捷多邦,专业PCB打样工厂,24小时加急出货

W9864G2GH

Table of Contents-

1.	GENE	RAL DESCRIPTION	3
2.	FEAT	URES	3
3.	AVAIL	ABLE PART NUMBER	ł
4.	PIN C	ONFIGURATION	5
5.	PIN D	ESCRIPTION	3
6.	BLOC	K DIAGRAM	,
7.		TIONAL DESCRIPTION	
	7.1	Power Up and Initialization	
	7.2	Programming Mode Register	
	7.3	Bank Activate Command	
	7.4	Read and Write Access Modes	
	7.5	Burst Read Command)
	7.6	Burst Command)
	7.7	Read Interrupted by a Read)
	7.8	Read Interrupted by a Write)
	7.9	Write Interrupted by a Write	
	7.10	Write Interrupted by a Read)
	7.11	Burst Stop Command)
	7.12	Addressing Sequence of Sequential Mode 10)
	7.13	Addressing Sequence of Interleave Mode10)
	7.14	Auto-precharge Command11	ł
	7.15	Precharge Command11	
	7.16	Self Refresh Command	ł
	7.17	Power Down Mode	2
	7.18	No Operation Command	
	7.19	Deselect Command	2
	7.20	Clock Suspend Mode	2
8.	OPER	ATION MODE	}
	8.1	Simplified Stated Diagram 14	ł
9.	ELEC	TRICAL CHARACTERISTICS	5
	9.1	Absolute Maximum Ratings	5

		winbond see	
	9.2	Recommended DC Operating Conditions	15
	9.3	Capacitance	16
	9.4	DC Characteristics	16
	9.5	AC Characteristics and Operating Condition	17
10.	TIMIN	G WAVEFORMS	20
	10.1	Command Input Timing	20
	10.2	Read Timing	
	10.3	Control Timing of Input Data	22
	10.4	Control Timing of Output Data	23
	10.5	Mode Register Set Cycle	
11.	OPER	ATING TIMING EXAMPLE	25
	11.1	Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)	25
	11.2	Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto-precharge)	
	11.3	Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)	
	11.4	Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto-precharge)	
	11.5	Interleaved Bank Write (Burst Length = 8)	29
	11.6	Interleaved Bank Write (Burst Length = 8, Auto-precharge)	30
	11.7	Page Mode Read (Burst Length = 4, CAS Latency = 3)	
	11.8	Page Mode Read/Write (Burst Length = 8, CAS Latency = 3)	32
	11.9	Auto-precharge Read (Burst Length = 4, CAS Latency = 3)	33
	11.10	Auto-precharge Write (Burst Length = 4)	34
	11.11	Auto Refresh Cycle	35
	11.12	Self Refresh Cycle	36
	11.13	Bust Read and Single Write (Burst Length = 4, CAS Latency = 3)	37
	11.14	Power Down Mode	38
	11.15	Auto-precharge Timing (Write Cycle)	39
	11.16	Auto-precharge Timing (Read Cycle)	40
	11.17	Timing Chart of Read to Write Cycle	41
	11.18	Timing Chart of Write to Read Cycle	41
	11.19	Timing Chart of Burst Stop Cycle (Burst Stop Command)	42
	11.20	Timing Chart of Burst Stop Cycle (Precharge Command)	42
	11.21	CKE/DQM Input Timing (Write Cycle)	43
	11.22	CKE/DQM Input Timing (Read Cycle)	44
12.	PACK	AGE SPECIFICATION	45
	12.1	86L TSOP (II)-400 mil	45
13.	REVIS	NON HISTORY	46

1. GENERAL DESCRIPTION

W9864G2GH is a high-speed synchronous dynamic random access memory (SDRAM), organized as 512K words \times 4 banks \times 32 bits. Using pipelined architecture and 0.11 µm process technology, W9864G2GH delivers a data bandwidth of up to 800M bytes per second. For different application, W9864G2GH is sorted into the following speed grades:-5,-6/-6C/-6I,-7.The -5 parts can run up to 200MHz/CL3.The -6/-6C/-6I parts can run up to 166 MHz/CL3. And the grade of -6C with tck=7.5nS on CL=2, tiH=0.8nS on CL=2/3.And the -6I grade which is guaranteed to support -40°C ~ 85°C.The -7 parts can run up to 143 MHz/CL3.

Accesses to the SDRAM are burst oriented. Consecutive memory location in one page can be accessed at a burst length of 1, 2, 4, 8 or full page when a bank and row is selected by an ACTIVE command. Column addresses are automatically generated by the SDRAM internal counter in burst operation. Random column read is also possible by providing its address at each clock cycle. The multiple bank nature enables interleaving among internal banks to hide the precharging time.

By having a programmable Mode Register, the system can change burst length, latency cycle, interleave or sequential burst to maximize its performance. W9864G2GH is ideal for main memory in high performance applications.

2. FEATURES

• 3.3V± 0.3V for -5/-6/-6C/-6I grade power supply

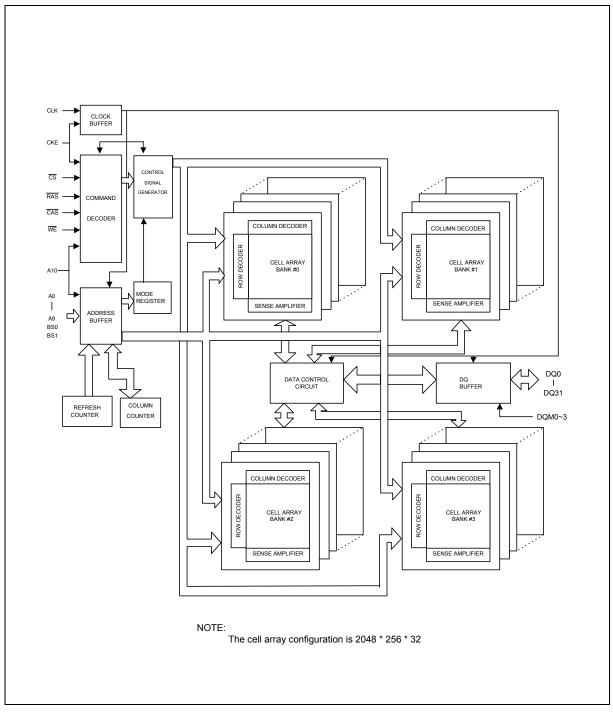
 $2.7V \sim 3.6V$ for -7 grade power supply

- 524,288 words × 4 banks × 32 bits organization
- Self Refresh Current: Standard and Low Power
- CAS Latency: 2 & 3
- Burst Length: 1, 2, 4, 8 and full page
- Sequential and Interleave Burst
- Byte data controlled by DQM0-3
- Auto-precharge and controlled precharge
- Burst read, single write operation
- 4K refresh cycles/64 mS
- Interface: LVTTL
- Packaged in TSOP II 86-pin, 400 mil
- W9864G2GH is using Lead free materials

3. AVAILABLE PART NUMBER

PART NUMBER	SPEED (CL=3)	SELF REFRESH CURRENT (MAX.)	OPERATING TEMPERATURE
W9864G2GH-5	200 MHz	2mA	0°C ~ 70°C
W9864G2GH-6/-6C	166 MHz	2mA	0°C ~ 70°C
W9864G2GH-6I	166 MHz	2mA	-40°C ~ 85°C
W9864G2GH-7	143 MHz	2mA	0°C ~ 70°C

4. PIN CONFIGURATION


VCC I 86 Vms DQ0 2 85 DQ15 VCCQ 3 44 Vss0 DQ1 4 83 DQ13 VSQ 6 61 VccQ DQ3 7 80 DQ11 VSQ 6 71 DQ11 VCQ 9 78 VssQ DQ4 8 79 DQ11 VCQ 9 78 VssQ DQ6 11 77 DQ09 VSSQ 12 75 VccQ DQ6 11 77 DQ09 VSSQ 12 75 VccQ DQ7 13 74 DQ8 VCC 16 71 DQ011 VCC 16 71 DQM11 VCC 16 71 DQM11 VCC 16 71 DQM11 VCC 16 71 DQM11 VCC 21 66 A5 A1 22 66			
D00 2 85 D015 Vvca0 3 84 Vsa0 D01 4 85 D014 D02 5 82 D013 Vvsa0 6 84 Vcc0 D03 7 80 D012 D04 8 79 D011 Vcc0 9 78 D013 D05 10 77 D010 D06 11 76 D04 Vsa0 12 75 Vcc0 D07 13 74 D08 Vvsa0 16 72 Vsa1 Vcc 15 72 Vsa1 Vcc 16 74 D04 Vcc 18 69 Nc RAS 19 68 CLK Cas 22 65 A8 BS0 22 65 A6 A10AP 24 63 A6 A2 27 60 A3 D041 25 62 <t< th=""><th>VCC</th><th></th><th>86 Vss</th></t<>	VCC		86 Vss
VCC0 3 84 VSS0 D01 4 88 D014 D02 5 88 D013 VSS0 6 81 VCC0 D03 7 80 D011 VS00 9 78 VS00 D04 8 79 D011 VCC0 9 78 VS00 D056 10 77 D010 D066 11 76 D09 VS00 12 75 VCC0 D07 13 74 D08 VS00 12 75 VCC0 D07 13 74 D08 VS00 12 75 VCC0 D07 13 74 D08 VS00 14 73 D04 VCC 15 72 VS0 VCC 16 71 D0M1 VKE 17 00M1 CKE NC 22 66 A8 B51 22 66			
DQ1 4 88 DQ14 DQ2 5 88 DQ14 DQ2 6 81 VCCQ DQ3 7 80 DQ12 DQ4 8 79 DQ11 DQ4 8 79 DQ11 DQ6 10 77 DQ10 DQ6 11 76 DQ9 DQ6 11 76 DQ9 DQ7 13 74 DQ8 DQ7 13 74 DQ8 NC 14 73 NC VCC 15 72 Vss DQM0 16 71 DQM1 VCC 17 70 NC VCC 17 70 NC VCC 20 67 CKE DQM0 16 71 DQM1 VCC 17 70 NC QA 21 66 A8 BS0 22 65 A8 BS0 22 65 A8 A10AP 24 63 A6 A2 27 60 A3 DQ41 35 DQ30 DQ42 65 <th></th> <th></th> <th></th>			
DQ2 5 82 DQ13 VSSQ 6 81 VCQ DQ3 7 80 DQ12 DQ4 8 79 DQ11 VCQ 9 78 VSSQ DQ5 10 77 DQ3 DQ6 11 76 DQ09 VSSQ 12 75 VccQ DQ7 13 74 DQ38 VSSQ 12 75 VccQ DQ6 11 76 DQ39 VSSQ 12 75 VccQ DQ6 14 73 NC VCC 15 72 Vss DMM0 16 71 NC CAS 18 69 NC RAS 19 66 A8 BS0 22 65 A8 BS1 23 64 A7 A10/AP 24 63 A6 A2 27 60 A3 DCM2 29 58 Vs			
VISSQ 6 81 VCCQ DG3 7 80 D011 DG4 8 79 D011 DG5 10 77 D010 DG6 11 76 D029 VSSQ 12 75 VcCQ DG7 13 74 D08 NC 14 73 NC VCC 15 72 VSSQ DOM0 16 71 D0M1 WE 17 70 NC CAS 19 68 CLK CS 20 67 CKE NC 21 66 A8 BS0 22 65 A8 BS1 23 64 A7 A10/AP 25 62 A5 A2 27 60 A3 DM2 28 69 D0M3 VCC 23 58 VCSQ DM2 28 59 D0M3 VCC 23 58 VCSQ			
DQ3 7 80 D012 DQ4 8 79 D011 VCQ 9 78 Vssq DQ5 10 77 Dq0 DQ6 11 76 Dq3 VSQ 12 76 VCQQ QQ7 13 74 DQ8 VSQ 12 75 VCQQ QQ7 13 74 DQ8 VSQ 12 75 VCQ VC 15 72 VSQ VCC 15 72 VCQ QA8 CLK VCQ VCQ QA8 CLK VCQ VCQ QA9 66 A8 CLK CAS 19 68 CLK RX5 19 68 A6 A10/AP 24 63 A6 A2 27 60 A3 DQ40 25 62 A5 QQ16 31 56 DQ0M3 VCC 29 58			
DQ4 8 79 DQ11 VCCQ 9 76 VSQ DQ5 10 77 DQ10 DQ6 11 76 DQ9 VSQ 12 76 VCQ DQ7 13 74 DQ8 NC 14 73 NC VCC 15 72 VSS DQM0 16 71 DQM1 VCC 15 72 VSS DQM0 16 71 DQM1 VCC 17 70 NC CAS 18 69 NC RAS 19 66 QLK CS 20 67 CKE NC 21 66 A9 BS0 22 65 A6 ACA 23 64 A7 ACA 24 63 A6 ACA 25 62 A5 ACA 25 62 A5 DOM3 32 57 NC			
VCCQ 9 78 VSSQ DQ5 10 77 DQ10 DQ6 11 76 DQ9 VSSQ 12 75 VCCQ DQ7 13 74 DQ8 NC 14 73 NC VCCQ 15 72 VSSQ DQM0 16 71 DQM1 VEE 17 70 NC QAS 19 66 A9 CS 20 67 CKE RAS 19 66 A9 BS0 21 66 A9 BS1 23 64 A7 A10/AP 24 63 A6 A2 27 60 A3 DDM2 28 59 DOM3 VCC 29 58 VSQ DDM2 28 59 DOM3 VCC 29 58 VSQ DQ16 51 56 DQ3 VSQ 32 55 VC			
DQS 10 77 DQ10 DQS 11 76 DQ9 VSQQ 75 VcQQ DQ7 13 74 DQ8 NC 14 73 NC VCQ 15 72 VssQ DQM0 16 71 DQM1 WE 17 70 NC CAS 18 68 CLK CS 20 67 CKE NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 24 63 A6 A2 27 60 A3 DQM2 28 59 DQM3 VCC 29 56 VsSQ NC 31 56 DQ31 VCQ 23 55 VcQ DQ17 34 53 DQ33 VSQ 32 55 VcQ DQ16 34 52 VcQ			
DQ8 11 76 DQ9 VSSQ 12 76 VCcQ DQ7 13 74 DQ8 NC 14 73 NC VCC 15 72 VSS DQM0 16 71 DQM1 WE 18 68 NC CAS 18 68 CLK CS 20 67 CKE NC 21 66 A8 BS0 22 66 A8 BS1 23 64 A7 A10/AP 24 63 A6 A2 27 60 A3 DQM2 29 58 DQM3 VCC 29 58 DQ30 VCC 29 58 DQ30 DQ16 31 56 DQ30 UCQ 33 54 DQ30 UQ17 33 54 DQ29 UQ18 34 53 DQ29 VCCQ 35 52			
DQ7 13 74 DQ8 NC 14 73 NC VCC 15 72 VS3 DDM0 16 71 DOM1 WE 17 70 NC CAS 18 69 NC CAS 19 68 CLK CS 20 67 CKE NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 25 62 A5 A2 27 60 A3 DOM2 28 69 DOM3 VCC 29 58 VSS NC 30 67 NC DOM2 22 65 VSS NC 30 67 NC DA1 26 61 A4 A2 27 60 A3 DOM2 30 67 NC DA1 26 031 031		1 1	
DQ7 13 74 DQ8 NC 14 73 NC VCC 15 72 VS3 DDM0 16 71 DDM1 WE 17 70 NC CAS 18 69 NC CAS 19 68 CLK CS 20 67 CKE NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 25 62 A5 A2 27 60 A3 DOM2 28 59 D0M3 VCC 29 58 VSS NC 30 57 NC DOM2 22 55 VCCQ DA1 56 D031 VSSQ 35 52 VSQ DQ16 31 56 D030 DQ17 33 54 D030 DQ18 34 53 D029	VSSQ	12	75 VccQ
NC 14 73 NC VCC 15 72 VSS DOM0 16 71 DOM1 WE 17 70 NC CAS 18 69 NC RAS 19 68 CLK CS 20 67 CKE NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 24 63 A6 DOM2 28 59 DOM3 VCC 29 58 VSS NC 30 57 NC DOM2 28 59 DOM3 VCC 29 58 VSS NC 30 57 NC DOM2 22 55 VCQ DOM3 56 DO31 VSQ 32 55 VCQ DQ16 31 56 DQ31 VSQ 35 52 VSQ <tr< th=""><th></th><th></th><th></th></tr<>			
VCC 15 72 VSS DQM0 16 71 DQM1 WE 17 70 NC QAS 19 68 CLK RAS 19 68 CLK CS 20 67 CKE NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 24 63 A6 A2 25 62 A3 DQM2 28 69 DQM3 VCC 29 58 VSS NC 30 57 NC DQM2 28 59 DQM3 VCC 29 58 VSS DQ16 31 56 VCQ DQ17 33 54 DQ30 DQ18 34 53 DQ28 VCQ 35 52 VSQ DQ18 34 63 DQ28 VCQ 35 52 VSQ			
DQM0 16 71 DQM1 WE 17 70 NC CAS 18 69 NC RAS 19 68 ClK RAS 20 67 CKE NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 24 63 A6 A2 27 60 A3 DQM2 28 59 DQM3 VCC 29 58 VSS NC 31 56 DQ31 VSQ 32 55 VCQ DQ18 34 53 DQ39 VCCQ 35 52 VSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSQ 38 49 VCQ DQ21 39 48 DQ25 DQ22 42 45 DQ25			
WE 17 70 NC CAS 18 69 NC RAS 19 68 CLK CS 20 67 CKE NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DM2 28 59 DOM3 VCC 29 58 VSS NC 30 57 NC DQM2 28 59 DOM3 VCC 29 58 VSS NC 30 57 NC DQ17 33 54 D031 VSQ 35 52 VSQ DQ17 33 54 D029 VCQ 35 52 VSQ DQ21 39 48 D026			
CAS 18 69 NC RAS 19 68 CLK CS 20 67 CKE NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 24 63 A6 A0 25 62 A5 A1 26 60 A3 DQM2 28 59 DQM3 VCC 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VccQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 39 48 DQ26 DQ21 39 48 DQ26 DQ22 40 45			
RAS 19 68 CLK CS 20 67 CKE NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 24 63 A6 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VCC 29 58 VSS NC 31 56 DQ31 VSQ 32 55 VCQ DQ17 33 54 DQ39 VCQ 35 52 VSQ DQ19 36 51 DQ26 DQ20 37 50 DQ26 DQ21 39 48 DQ26 DQ22 40 47 DQ26 VCQ 41 46 VSQ			
CS 20 67 CKE NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VCC 29 58 Vss NC 30 57 NC DQ16 31 56 DQ30 VSQ 32 55 VcQ DQ18 34 53 DQ29 VCQ 35 52 VsQ DQ18 34 53 DQ29 VCQ 35 52 VsQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VsQ 38 49 VcQ DQ21 39 48 DQ26 DQ22 40 47 DQ2		19	
NC 21 66 A9 BS0 22 65 A8 BS1 23 64 A7 A10/AP 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VCC 29 56 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VccQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ	_		
BS1 23 64 A7 A10/AP 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vcc 29 58 Vss NC 30 57 NC DQ16 31 56 DQ30 DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ			
BS1 23 64 A7 A10/AP 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vcc 29 58 Vss NC 30 57 NC DQ16 31 56 DQ30 DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ	BS0	22	65 A8
A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vcc 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VccQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24		23	64 A7
A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VCC 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VccQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ26 DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ	A10/AP	24	63 A6
A2 27 60 A3 DQM2 28 59 DQM3 VCC 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VSQ 32 55 VccQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	A0	25	62 A5
DQM2 28 59 DQM3 VCC 29 58 VSS NC 30 57 NC DQ16 31 56 DQ31 VSQ 32 55 VccQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ	A1	26	61 A4
Vcc 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VccQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	A2	27	60 A3
NC 30 57 NC DQ16 31 56 DQ31 VSQ 32 55 VccQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	DQM2	28	59 DQM3
DQ16 31 56 DQ31 VssQ 32 55 VccQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	Vcc	29	58 Vss
VSSQ 32 55 VCcQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VCcQ 35 52 VSSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSSQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	NC	30	57 NC
DQ17 33 54 DQ30 DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	DQ16	31	56 DQ31
DQ18 34 53 DQ29 VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	VssQ	32	55 VccQ
VccQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	DQ17	33	54 DQ30
DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	DQ18	34	53 DQ29
DQ20 37 50 DQ27 VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	VccQ	35	
VssQ 38 49 VccQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	DQ19	36	51 DQ28
DQ21 39 48 DQ26 DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	DQ20	37	50 DQ27
DQ22 40 47 DQ25 VccQ 41 46 VssQ DQ23 42 45 DQ24	VssQ	38	49 VccQ
VccQ 41 46 VssQ DQ23 42 45 DQ24	DQ21	39	48 DQ26
DQ23 42 45 DQ24	DQ22	40	47 DQ25
	VccQ	41	46 VssQ
Vcc 43 44 Vss	DQ23	42	45 DQ24
	Vcc	43	44 Vss
		L]

E

5. PIN DESCRIPTION

PIN NUMBER	PIN NAME	FUNCTION	DESCRIPTION
24, 25, 26, 27, 60, 61, 62, 63, 64, 65, 66	A0-A10	Address	Multiplexed pins for row and column address. Row address: A0–A10. Column address: A0–A7. A10 is sampled during a precharge command to determine if all banks are to be precharged or bank selected by BS0, BS1.
22, 23	BS0, BS1	Bank Select	Select bank to activate during row address latch time, or bank to read/write during address latch time.
2, 4, 5, 7, 8, 10, 11, 13, 31, 33, 34, 36, 37, 39, 40, 42, 45, 47, 48, 50, 51, 53, 54, 56, 74, 76, 77, 79, 80, 82, 83, 85	DQ0-DQ31	Data Input/ Output	Multiplexed pins for data output and input.
20	CS	Chip Select	Disable or enable the command decoder. When command decoder is disabled, new command is ignored and previous operation continues.
19	RAS	Row Address Strobe	Command input. When sampled at the rising edge of the clock \overrightarrow{RAS} , \overrightarrow{CAS} and \overrightarrow{WE} define the operation to be executed.
18	CAS	Column Address Strobe	Referred to RAS
17	WE	Write Enable	Referred to RAS
16, 28, 59, 71	DQM0-DQM3	Input/Output Mask	The output buffer is placed at Hi-Z (with latency of 2) when DQM is sampled high in read cycle. In write cycle, sampling DQM high will block the write operation with zero latency.
68	CLK	Clock Inputs	System clock used to sample inputs on the rising edge of clock.
67	СКЕ	Clock Enable	CKE controls the clock activation and deactivation. When CKE is low, Power Down mode, Suspend mode, or Self Refresh mode is entered.
1, 15, 29, 43	Vcc	Power	Power for input buffers and logic circuit inside DRAM.
44, 58, 72, 86	Vss	Ground	Ground for input buffers and logic circuit inside DRAM.
3, 9, 35, 41, 49, 55, 75, 81	Vccq	Power for I/O Buffer	Separated power from VCC, to improve DQ noise immunity.
6, 12, 32, 38, 46, 52, 78, 84	Vssq	Ground for I/O Buffer	Separated ground from VSS, to improve DQ noise immunity.
14, 21, 30, 57, 69, 70, 73	NC	No Connection	No connection.(The NC pin must connect to ground or floating.)

6. BLOCK DIAGRAM

The second second

7. FUNCTIONAL DESCRIPTION

7.1 Power Up and Initialization

The default power up state of the mode register is unspecified. The following power up and initialization sequence need to be followed to guarantee the device being preconditioned to each user specific needs.

During power up, all V_{CC} and V_{CCQ} pins must be ramp up simultaneously to the specified voltage when the input signals are held in the "NOP" state. The power up voltage must not exceed VCC + 0.3V on any of the input pins or VCC supplies. After power up, an initial pause of 200 µS is required followed by a precharge of all banks using the precharge command. To prevent data contention on the DQ bus during power up, it is required that the DQM and CKE pins be held high during the initial pause period. Once all banks have been precharged, the Mode Register Set Command must be issued to initialize the Mode Register. An additional eight Auto Refresh cycles (CBR) are also required before or after programming the Mode Register to ensure proper subsequent operation.

7.2 Programming Mode Register

After initial power up, the Mode Register Set Command must be issued for proper device operation. All banks must be in a precharged state and CKE must be high at least one cycle before the Mode Register Set Command can be issued. The Mode Register Set Command is activated by the low signals of RAS, CAS, CS and WE at the positive edge of the clock. The address input data during this cycle defines the parameters to be set as shown in the Mode Register Operation table. A new command may be issued following the mode register set command once a delay equal to t_{RSC} has elapsed. Please refer to the next page for Mode Register Set Cycle and Operation Table.

7.3 Bank Activate Command

The Bank Activate command must be applied before any Read or Write operation can be executed. The operation is similar to RAS activate in EDO DRAM. The delay from when the Bank Activate command is applied to when the first read or write operation can begin must not be less than the RAS to CAS delay time (t_{RCD}). Once a bank has been activated it must be precharged before another Bank Activate command can be issued to the same bank. The minimum time interval between successive Bank Activate commands to the same bank is determined by the RAS cycle time of the device (t_{RC}). The minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and vice versa) is the Bank to Bank delay time (t_{RRD}). The maximum time that each bank can be held active is specified as T_{RAS} (max.).

7.4 Read and Write Access Modes

After a bank has been activated, a read or write cycle can be followed. This is accomplished by setting $\overline{\text{RAS}}$ high and $\overline{\text{CAS}}$ low at the clock rising edge after minimum of t_{RCD} delay. $\overline{\text{WE}}$ pin voltage level defines whether the access cycle is a read operation ($\overline{\text{WE}}$ high), or a write operation ($\overline{\text{WE}}$ low). The address inputs determine the starting column address. Reading or writing to a different row within an activated bank requires the bank be precharged and a new Bank Activate command be issued. When more than one bank is activated, interleaved bank Read or Write operations are possible. By using the programmed burst length and alternating the access and precharge operations between multiple banks, seamless data access operation among many different pages can be realized. Read or Write Commands can also be issued to the same bank or between active banks on every clock cycle.

7.5 Burst Read Command

The Burst Read command is initiated by applying logic low level to \overline{CS} and \overline{CAS} while holding \overline{RAS} and \overline{WE} high at the rising edge of the clock. The address inputs determine the starting column address for the burst. The Mode Register sets type of burst (sequential or interleave) and the burst length (1, 2, 4, 8 and full page) during the Mode Register Set Up cycle. Table 2 and 3 in the next page explain the address sequence of interleave mode and sequence mode.

The second second

7.6 Burst Command

The Burst Write command is initiated by applying logic low level to \overline{CS} , \overline{CAS} and \overline{WE} while holding \overline{RAS} high at the rising edge of the clock. The address inputs determine the starting column address. Data for the first burst write cycle must be applied on the DQ pins on the same clock cycle that the Write Command is issued. The remaining data inputs must be supplied on each subsequent rising clock edge until the burst length is completed. Data supplied to the DQ pins after burst finishes will be ignored.

7.7 Read Interrupted by a Read

A Burst Read may be interrupted by another Read Command. When the previous burst is interrupted, the remaining addresses are overridden by the new read address with the full burst length. The data from the first Read Command continues to appear on the outputs until the CAS Latency from the interrupting Read Command the is satisfied.

7.8 Read Interrupted by a Write

To interrupt a burst read with a Write Command, DQM may be needed to place the DQs (output drivers) in a high impedance state to avoid data contention on the DQ bus. If a Read Command will issue data on the first and second clocks cycles of the write operation, DQM is needed to insure the DQs are tri-stated. After that point the Write Command will have control of the DQ bus and DQM masking is no longer needed.

7.9 Write Interrupted by a Write

A burst write may be interrupted before completion of the burst by another Write Command. When the previous burst is interrupted, the remaining addresses are overridden by the new address and data will be written into the device until the programmed burst length is satisfied.

7.10 Write Interrupted by a Read

A Read Command will interrupt a burst write operation on the same clock cycle that the Read Command is activated. The DQs must be in the high impedance state at least one cycle before the new read data appears on the outputs to avoid data contention. When the Read Command is activated, any residual data from the burst write cycle will be ignored.

-9-

The set of the set of

7.11 Burst Stop Command

A Burst Stop Command may be used to terminate the existing burst operation but leave the bank open for future Read or Write Commands to the same page of the active bank, if the burst length is full page. Use of the Burst Stop Command during other burst length operations is illegal. The Burst Stop Command is defined by having \overline{RAS} and \overline{CAS} high with \overline{CS} and \overline{WE} low at the rising edge of the clock. The data DQs go to a high impedance state after a delay, which is equal to the CAS Latency in a burst read cycle, interrupted by Burst Stop.

7.12 Addressing Sequence of Sequential Mode

A column access is performed by increasing the address from the column address which is input to the device. The disturb address is varied by the Burst Length as shown in Table 2.

DATA	ACCESS ADDRESS	BURST LENGTH
Data 0	n	BL = 2 (disturb address is A0)
Data 1	n + 1	No address carry from A0 to A1
Data 2	n + 2	BL = 4 (disturb addresses are A0 and A1)
Data 3	n + 3	No address carry from A1 to A2
Data 4	n + 4	
Data 5	n + 5	BL = 8 (disturb addresses are A0, A1 and A2)
Data 6	n + 6	No address carry from A2 to A3
Data 7	n + 7	V

Table 2 Address Sequence of Sequential Mode

7.13 Addressing Sequence of Interleave Mode

A column access is started in the input column address and is performed by inverting the address bit in the sequence shown in Table 3.

Table 3 Address Sequence of Interleave Mode	Ð

DATA	ACCESS ADDRESS	BURST LENGTH
Data 0	A8 A7 A6 A5 A4 A3 A2 A1 A0	BL = 2
Data 1	A8 A7 A6 A5 A4 A3 A2 A1 A0	
Data 2	A8 A7 A6 A5 A4 A3 A2 A1 A0	BL = 4
Data 3	A8 A7 A6 A5 A4 A3 A2 A1 A0	Ų
Data 4	A8 A7 A6 A5 A4 A3 A2 A1 A0	BL = 8
Data 5	A8 A7 A6 A5 A4 A3 A2 A1 A0	
Data 6	A8 A7 A6 A5 A4 A3 A2 A1 A0	
Data 7	A8 A7 A6 A5 A4 A3 A2 A1 A0	J

____ winbond **___**

7.14 Auto-precharge Command

If A10 is set to high when the Read or Write Command is issued, then the Auto-precharge function is entered. During Auto-precharge, a Read Command will execute as normal with the exception that the active bank will begin to precharge automatically before all burst read cycles have been completed. Regardless of burst length, it will begin a certain number of clocks prior to the end of the scheduled burst cycle. The number of clocks is determined by CAS Latency.

A Read or Write Command with Auto-precharge cannot be interrupted before the entire burst operation is completed for the same bank. Therefore, use of a Read, Write, or Precharge Command is prohibited during a read or write cycle with Auto-precharge. Once the precharge operation has started, the bank cannot be reactivated until the Precharge time (t_{RP}) has been satisfied. Issue of Auto-precharge command is illegal if the burst is set to full page length. If A10 is high when a Write Command is issued, the Write with Auto-precharge function is initiated. The SDRAM automatically enters the precharge operation two clocks delay from the last burst write cycle. This delay is referred to as write t_{WR} . The bank undergoing Auto-precharge cannot be reactivated until t_{WR} and t_{RP} are satisfied. This is referred to as t_{DAL} , Data-in to Active delay ($t_{DAL} = t_{WR} + t_{RP}$). When using the Auto-precharge Command, the interval between the Bank Activate Command and the beginning of the internal precharge operation must satisfy t_{RAS} (min).

7.15 Precharge Command

The Precharge Command is used to precharge or close a bank that has been activated. The Precharge Command is entered when \overline{CS} , \overline{RAS} and \overline{WE} are low and \overline{CAS} is high at the rising edge of the clock. The Precharge Command can be used to precharge each bank separately or all banks simultaneously. Three address bits, A10, BS0 and BS1 are used to define which bank(s) is to be precharged when the command is issued. After the Precharge Command is issued, the precharged bank must be reactivated before a new read or write access can be executed. The delay between the Precharge Command and the Activate Command must be greater than or equal to the Precharge time (t_{RP}).

7.16 Self Refresh Command

The Self Refresh Command is defined by having \overline{CS} , \overline{RAS} , \overline{CAS} and CKE held low with \overline{WE} high at the rising edge of the clock. All banks must be idle prior to issuing the Self Refresh Command. Once the command is registered, CKE must be held low to keep the device in Self Refresh mode. When the SDRAM has entered Self Refresh mode all of the external control signals, except CKE, are disabled. The clock is internally disabled during Self Refresh Operation to save power. The device will exit Self Refresh operation after CKE is returned high. A minimum delay time is required when the device exits Self Refresh Operation and before the next command can be issued. This delay is equal to the tac cycle time plus the Self Refresh exit time.

If, during normal operation, AUTO REFRESH cycles are issued in bursts (as opposed to being evenly distributed), a burst of 4,096 AUTO REFRESH cycles should be completed just prior to entering and just after exiting the self refresh mode.

7.17 Power Down Mode

The Power Down mode is initiated by holding CKE low. All of the receiver circuits except CKE are gated off to reduce the power. The Power Down mode does not perform any refresh operations, therefore the device can not remain in Power Down mode longer than the Refresh period (t_{REF}) of the device.

The Power Down mode is exited by bringing CKE high. When CKE goes high, a No Operation Command is required on the next rising clock edge, depending on tck. The input buffers need to be enabled with CKE held high for a period equal to t_{CES} (min.) + t_{CK} (min.).

7.18 No Operation Command

The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state to prevent the SDRAM from registering any unwanted commands between operations. A No Operation Command is registered when \overline{CS} is low with \overline{RAS} , \overline{CAS} and \overline{WE} held high at the rising edge of the clock. A No Operation Command will not terminate a previous operation that is still executing, such as a burst read or write cycle.

7.19 Deselect Command

The Deselect Command performs the same function as a No Operation Command. Deselect Command occurs when \overline{CS} is brought high, the \overline{RAS} , \overline{CAS} and \overline{WE} signals become don't cares.

7.20 Clock Suspend Mode

During normal access mode, CKE must be held high enabling the clock. When CKE is registered low while at least one of the banks is active, Clock Suspend Mode is entered. The Clock Suspend mode deactivates the internal clock and suspends any clocked operation that was currently being executed. There is a one clock delay between the registration of CKE low and the time at which the SDRAM operation suspends. While in Clock Suspend mode, the SDRAM ignores any new commands that are issued. The Clock Suspend mode is exited by bringing CKE high. There is a one clock cycle delay from when CKE returns high to when Clock Suspend mode is exited.

8. OPERATION MODE

Fully synchronous operations are performed to latch the commands at the positive edges of CLK. Table 1 shows the truth table for the operation commands.

The set winbond

COMMAND	Device State	CKEn-1	CKEn	DQM	BS0, 1	A10	A0-A9	CS	RAS	CAS	WE
Bank Active	Idle	Н	х	х	v	v	V	L	L	н	н
Bank Precharge	Any	Н	х	х	v	L	х	L	L	н	L
Precharge All	Any	Н	х	х	х	Н	х	L	L	н	L
Write	Active (3)	Н	х	х	v	L	v	L	н	L	L
Write with Auto-precharge	Active (3)	Н	х	х	v	Н	v	L	Н	L	L
Read	Active (3)	Н	х	х	v	L	v	L	н	L	н
Read with Auto-precharge	Active (3)	Н	х	х	v	Н	v	L	Н	L	Н
Mode Register Set	Idle	Н	х	х	v	v	v	L	L	L	L
No-Operation	Any	Н	х	х	х	х	х	L	н	н	н
Burst Stop	Active (4)	Н	х	х	х	х	х	L	н	н	L
Device Deselect	Any	Н	х	х	х	х	х	Н	х	х	х
Auto-Refresh	Idle	Н	Н	х	х	х	х	L	L	L	н
Self-Refresh Entry	Idle	Н	L	х	х	х	х	L	L	L	Н
Self Refresh Exit	idle	L	Н	х	х	х	х	Н	х	х	х
	(S.R)	L	Н	х	х	х	х	L	н	н	х
Clock suspend Mode Entry	Active	Н	L	x	x	x	x	х	x	x	x
Dower Down Made Entry	Idle	Н	L	х	х	х	х	Н	х	х	Х
Power Down Mode Entry	Active (5)	Н	L	х	х	х	х	L	Н	Н	н
Clock Suspend Mode Exit	Active	L	Н	х	х	х	х	х	х	х	Х
Power Down Mode Exit	Any	L	Н	x	x	x	x	Н	x	x	х
	(power down)	L	Н	х	х	х	х	L	н	н	Н
Data write/Output Enable	Active	Н	х	L	х	х	х	х	х	х	х
Data Write/Output Disable	Active	Н	х	Н	х	х	х	х	х	х	x

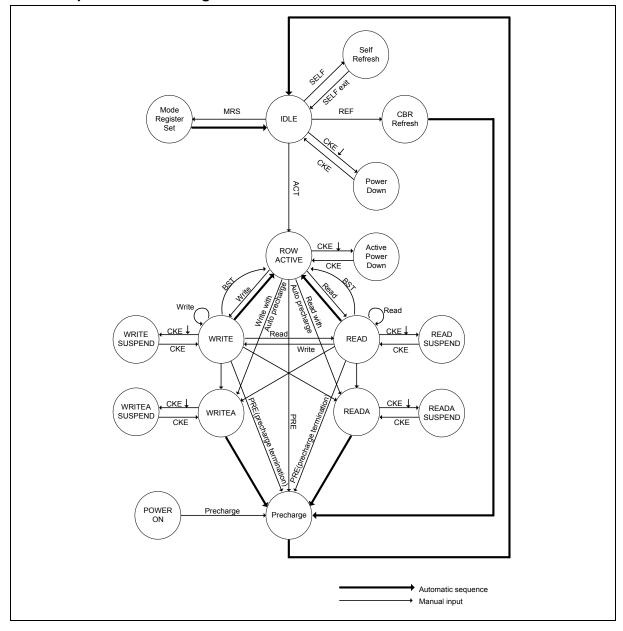
TABLE 1	TRUTH	TARIE	(NOTE	(1) (2))
IADLEI	INUIN	IADLE		(1), (4))

Notes:

(1) v = valid, x = Don't care, L = Low Level, H = High Level

(2) CKEn signal is input leve I when commands are provided.

(3) These are state of bank designated by BS0, BS1 signals.


(4) Device state is full page burst operation.

(5) Power Down Mode can not be entered in the burst cycle. When this command asserts in the burst cycle, device state is clock suspend mode.

> Publication Release Date: Aug. 13, 2007 Revision A09

8.1 Simplified Stated Diagram

MRS = Mode Register Set REF = Refresh ACT = Active PRE = Precharge WRITEA = Write with Auto-precharge READA = Read with Auto-precharge

The second second

9. ELECTRICAL CHARACTERISTICS

9.1 Absolute Maximum Ratings

PARAMETER	SYMBOL	RATING	UNIT	NOTES
Input, Column Output Voltage	Vin, Vout	-0.3~VCC+ 0.3V	V	1
Power Supply Voltage	VCC, VCCQ	-0.3~4.6V	V	1
Operating Temperature	Topr	0 ~ 70	°C	1
Operating Temperature (-6I)	Topr	-40 ~ 85	°C	1
Storage Temperature	Тѕтс	-55 ~ 150	°C	1
Soldering Temperature (10s)	TSOLDER	260	°C	1
Power Dissipation	PD	1	W	1
Short Circuit Output Current	Ιουτ	50	mA	1

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

Recommended DC Operating Conditions 9.2

TA = 0 to 70 °C for -5/-6/-6C/-7, TA = -40 to 85 °C for -6I)							
PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	NOTES	
Power Supply Voltage	VCC	3.0	3.3	3.6	V		
Power Supply Voltage (for I/O Buffer)	VCCQ	3.0	3.3	3.6	V		
Power Supply Voltage(-7)	VCC	2.7	3.3	3.6	V		
Power Supply Voltage (for I/O Buffer)(-7)	VCCQ	2.7	3.3	3.6	V		
Input High Voltage	VIH	2	-	VCC +0.3	V	1	
Input Low Voltage	VIL	-0.3	-	+0.8	V	2	
Output logic high voltage	Vон	2.4V	-	-	V	Іон= -2mA	
Output logic low voltage	Vol	-	-	0.4	V	IoL= 2mA	
Input leakage current	lı(L)	-10	-	10	μA	3	
Output leakage current	lo(L)	-10	-	10	μA	4	
Note: 1. VIH (max.) = VCC/VCCQ+1.2V for pulse	width < 5 ns	3					

Note: 1. VIH (max.) = VCC/VCCQ+1.2V for pulse width < 5 nS</p>

2. VIL (min.) = VSS/VSSQ-1.2V for pulse width < 5 nS

3. Any input 0V<VIN<VCCQ.

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with Tri-State outputs.

4. Output disabled, $0V \leq VOUT \leq VCCQ$.

9.3 Capacitance

(VCC =3.3V \pm 0.3V for -5/-6/-6C/-6I , VCC=2.7V-3.6V for -7, TA = 25 °C, f = 1 MHz)

PARAMETER	SYM.	MIN.	MAX.	UNIT
Input Capacitance	Ci 2.5 4			
(A0 to A10, BS0, BS1, \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} , DQM, CKE)				
Input Capacitance (CLK)	CCLK	2.5	4	pf
Input/Output capacitance (DQ0–DQ31)	Co	4	6.5	pf

Note: These parameters are periodically sampled and not 100% tested

9.4 DC Characteristics

(VCC = 3.3V±0.3V for -5/-6/-6C,VCC=2.7V-3.6V for -7 on TA = 0°~70°C, VCC = 3.3V±0.3V for 6I on TA = -40°~85°C.)

PARAMETER		SYM.	-5 -6/- 6C/-6		-7	UNIT	NOTES
		MAX. MAX.		MAX.	MAX.		
Operating Current							
tcк = min., tRc = min.		ICC1	110	100	90		3
Active precharge command cycling without burst operation	1 Bank Operation						
Standby Current							
tск = min., CS = Viн Viн/L = Viн (min.)/Vi∟ (max.)	CKE = VIH	ICC2	40	35	30		3
Bank: Inactive State	CKE = Vi∟ (Power Down mode)	ICC2P	3	3	3		3
Standby Current							
CLK = VIL, CS = VIH VIH/L=VIH (min.)/VIL (max.)	CKE = VIH	Icc2s	15	15	15		
Bank: Inactive State	CKE = VIL (Power Down mode)	ICC2PS	3	3	3	mA	
No Operating Current tck = min., \overline{CS} = VIH (min.)	CKE = VIH	Іссз	70	65	60		
Bank: Active State (4 Banks)	CKE = VIL (Power Down mode)	Іссзр	15	15	15		
Burst Operating Current							
(tск = min.)		ICC4	150	140	130		3, 4
Read/Write command cycling							
Auto Refresh Current		loor	170	150	140		2
(tcκ = min.) Auto refresh command cycling		ICC5	170	150	140		3
Self Refresh Current							
Self refresh mode (CKE = 0.2V)		ICC6	2	2	2		

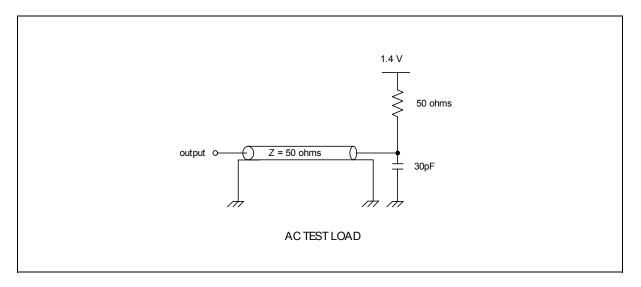
F

9.5 AC Characteristics and Operating Condition

(VCC = $3.3V\pm0.3V$ for -5/-6/-6C, VCC=2.7V-3.6V for -7 on TA = $0^{\circ} \sim 70^{\circ}C$, VCC = $3.3V\pm0.3V$ for 6I on TA = $-40^{\circ} \sim 85^{\circ}C$.) (Notes: 5, 6.)

PARAMETER	SYM	-5		-6/-61		-6C		-7		UNIT	NOTES
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	NOTES
Ref/Active to Ref/Active Command Period	tRC	55		60		60		65			
Active to precharge Command Period	tRAS	40	10000 0	42	100000	42	100000	45	100000	nS	
Active to Read/Write Command Delay Time	tRCD	15		18		18		20			
Read/Write(a) to Read/ Write(b) Command Period	tCCD	1		1		1		1		tCK	
Precharge to Active(b) Command Period	tRP	15		18		18		20			
Active(a) to Active(b) Command Period	tRRD	10		12		12		14		nS	
Write Recovery Time CL* = 2 CL* = 3	tWR	2		2		2		2		tCK	
CLK Cycle Time CL* = 2	tCK	10	1000	10	1000	7.5	1000	10	1000		
CL* = 3	ion	5	1000	6	1000	6	1000	7	1000	-	
CLK High Level	tCH	2	1000	2	1000	2	1000	2	1000	-	9
CLK Low Level	tCL	2		2		2		2			9
Access Time from CLK CL* = 2	tAC		_		6		5.5		6	-	11
CL* = 3			4.5		5		5		5.5		
Output Data Hold Time	tOH	2		2		2		2			11
Output Data High Impedance Time	tHZ	2	5	2	6	2	6	2	7		8
Output Data Low Impedance Time	tLZ	0		0		0		0		nS	11
Power Down Mode Entry Time	tSB	0	5	0	6	0	6	0	7		
Transition Time of CLK (Rise and Fall)	tΤ	0.5	1	0.5	1	0.5	1	0.5	1		7
Data-in-Set-up Time	tDS	1.5		1.5		1.5		1.5		1	10
Data-in Hold Time	tDH	1		1		0.8		1		1	10
Address Set-up Time	tAS	1.5		1.5		1.5		1.5		1	10
Address Hold Time	tAH	1		1		0.8		1		1	10
CKE Set-up Time	tCKS	1.5		1.5		1.5		1.5		1	10
CKE Hold Time	tCKH	1		1		0.8		1		1	10
Command Set-up Time	tCMS	1.5		1.5		1.5		1.5		1	10
Command Hold Time	tCMH	1		1		0.8		1		1	10

winbond


AC Characteristics and Operating Condition, continued

PARAMETER	SYM	-	5	-6	6/-61	-6	SC	-	7		NOTES
	311	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		NOTES
Refresh Time	tREF		64		64		64		64	mS	
Mode Register Set Cycle Time	tRSC	10		12		12		14		nS	
Exit self refresh to Active command	tXSR	70		72		72		75		nS	

Notes:

- 1.Operation exceeds "Absolute Maximum Ratings" may cause permanent damage to the devices.
- 2. All voltages are referenced to Vss
- 3. These parameters depend on the cycle rate and listed values are measured at a cycle rate with the minimum values of tck and tRc.
- 4. These parameters depend on the output loading conditions. Specified values are obtained with output open.
- 5. Power up sequence please refer to "Functional Description" section described before.
- 6. AC Testing Conditions

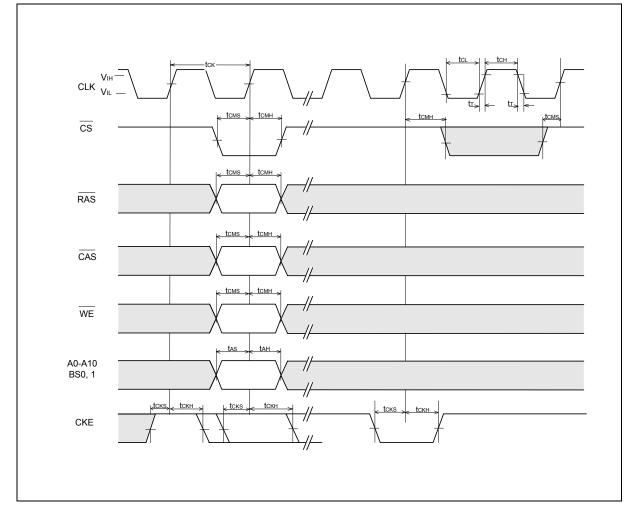
PARAMETER	CONDITIONS
Output Reference Level	1.4V
Output Load	See diagram below
Input Signal Levels (VIH/VIL)	2.4V/0.4V
Transition Time (t _T : tr/tf) of Input Signal	1/1 nS
Input Reference Level	1.4V

- 7. Transition times are measured between VIH and VIL.
- 8. tHz defines the time at which the outputs achieve the open circuit condition and is not referenced to output level.
- These parameters account for the number of clock cycles and depend on the operating frequency of the clock, as follows the number of clock cycles = specified value of timing/ clock period (count fractions as whole number)

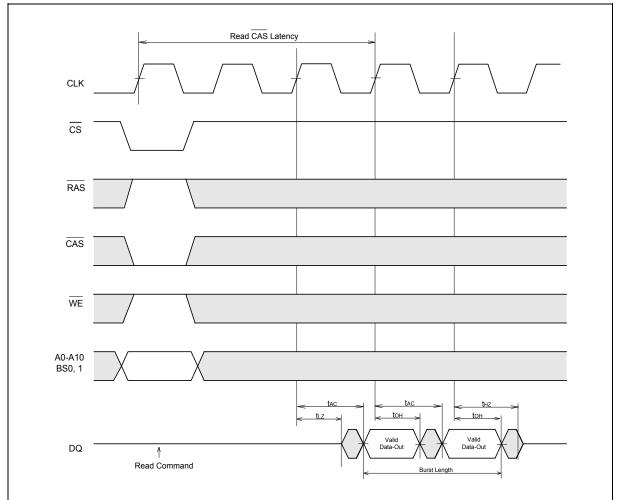
(1)tcH is the pulse width of CLK measured from the positive edge to the negative edge referenced to VIH (min.).

 t_{CL} is the pulse width of CLK measured from the negative edge to the positive edge referenced to VIL (max.).

CKE to clock disable (CKE Latency)	1	tск	
DQM to output to HI-Z (Read DQM Latency)	2		
DQM to output to HI-Z (Write DQM Latency)	0		
Write command to input data (Write Data Latency)		0	
CS to Command input (CS Latency)		0	
Procharge to DO Hi Z Load time	CL = 2	2	
Precharge to DQ Hi-Z Lead time	CL = 3	3	
Procharge to Least Valid data out	CL = 2	1	
Precharge to Last Valid data out	CL = 3	2	
		2	
Bust Stop Command to DQ Hi-Z Lead time	CL = 3	3	
Dust Stee Command to Lost Valid Data aut	CL = 2	1	
Bust Stop Command to Last Valid Data out		2	
Read with Auto-precharge Command to Active/Ref Command C C C		BL + tRP	tcк + nS
		BL + tRP	
Write with Auto procharge Command to Active/Def Command	CL = 2	(BL+1) + t _{RP}	
Write with Auto-precharge Command to Active/Ref Command	CL = 3	(BL+1) + t _{RP}	

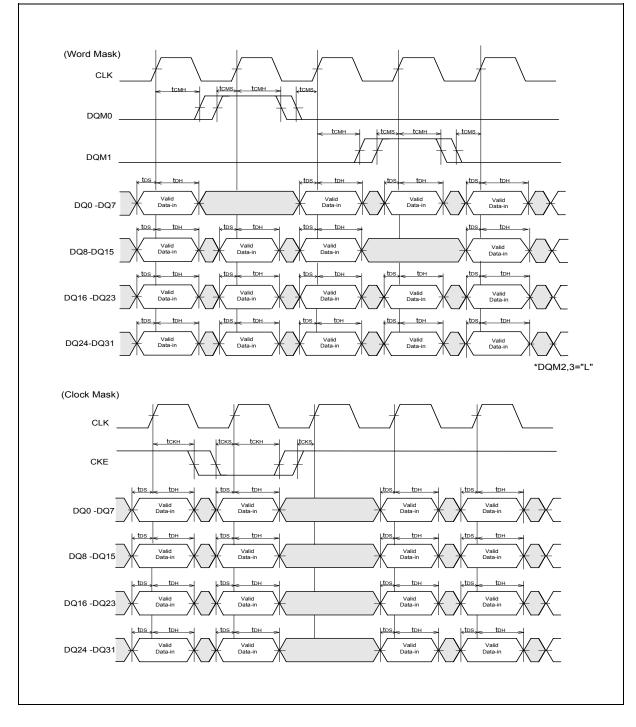

(2)A.C Latency Characteristics

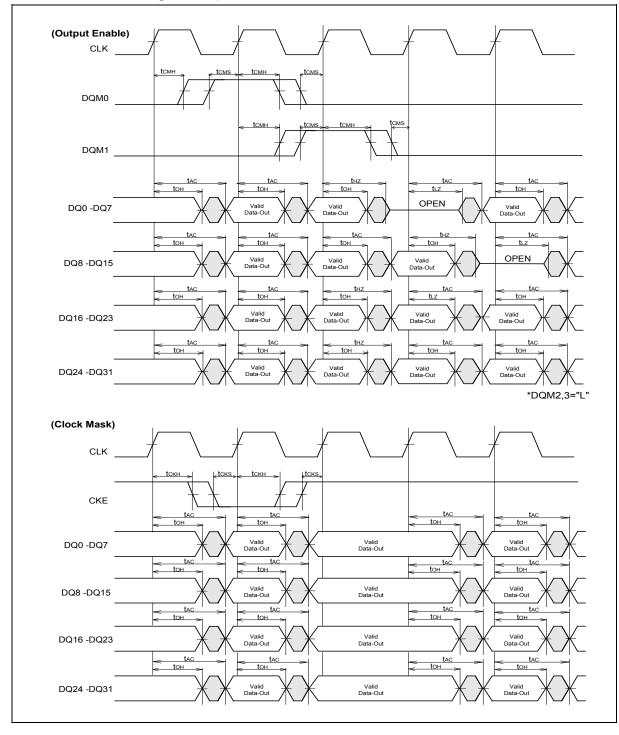
- 10. Assumed input rise and fall time (t_T) = 1nS.
 - If tr & tf is longer than 1nS, transient time compensation should be considered,
 - i.e., [(tr + tf)/2-1]nS should be added to the parameter
 - (The $t_{\scriptscriptstyle T}$ maximum can't be more than 10nS for low frequency application.)
- 11. If clock rising time (t_T) is longer than 1nS, ($t_T/2-0.5$)nS should be added to the parameter.



10. TIMING WAVEFORMS

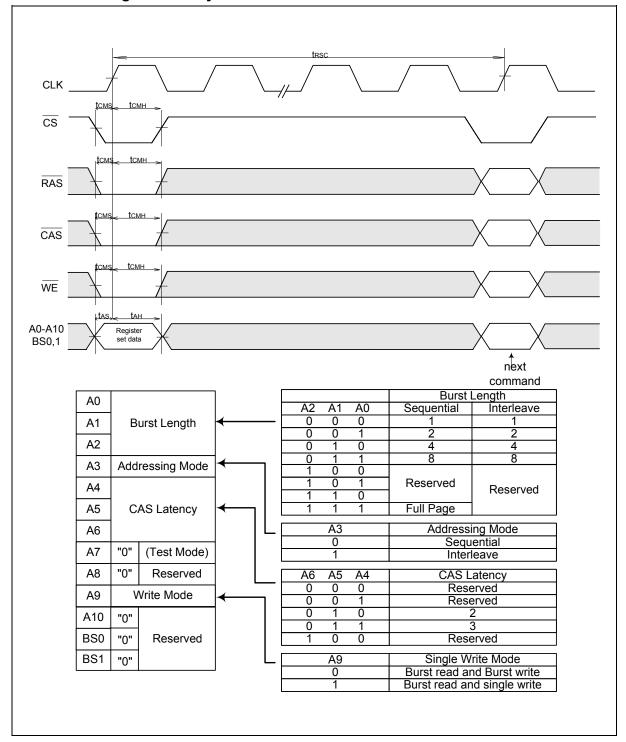
10.1 Command Input Timing





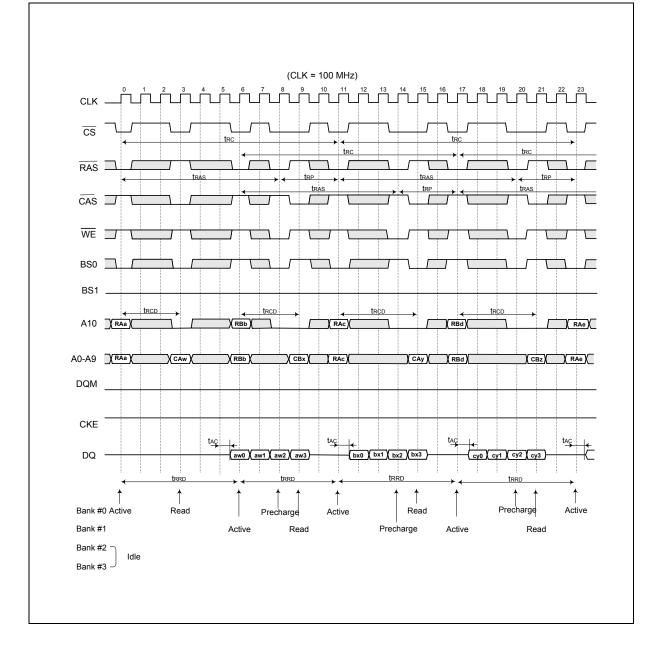
10.2 Read Timing

10.3 Control Timing of Input Data

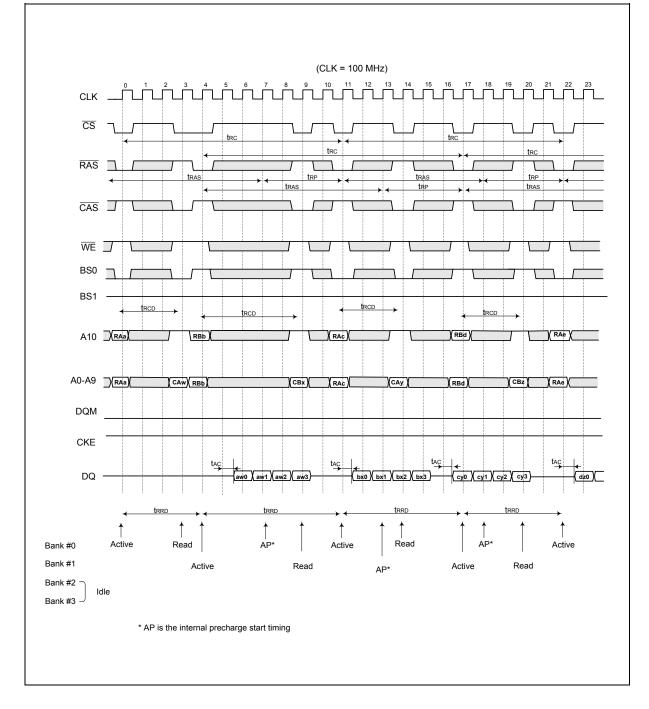


10.4 Control Timing of Output Data

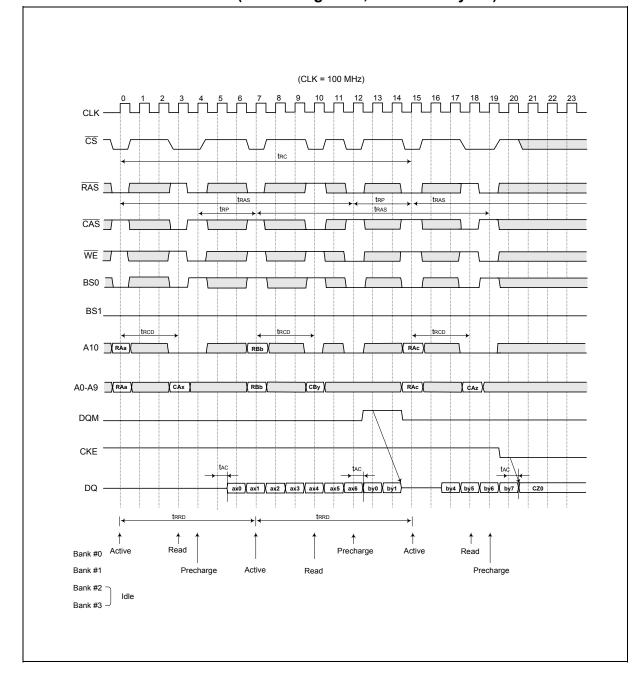
Publication Release Date: Aug. 13, 2007 Revision A09



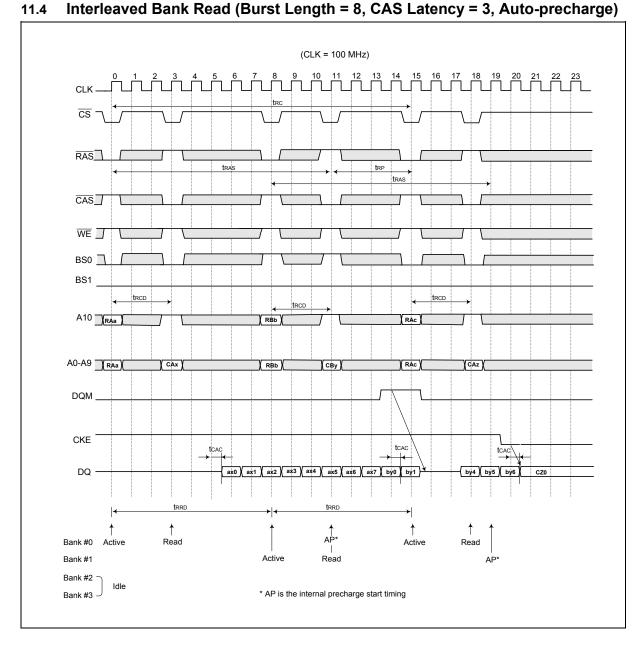
10.5 Mode Register Set Cycle


11. OPERATING TIMING EXAMPLE

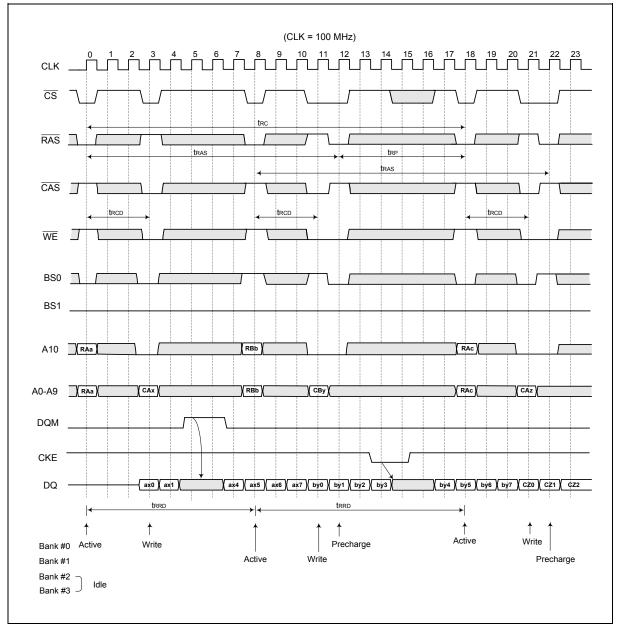
11.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)



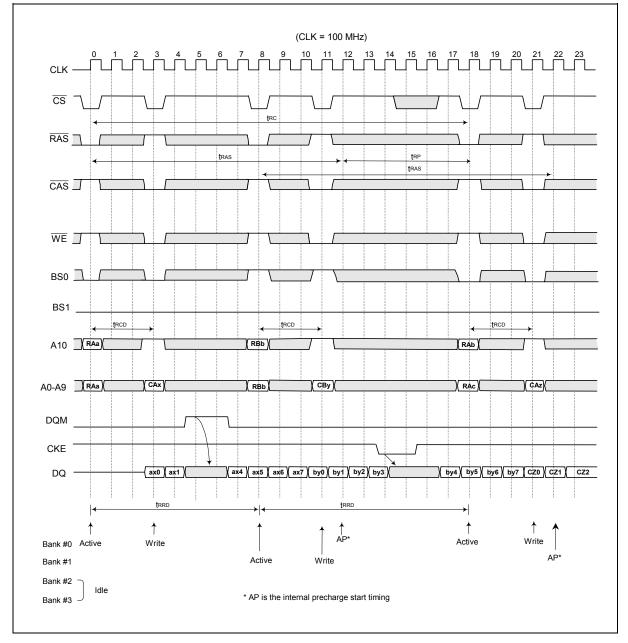
11.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto-precharge)



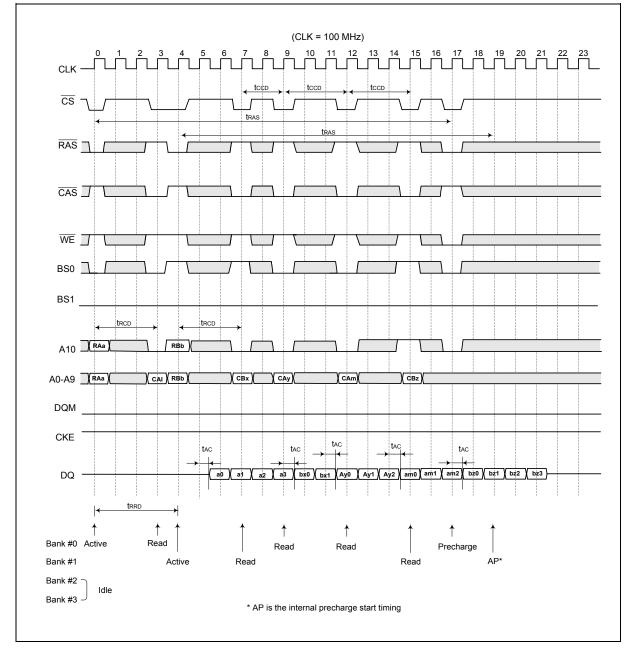
11.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)


winbond

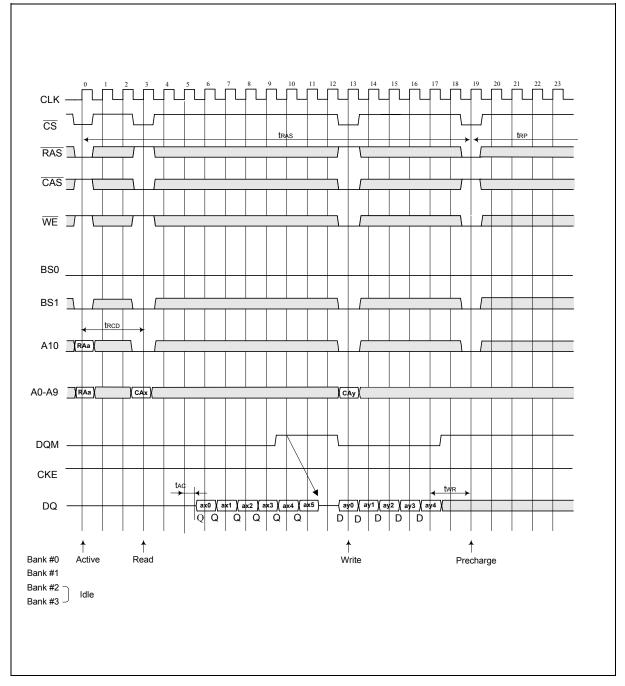
winbond Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto-precharge)



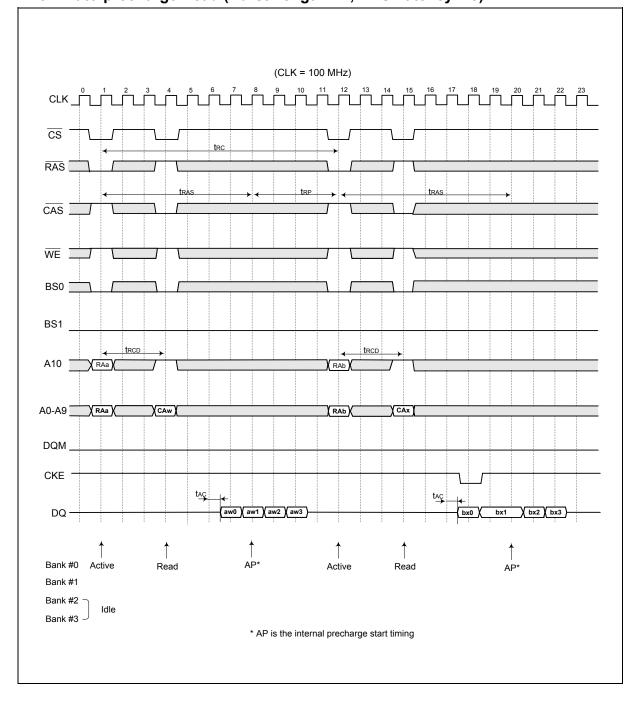
11.5 Interleaved Bank Write (Burst Length = 8)

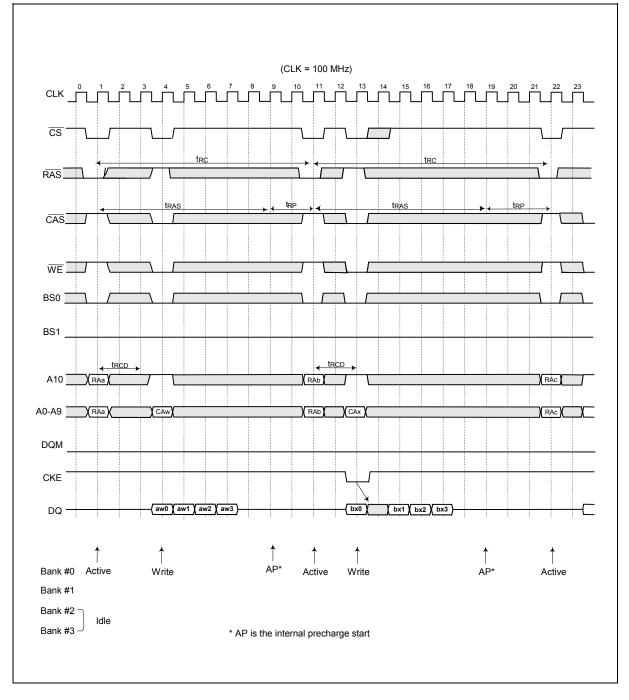


11.6 Interleaved Bank Write (Burst Length = 8, Auto-precharge)

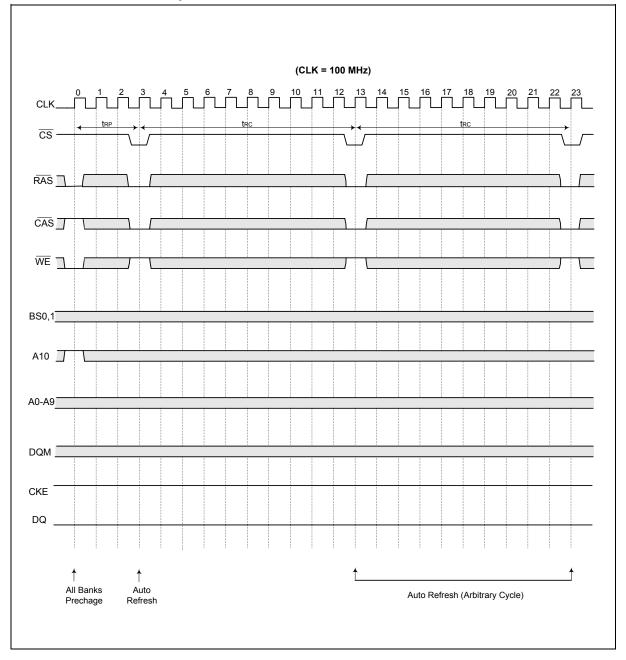


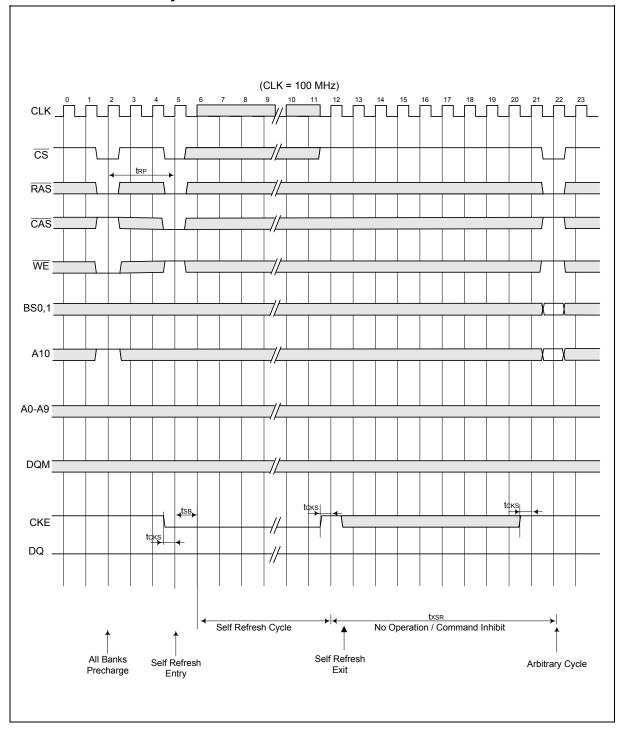
11.7 Page Mode Read (Burst Length = 4, CAS Latency = 3)


11.8 Page Mode Read/Write (Burst Length = 8, CAS Latency = 3)

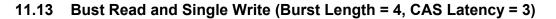

Publication Release Date:Aug. 13, 2007 Revision A09

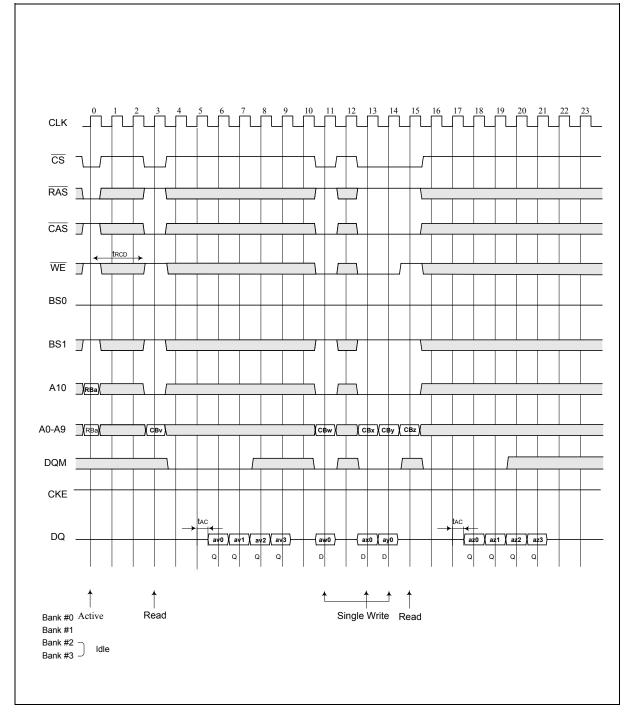
winbond


11.10 Auto-precharge Write (Burst Length = 4)

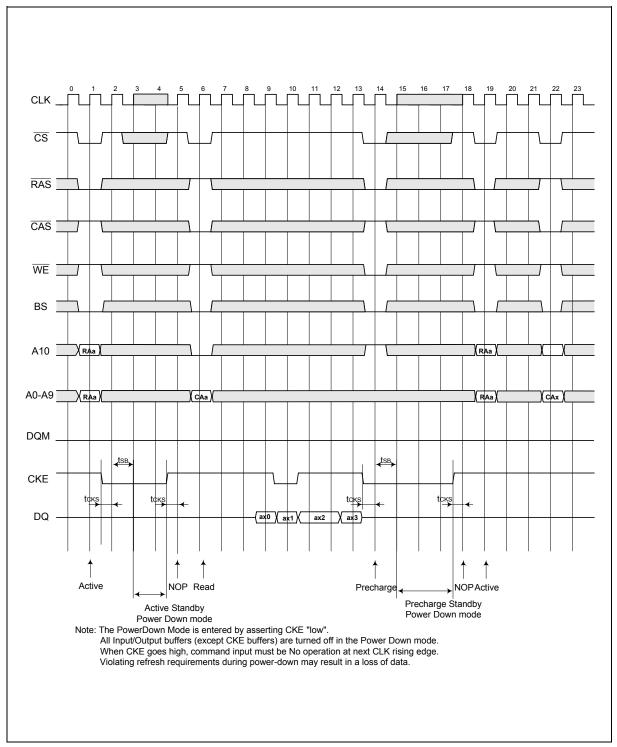

Publication Release Date:Aug. 13, 2007 Revision A09

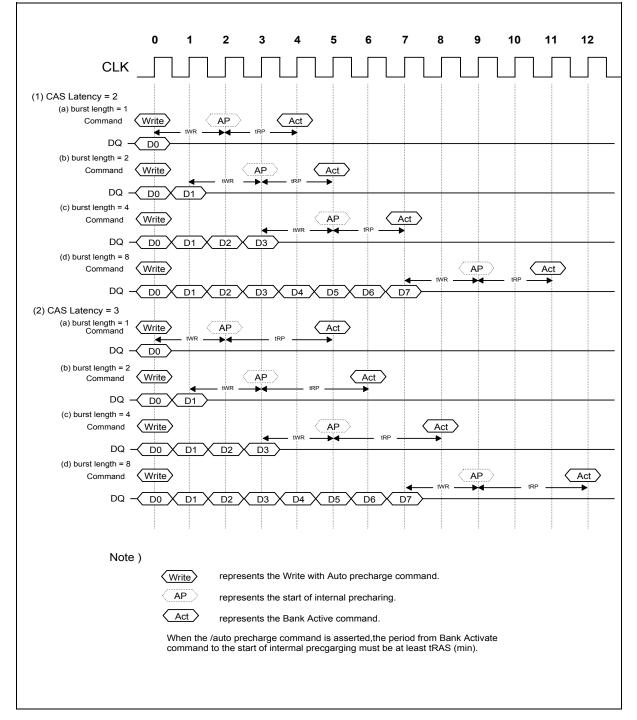
11.11 Auto Refresh Cycle



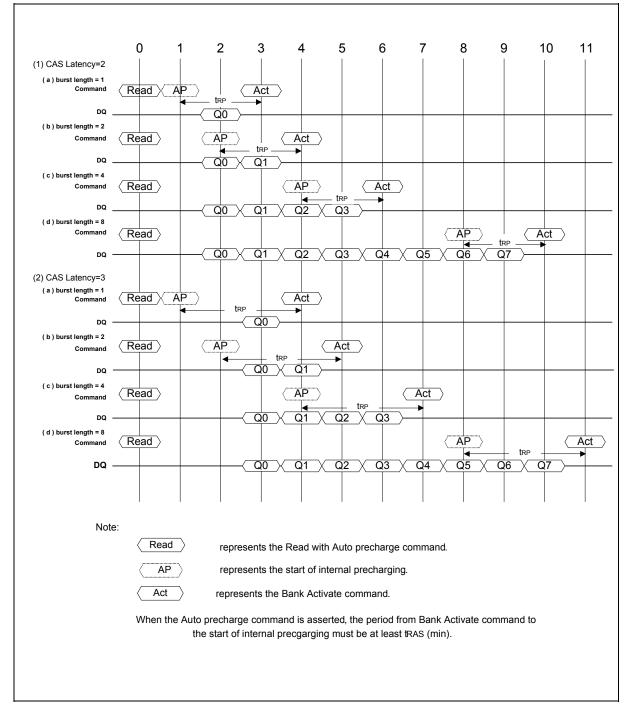

11.12 Self Refresh Cycle

Publication Release Date:Aug. 13, 2007 Revision A09

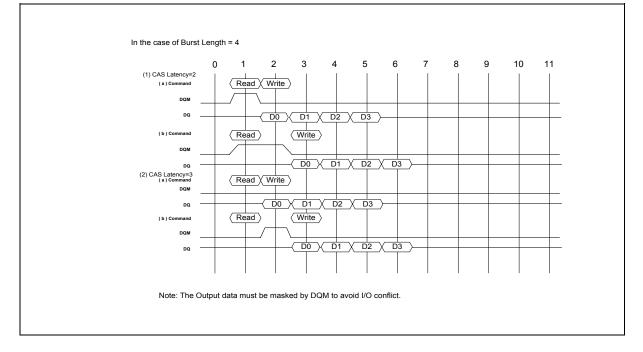



11.14 Power Down Mode

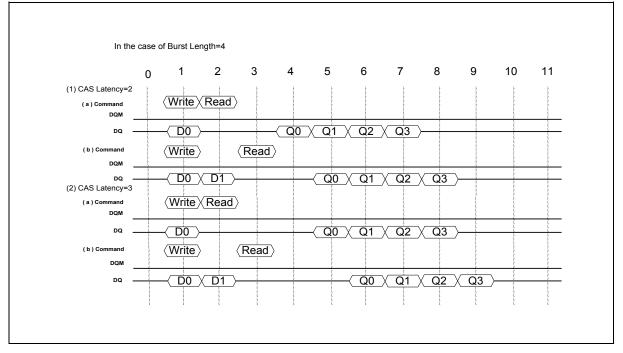
Publication Release Date:Aug. 13, 2007 Revision A09



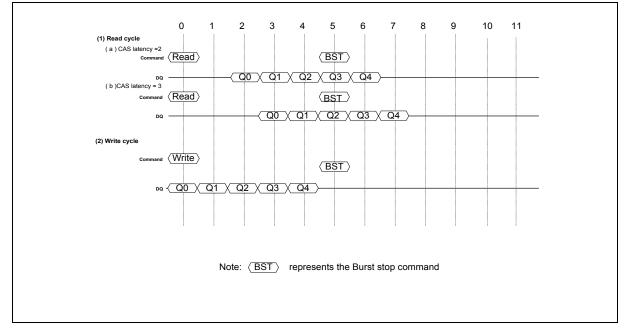
11.15 Auto-precharge Timing (Write Cycle)



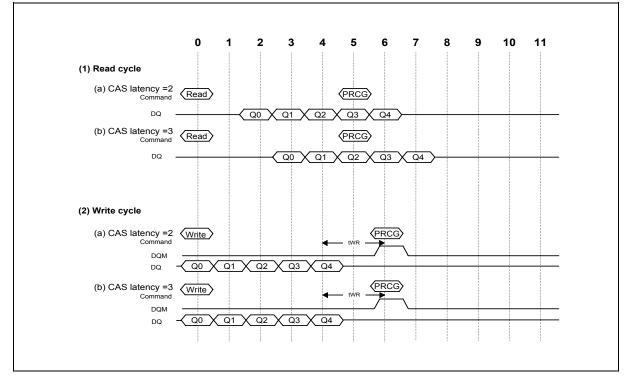
11.16 Auto-precharge Timing (Read Cycle)



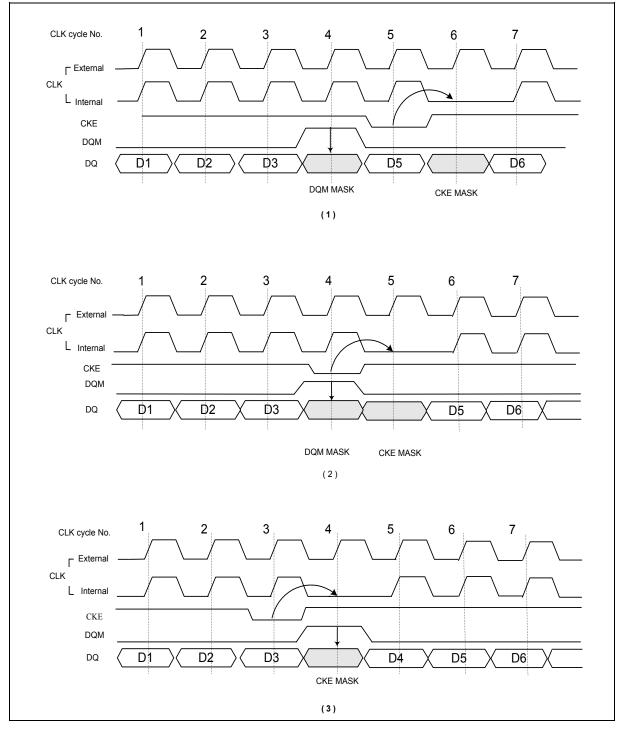
11.17 Timing Chart of Read to Write Cycle



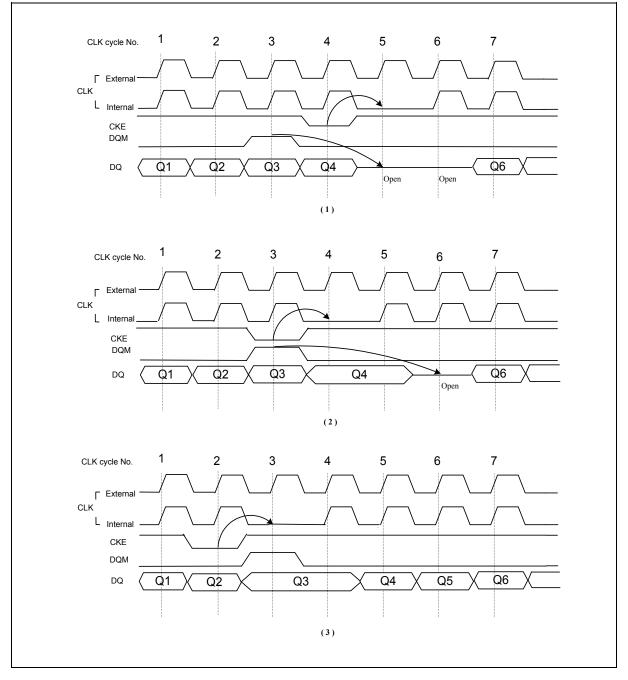
11.18 Timing Chart of Write to Read Cycle



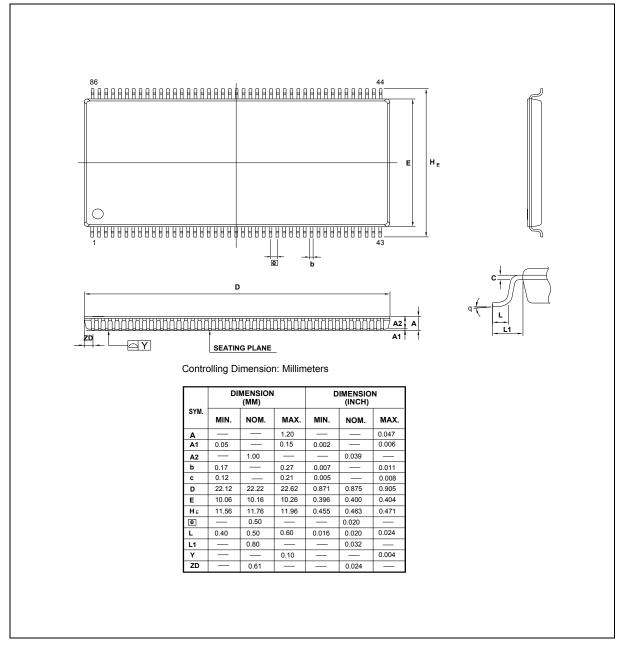
11.19 Timing Chart of Burst Stop Cycle (Burst Stop Command)



11.20 Timing Chart of Burst Stop Cycle (Precharge Command)



11.21 CKE/DQM Input Timing (Write Cycle)



11.22 CKE/DQM Input Timing (Read Cycle)

12. PACKAGE SPECIFICATION

12.1 86L TSOP (II)-400 mil

The set winbond

13. REVISION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A01	Jul. 05, 2006	All	Create new datasheet
A02	Aug. 03, 2006	3,14,15,16	Add –6C grade
A03	Aug. 07, /2006	15,16	Modify ICC1, ICC4, ICC5 & Transition Time of CLK
A04	Oct. 03, 2006	16	Add txsR timing specification.
A05	Nov. 13, 2006	3,13,14	Modify tiн=0.8nS in –6C grade
A06	Jan. 11, 2007	16,18	Modify AC Characteristics Notes 10 and add Notes 11 $(t_{\rm T})$
A07	Apr. 10, 2007	3,14,15,16	Add -6I for TA = -40°~85°C
A08	Jul. 19, 2007	14	Add output leakage current Io(L) specification.
A09	Aug. 13, 2007	18,19	Revise transient time t_T AC test condition and calculate formula for compensation consideration in Notes 6, 10 of AC Characteristics and Operating Condition

Important Notice

Winbond products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Further more, Winbond products are not intended for applications wherein failure of Winbond products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Winbond customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Winbond for any damages resulting from such improper use or sales.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners