycle to avoid bus contention.
5. If \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
6. t_{CW} is measured from \overline{CE}_1 going LOW or \overline{CE}_2 going HIGH to the end of write.

Package Diagrams**28-pin 600 mil Plastic DIP****28-pin 330 mil SOP**

U.S.A.

3910 NORTH FIRST STREET
 SAN JOSE, CA 95134
 PHONE: 408-433-6000
 FAX: 408-433-0185

HONG KONG

19 DAI FU STREET
 TAIPo INDUSTRIAL ESTATE
 TAIPo, NT, HONG KONG
 PHONE: 852-2665-4883
 FAX: 852-2664-7535

TAIWAN

7F, NO. 102
 MIN-CHUAN E. ROAD, SEC. 3
 TAIPEI
 PHONE: 886-2-2545-1213
 FAX: 886-2-2545-1209

1 CREATION ROAD I
 SCIENCE BASED IND. PARK
 HSIN CHU, TAIWAN, R.O.C.
 PHONE: 886-3-578-3344
 FAX: 886-3-579-2838

JAPAN

WBG MARINE WEST 25F
 6, NAKASE 2-CHOME
 MIHAMA-KU, CHIBA-SHI
 CHIBA 261-71
 PHONE: 81-43-299-6000
 FAX: 81-43-299-6555

IRELAND & UK

BLOCK A UNIT 2
 BROOMFIELD BUSINESS PARK
 MALAHIDE
 CO. DUBLIN, IRELAND
 PHONE: +353 1 8038020
 FAX: +353 1 8038049

GERMANY

(CONTINENTAL
 EUROPE & ISRAEL)
 71083 HERRENBERG
 BENZSTR. 32
 GERMANY
 PHONE: +49 7032 2796-0
 FAX: +49 7032 2796 22

U.S. SALES OFFICES**NORTHWESTERN**

3910 NORTH FIRST STREET
 SAN JOSE, CA 95134
 PHONE: 408-433-6000
 FAX: 408-433-0185

SOUTHWESTERN

SUITE 200
 5150 E. PACIFIC COAST HWY.
 LONG BEACH, CA 90804
 PHONE: 562-498-3314
 FAX: 562-597-2174

CENTRAL & SOUTHEASTERN

604 FIELDWOOD CIRCLE
 RICHARDSON, TX 75081
 PHONE: 972-690-1402
 FAX: 972-690-0341

NORTHEASTERN

SUITE 436
 20 TRAFALGAR SQUARE
 NASHUA, NH 03063
 PHONE: 603-889-4393
 FAX: 603-889-9347

The information in this document is subject to change without notice.

MOSEL VITELIC makes no commitment to update or keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of MOSEL-VITELIC.

MOSEL VITELIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. MOSEL VITELIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications.