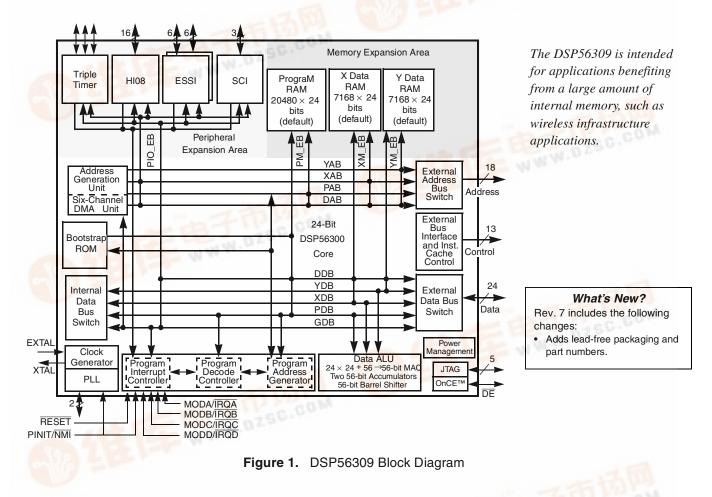
查询XC56309AG100A供应商

Freescale Semiconductor Technical Data Advance Information


DSP56309 Rev. 7, 2/2005

24小时加急出货

₅₩PCB打样工厂

DSP56309

24-Bit Digital Signal Processor

The DSP56309 is a member of the DSP56300 core family of programmable CMOS DSPs. The DSP56300 core includes a barrel shifter, 24-bit addressing, an instruction cache, and direct memory access (DMA). The DSP56309 offers 100 MMACS at 3.0–3.6 V using an internal 100 MHz clock. The large internal memory is ideal for wireless infrastructure and wireless local-loop applications. The DSP56300 core family offers a new level of performance in speed and power provided by its rich instruction set and low-power dissipation, thus enabling a new generation of wireless, multimedia, and telecommunications products.

Note: This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Freescale Semiconductor, Inc., 1996, 2005. All rights reserved.

df.dzsc.com

Table of Contents

		Data Sheet Conventions	ii		
		Features	iii		
		Target Applications	iv		
		Product Documentation	iv		
Chapter 1	Signa	als/Connections			
	1.1	Power	1-3		
	1.2	Ground	1-3		
	1.3	Clock			
	1.5	External Memory Expansion Port (Port A)	1-4		
	1.6	Interrupt and Mode Control	1-7		
	1.7	Host Interface (HI08)			
	1.8	Enhanced Synchronous Serial Interface 0 (ESSI0)	1-11		
	1.9	Enhanced Synchronous Serial Interface 1 (ESSI1)	1-12		
	1.10	Serial Communication Interface (SCI)	1-14		
	1.11	Timers	1-15		
	1.12	JTAG and OnCE Interface			
Chapter 2	Specifications				
	2.1	Maximum Ratings	2-1		
	2.3	Thermal Characteristics	2-2		
	2.4	DC Electrical Characteristics	2-2		
	2.5	AC Electrical Characteristics	2-3		
Chapter 3	Pack	aging			
	3.1	TQFP Package Description			
	3.2	TQFP Package Mechanical Drawing			
	3.3	MAP-BGA Package Description			
	3.4	MAP-BGA Package Mechanical Drawing			
Chapter 4	Design Considerations				
	4.1	Thermal Design Considerations	4-1		
	4.2	Electrical Design Considerations	4-2		
	4.3	Power Consumption Considerations			
	4.4	PLL Performance Issues			
	4.5	Input (EXTAL) Jitter Requirements	4-5		

Appendix A Power Consumption Benchmark

Data Sheet Conventions

OVERBARIndicates a signal that is active when pulled low (For example, the RESET pin is active when
low.)"asserted"Means that a high true (active high) signal is high or that a low true (active low) signal is low
"deasserted""deasserted"Means that a high true (active high) signal is low or that a low true (active low) signal is high

Examples:	Signal/Symbol	Logic State	Signal State	Voltage
	PIN	True	Asserted	V _{IL} /V _{OL}
	PIN	False	Deasserted	V_{IH}/V_{OH}
	PIN	True	Asserted	V_{IH}/V_{OH}
	PIN	False	Deasserted	V_{IL}/V_{OL}

Note: Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

Features

 Table 1 lists the features of the DSP56309 device.

	Table 1.	DSP56309	Features
--	----------	----------	----------

Feature	Description				
High-Performance DSP56300 Core	 100 million multiply-accumulates per second (MMACS) with a 100 MHz clock at 3.3 V nominal Data arithmetic logic unit (Data ALU) with fully pipelined 24 × 24-bit parallel multiplier-accumulator (MAC), 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing), conditional ALU instructions, and 24-bit or 16-bit arithmetic support under software control Program control unit (PCU) with position-independent code (PIC) support, addressing modes optimized for DSP applications (including immediate offsets), internal instruction cache controller, internal memory-expandable hardware stack, nested hardware DO loops, and fast auto-return interrupts Direct memory access (DMA) with six DMA channels supporting internal and external accesses; one-, two-and three-dimensional transfers (including circular buffering); end-of-block-transfer interrupts; and triggering from interrupt lines and all peripherals Phase-lock loop (PLL) allows change of low-power divide factor (DF) without loss of lock and output clock with skew elimination Hardware debugging support including On-Chip Emulation (OnCE^c) module, Joint Test Action Group (JTAG) test access port (TAP) 				
Internal Peripherals	 Enhanced 8-bit parallel host interface (HI08) supports a variety of buses (for example, ISA) and provides glueless connection to a number of industry-standard microcomputers, microprocessors, and DSPs Two enhanced synchronous serial interfaces (ESSI), each with one receiver and three transmitters (allows six-channel home theater) Serial communications interface (SCI) with baud rate generator Triple timer module Up to thirty-four programmable general-purpose input/output (GPIO) pins, depending on which peripherals are enabled 				
Internal Memories					Switch Mode disabled disabled enabled
External Memory Expansion	 Data memory expansion to two 256 K × 24-bit word memory spaces using the standard external address lines Program memory expansion to one 256 K × 24-bit words memory space using the standard external address lines External memory expansion port Chip select logic for glueless interface to static random access memory (SRAMs) Internal DRAM Controller for glueless interface to dynamic random access memory (DRAMs) 				
Power Dissipation	 Very low-power CMOS design Wait and Stop low-power standby modes Fully static design specified to operate down to 0 Hz (dc) Optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode-dependent) 				
Packaging	 144-pin TQFP package in lead-free or lead-bearing versions 196-pin molded array plastic-ball grid array (MAP-BGA) package in lead-free or lead-bearing versions 				

Target Applications

The DSP56309 is intended for applications benefiting from a large amount of internal memory, such as wireless infrastructure applications.

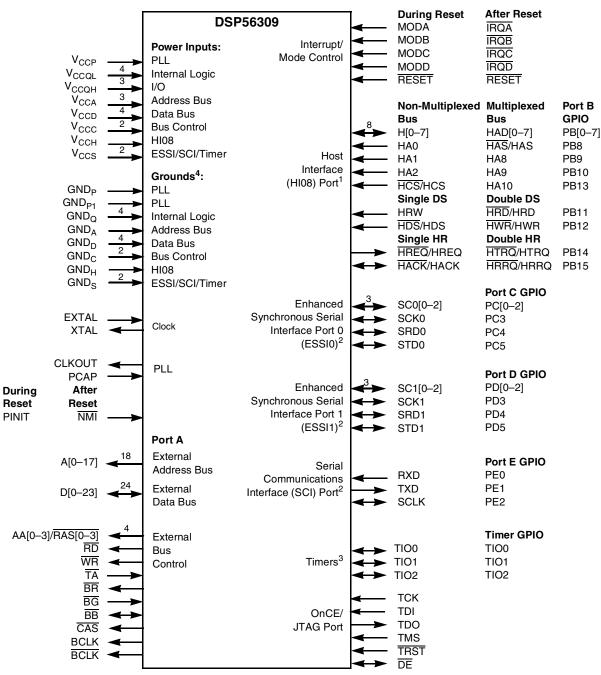
Product Documentation

The documents listed in **Table 2** are required for a complete description of the DSP56309 device and are necessary to design properly with the part. Documentation is available from a local Freescale distributor, a Freescale semiconductor sales office, or a Freescale Semiconductor Literature Distribution Center. For documentation updates, visit the Freescale DSP website. See the contact information on the back cover of this document.

Name	Description	Order Number
DSP56309 User's Manual	Detailed functional description of the DSP56309 memory configuration, operation, and register programming	DSP56309UM
DSP56300 Family Manual	Detailed description of the DSP56300 family processor core and instruction set	DSP56300FM
Application Notes	Documents describing specific applications or optimized device operation including code examples	See the DSP56309 product website

Table 2. DSP56309 Documentation

Signals/Connections


The DSP56309 input and output signals are organized into functional groups as shown in **Table 1-1**. **Figure 1-1** diagrams the DSP56309 signals by functional group. The remainder of this chapter describes the signal pins in each functional group.

	Europhicanal Oregon		Number	of Signals
	Functional Group		TQFP	MAP-BGA
Power (V _{CC})			20	20
Ground (GN)		19	66
Clock			2	2
PLL			3	3
Address bus			18	18
Data bus		Port A ¹	24	24
Bus control			13	13
Interrupt and	mode control		5	5
Host interface (HI08) Port B ²		16	16	
Enhanced synchronous serial interface (ESSI) Ports C and D ³		12	12	
Serial communication interface (SCI) Port E ⁴			3	3
Timer			3	3
OnCE/JTAG	Port		6	6
Notes: 1. 2. 3. 4. 5.	Port A signals define the external memory interface port, including the Port B signals are the HI08 port signals multiplexed with the GPIO si Port C and D signals are the two ESSI port signals multiplexed with the Port E signals are the SCI port signals multiplexed with the GPIO sig There are 2 signal connections in the TQFP package and 7 signal co These are designated as no connect (NC) in the package description	gnals. the GPIO signals. Inals. onnections in the MAP-Bo		Ū

Table 1-1.	DSP56309 Functional Signal Groupings
------------	--------------------------------------

Note: This chapter refers to a number of configuration registers used to select individual multiplexed signal functionality. Refer to the *DSP56309 User's Manual* for details on these configuration registers.

Signals/Connections

Notes: 1. The HI08 port supports a non-multiplexed or a multiplexed bus, single or double Data Strobe (DS), and single or double Host Request (HR) configurations. Since each of these modes is configured independently, any combination of these modes is possible. These HI08 signals can also be configured alternatively as GPIO signals (PB[0–15]). Signals with dual designations (for example, HAS/HAS) have configurable polarity.

- The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC[0-5]), Port D GPIO signals (PD[0-5]), and Port E GPIO signals (PE[0-2]), respectively.
- 3. TIO[0–2] can be configured as GPIO signals.
- 4. Ground connections shown in this figure are for the TQFP package. In the MAP-BGA package, in addition to the GND_P and GND_{P1} connections, there are 64 GND connections to a common internal package ground plane.

Figure 1-1. Signals Identified by Functional Group

1.1 Power

Table 1-2.	Power Inputs
------------	--------------

Power Name	Description
V _{CCP}	PLL Power —V _{CC} dedicated for PLL use. The voltage should be well-regulated and the input should be provided with an extremely low impedance path to the V _{CC} power rail.
V _{CCQL}	Quiet Power (core)—An isolated power for the core processing logic. This input must be isolated externally from all other chip power inputs.
V _{CCQH}	Quiet External (High) Power—A quiet power source for I/O lines. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCA}	Address Bus Power—An isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCD}	Data Bus Power—An isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCC}	Bus Control Power—An isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCH}	Host Power—An isolated power for the HI08 I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCS}	ESSI, SCI, and Timer Power —An isolated power for the ESSI, SCI, and timer I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
Note: The user m	ust provide adequate external decoupling capacitors for all power connections.

1.2 Ground

Table 1-3	B. Grou	nds ¹

Ground Name	Description	
GND _P	PLL Ground —Ground-dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground. V_{CCP} should be bypassed to GND _P by a 0.47 μ F capacitor located as close as possible to the chip package.	
GND _{P1}	PLL Ground 1—Ground-dedicated for PLL use. The connection should be provided with an extremely low-impedance path to ground.	
GND _Q ²	Quiet Ground —An isolated ground for the internal processing logic. This connection must be tied externally to all other chip ground connections, except GND _P and GND _{P1} . The user must provide adequate external decoupling capacitors.	
GND _A ²	Address Bus Ground—An isolated ground for sections of the address bus I/O drivers. This connection must be tied externally to all other chip ground connections, except GND _P and GND _{P1} . The user must provide adequate external decoupling capacitors.	
GND _D ²	Data Bus Ground —An isolated ground for sections of the data bus I/O drivers. This connection must be tied externally to all other chip ground connections, except GND _P and GND _{P1} . The user must provide adequate external decoupling capacitors.	
GND _C ²	Bus Control Ground —An isolated ground for the bus control I/O drivers. This connection must be tied externally to all other chip ground connections, except GND _P and GND _{P1} . The user must provide adequate external decoupling capacitors.	
GND _H ²	Host Ground —An isolated ground for the HI08 I/O drivers. This connection must be tied externally to all other chip ground connections, except GND _P and GND _{P1} . The user must provide adequate external decoupling capacitors.	
GND _S ²	ESSI, SCI, and Timer Ground —An isolated ground for the ESSI, SCI, and timer I/O drivers. This connection must be tied externally to all other chip ground connections, except GND _P and GND _{P1} . The user must provide adequate external decoupling capacitors.	
GND ³	Ground—Connected to an internal device ground plane.	
2. Th	e user must provide adequate external decoupling capacitors for all GND connections. ese connections are only used on the TQFP package. ese connections are common grounds used on the MAP-BGA package.	

1.3 Clock

Table 1-4.	Clock Signals
------------	---------------

Signal Name	Туре	State During Reset	Signal Description
EXTAL	Input	Input	External Clock/Crystal Input—Interfaces the internal crystal oscillator input to an external crystal or an external clock.
XTAL	Output	Chip-driven	Crystal Output —Connects the internal crystal oscillator output to an external crystal. If an external clock is used, leave XTAL unconnected.

1.4 PLL

Signal Name	Туре	State During Reset	Signal Description
CLKOUT	Output	Chip-driven	Clock Output —Provides an output clock synchronized to the internal core clock phase.
			If the PLL is enabled and both the multiplication and division factors equal one, then CLKOUT is also synchronized to EXTAL.
			If the PLL is disabled, the CLKOUT frequency is half the frequency of EXTAL.
PCAP	Input	Input	PLL Capacitor —An input connecting an off-chip capacitor to the PLL filter. Connect one capacitor terminal to PCAP and the other terminal to V_{CCP} .
			If the PLL is not used, PCAP can be tied to V_{CC} , GND, or left floating.
PINIT	Input	Input	PLL Initial —During assertion of RESET, the value of PINIT is written into the PLL enable (PEN) bit of the PLL control (PCTL) register, determining whether the PLL is enabled or disabled.
NMI	Input		Nonmaskable Interrupt —After RESET deassertion and during normal instruction processing, this Schmitt-trigger input is the negative-edge-triggered NMI request internally synchronized to CLKOUT.
			Note: PINIT/NMI can tolerate 5 V.

 Table 1-5.
 Phase-Locked Loop Signals

1.5 External Memory Expansion Port (Port A)

Note: When the DSP56309 enters a low-power standby mode (stop or wait), it releases bus mastership and tristates the relevant Port A signals: A[0–17], D[0–23], AA0/RAS0–AA3/RAS3, RD, WR, BB, CAS.

1.5.1 External Address Bus

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
A[0-17]	Output	Tri-stated	Address Bus—When the DSP is the bus master, A[0–17] are active-high outputs that specify the address for external program and data memory accesses. Otherwise, the signals are tri-stated. To minimize power dissipation, A[0–17] do not change state when external memory spaces are not being accessed.

Table 1-6.	External	Address	Bus	Signals
				e.g

1.5.2 External Data Bus

Table 1-7.	External Data Bus Signals
------------	---------------------------

Signal Name	Туре	State During Reset	State During Stop or Wait	Signal Description
D[0-23]	Input/ Output	Ignored Input	Last state: <i>Input</i> : Ignored <i>Output</i> : Tri-stated	Data Bus —When the DSP is the bus master, D[0–23] are active-high, bidirectional input/outputs that provide the bidirectional data bus for external program and data memory accesses. Otherwise, D[0–23] are tri-stated.

1.5.3 External Bus Control

Table 1-8.	External Bus	Control Signals
------------	--------------	------------------------

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
AA[0-3]	Output	Tri-stated	Address Attribute—When defined as AA, these signals can be used as chip selects or additional address lines. The default use defines a priority scheme under which only one AA signal can be asserted at a time. Setting the AA priority disable (APD) bit (Bit 14) of the Operating Mode Register, the priority mechanism is disabled and the lines can be used together as four external lines that can be decoded externally into 16 chip select signals.
RAS[0-3]	Output		Row Address Strobe —When defined as RAS, these signals can be used as RAS for DRAM interface. These signals are tri-statable outputs with programmable polarity.
RD	Output	Tri-stated	Read Enable —When the DSP is the bus master, \overline{RD} is an active-low output that is asserted to read external memory on the data bus (D[0–23]). Otherwise, \overline{RD} is tristated.
WR	Output	Tri-stated	Write Enable —When the DSP is the bus master, \overline{WR} is an active-low output that is asserted to write external memory on the data bus (D[0–23]). Otherwise, the signals are tri-stated.
ΤΑ	Input	Ignored Input	Transfer Acknowledge —If the DSP56309 is the bus master and there is no external bus activity, or the DSP56309 is not the bus master, the TA input is ignored. The TA input is a data transfer acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2 infinity) can be added to the wait states inserted by the bus control register (BCR) by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is asserted synchronous to CLKOUT. The number of wait states is determined by the TA input or by the BCR, whichever is longer. The BCR can be used to set the minimum number of wait states in external bus cycles. To use the TA functionality, the BCR must be programmed to at least one wait state. A zero wait state access cannot be extended by TA deassertion; otherwise, improper operation may result. TA can operate synchronously or asynchronously depending on the setting of the TAS bit in the Operating Mode Register. TA functionality cannot be used during DRAM type accesses; otherwise improper operation may result.
BR	Output	Reset: Output (deasserted) State during Stop/Wait depends on BRH bit setting: • BRH = 0: Output, deasserted • BRH = 1: Maintains last state (that is, if asserted, remains asserted)	Bus Request —Asserted when the DSP requests bus mastership. \overline{BR} is deasserted when the DSP no longer needs the bus. \overline{BR} may be asserted or deasserted independently of whether the DSP56309 is a bus master or a bus slave. Bus "parking" allows \overline{BR} to be deasserted even though the DSP56309 is the bus master. (See the description of bus "parking" in the \overline{BB} signal description.) The bus request hold (BRH) bit in the BCR allows \overline{BR} to be asserted under software control even though the DSP does not need the bus. \overline{BR} is typically sent to an external bus arbitrator that controls the priority, parking, and tenure of each master on the same external bus. \overline{BR} is affected only by DSP requests for the external bus, never for the internal bus. During hardware reset, \overline{BR} is deasserted and the arbitration is reset to the bus slave state.

Signals/Connections

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
BG	Input	Ignored Input	Bus Grant —Asserted by an external bus arbitration circuit when the DSP56309 becomes the next bus master. When \overrightarrow{BG} is asserted, the DSP56309 must wait until \overrightarrow{BB} is deasserted before taking bus mastership. When \overrightarrow{BG} is deasserted, bus mastership is typically given up at the end of the current bus cycle. This may occur in the middle of an instruction that requires more than one external bus cycle for execution.
			The default operation of this bit requires a setup and hold time as specified in Table 2-14 . An alternate mode can be invoked: set the asynchronous bus arbitration enable (ABE) bit (Bit 13) in the Operating Mode Register. When this bit is set, \overline{BG} and \overline{BB} are synchronized internally. This eliminates the respective setup and hold time requirements but adds a required delay between the deassertion of an initial \overline{BG} input and the assertion of a subsequent \overline{BG} input.
BB	Input/ Output	Ignored Input	Bus Busy —Indicates that the bus is active. Only after \overline{BB} is deasserted can the pending bus master become the bus master (and then assert the signal again). The bus master may keep \overline{BB} asserted after ceasing bus activity regardless of whether \overline{BR} is asserted or deasserted. Called "bus parking," this allows the current bus master to reuse the bus without rearbitration until another device requires the bus. \overline{BB} is deasserted by an "active pull-up" method (that is, \overline{BB} is driven high and then released and held high by an external pull-up resistor).
			The default operation of this signal requires a setup and hold time as specified in Table 2-14 . An alternative mode can be invoked by setting the ABE bit (Bit 13) in the Operating Mode Register. When this bit is set, BG and BB are synchronized internally. See BG for additional information.
CAS	Output	Tri-stated	Column Address Strobe —When the DSP is the bus master, <u>CAS</u> is an active-low output used by DRAM to strobe the column address. Otherwise, if the Bus Mastership Enable (BME) bit in the DRAM control register is cleared, the signal is tri-stated.
BCLK	Output	Tri-stated	Bus Clock When the DSP is the bus master, BCLK is active when the Operating Mode Register Address Trace Enable bit is set. When BCLK is active and synchronized to CLKOUT by the internal PLL, BCLK precedes CLKOUT by one-fourth of a clock cycle.
BCLK	Output	Tri-stated	Bus Clock Not When the DSP is the bus master, BCLK is the inverse of the BCLK signal. Otherwise, the signal is tri-stated.

Table 1-8. External Bus Control Signals (Continued)

Interrupt and Mode Control

1.6 Interrupt and Mode Control

The interrupt and mode control signals select the chip operating mode as it comes out of hardware reset. After RESET is deasserted, these inputs are hardware interrupt request lines.

Signal Name	Туре	State During Reset	Signal Description	
RESET	Input	Schmitt-trigger Input	Reset —Places the chip in the Reset state and resets the internal phase generator. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted after powerup.	
MODA	Input	Schmitt-trigger Input	Mode Select A —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.	
ĪRQA	Input		External Interrupt Request A —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the STOP or WAIT standby state and IRQA is asserted, the processor exits the STOP or WAIT state.	
MODB	Input	Schmitt-trigger Input	Mode Select B —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.	
ĪRQB	Input		External Interrupt Request B —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQB is asserted, the processor exits the WAIT state.	
MODC	Input	Schmitt-trigger Input	Mode Select C —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.	
IRQC	Input		External Interrupt Request C —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQC is asserted, the processor exits the WAIT state.	
MODD	Input	Schmitt-trigger Input	Mode Select D —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.	
IRQD	Input		External Interrupt Request D —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQD is asserted, the processor exits the WAIT state.	
Note: These signals are all 5 V tolerant.				

Table 1-9. Interrupt and Mode Control

1.7 Host Interface (HI08)

The HI08 provides a fast, 8-bit, parallel data port that connects directly to the host bus. The HI08 supports a variety of standard buses and connects directly to a number of industry-standard microcomputers, microprocessors, DSPs, and DMA hardware.

1.7.1 Host Port Usage Considerations

Careful synchronization is required when the system reads multiple-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected (as they are in the Host port). The considerations for proper operation are discussed in **Table 1-10**.

Action	Description
Asynchronous read of receive byte registers	When reading the receive byte registers, Receive register High (RXH), Receive register Middle (RXM), or Receive register Low (RXL), the host interface programmer should use interrupts or poll the Receive register Data Full (RXDF) flag that indicates data is available. This assures that the data in the receive byte registers is valid.
Asynchronous write to transmit byte registers	The host interface programmer should not write to the transmit byte registers, Transmit register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data Empty (TXDE) bit is set indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers transfer valid data to the Host Receive (HRX) register.
Asynchronous write to host vector	The host interface programmer must change the Host Vector (HV) register only when the Host Command bit (HC) is clear. This practice guarantees that the DSP interrupt control logic receives a stable vector.

 Table 1-10.
 Host Port Usage Considerations

1.7.2 Host Port Configuration

HI08 signal functions vary according to the programmed configuration of the interface as determined by the 16 bits in the HI08 Port Control Register.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
H[0-7]	Input/Output	Ignored Input	Host Data —When the HI08 is programmed to interface with a non-multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the bidirectional Data bus.
HAD[0-7]	Input/Output		Host Address —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the bidirectional multiplexed Address/Data bus.
PB[0–7]	Input or Output		Port B 0–7 —When the HI08 is configured as GPIO through the HI08 Port Control Register, these signals are individually programmed as inputs or outputs through the HI08 Data Direction Register.

Table 1-11.Host Interface

Host Interface (HI08)

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
HAO	Input	Ignored Input	Host Address Input 0 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 0 of the host address input bus.
HAS/HAS	Input		Host Address Strobe —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is the host address strobe (HAS) Schmitt-trigger input. The polarity of the address strobe is programmable but is configured active-low (HAS) following reset.
PB8	Input or Output		Port B 8 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HA1	Input	Ignored Input	Host Address Input 1 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 1 of the host address (HA1) input bus.
HA8	Input		Host Address 8 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 8 of the host address (HA8) input bus.
PB9	Input or Output		Port B 9 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HA2	Input	Ignored Input	Host Address Input 2 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 2 of the host address (HA2) input bus.
HA9	Input		Host Address 9 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 9 of the host address (HA9) input bus.
PB10	Input or Output		Port B 10 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HCS/HCS	Input	Ignored Input	Host Chip Select —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is the host chip select (HCS) input. The polarity of the chip select is programmable but is configured active-low (HCS) after reset.
HA10	Input		Host Address 10 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 10 of the host address (HA10) input bus.
PB13	Input or Output		Port B 13 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HRW	Input	Ignored Input	Host Read/Write —When the HI08 is programmed to interface with a single- data-strobe host bus and the HI function is selected, this signal is the Host Read/Write (HRW) input.
HRD/HRD	Input		Host Read Data —When the HI08 is programmed to interface with a double- data-strobe host bus and the HI function is selected, this signal is the HRD strobe Schmitt-trigger input. The polarity of the data strobe is programmable but is configured as active-low (HRD) after reset.
PB11	Input or Output		Port B 11 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.

Table 1-11.	Host Interface	(Continued)
-------------	----------------	-------------

Signals/Connections

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
HDS/HDS	Input	Ignored Input	Host Data Strobe —When the HI08 is programmed to interface with a single- data-strobe host bus and the HI function is selected, this signal is the host data strobe (HDS) Schmitt-trigger input. The polarity of the data strobe is programmable but is configured as active-low (HDS) following reset.
HWR/HWR	Input		Host Write Data —When the HI08 is programmed to interface with a double- data-strobe host bus and the HI function is selected, this signal is the host write data strobe (HWR) Schmitt-trigger input. The polarity of the data strobe is programmable but is configured as active-low (HWR) following reset.
PB12	Input or Output		Port B 12 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HREQ/HREQ	Output	Ignored Input	Host Request —When the HI08 is programmed to interface with a single host request host bus and the HI function is selected, this signal is the host request (HREQ) output. The polarity of the host request is programmable but is configured as active-low (HREQ) following reset. The host request may be programmed as a driven or open-drain output.
HTRQ/HTRQ	Output		Transmit Host Request —When the HI08 is programmed to interface with a double host request host bus and the HI function is selected, this signal is the transmit host request (HTRQ) output. The polarity of the host request is programmable but is configured as active-low (HTRQ) following reset. The host request may be programmed as a driven or open-drain output.
PB14	Input or Output		Port B 14 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HACK/HACK	Input	Ignored Input	Host Acknowledge —When the HI08 is programmed to interface with a single host request host bus and the HI function is selected, this signal is the host acknowledge (HACK) Schmitt-trigger input. The polarity of the host acknowledge is programmable but is configured as active-low (HACK) after reset.
HRRQ/HRRQ	Output		Receive Host Request —When the HI08 is programmed to interface with a double host request host bus and the HI function is selected, this signal is the receive host request (HRRQ) output. The polarity of the host request is programmable but is configured as active-low (HRRQ) after reset. The host request may be programmed as a driven or open-drain output.
PB15	Input or Output		Port B 15 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
• If t • If t 2. The	he Stop state, the sig he last state is input, he last state is outpu Wait processing stat nputs are 5 V toleran	the signal is an igno t, the signal is tri-sta te does not affect the	ored input. ted.

Table 1-11. Host Interface (Continued)

1.8 Enhanced Synchronous Serial Interface 0 (ESSI0)

Two synchronous serial interfaces (ESSI0 and ESSI1) provide a full-duplex serial port for serial communication with a variety of serial devices, including one or more industry-standard codecs, other DSPs, microprocessors, and peripherals that implement the serial peripheral interface (SPI).

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC00	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.
PC0	Input or Output		Port C 0 —The default configuration following reset is GPIO input PC0. When configured as PC0, signal direction is controlled through the Port C Direction Register. The signal can be configured as ESSI signal SC00 through the Port C Control Register.
SC01	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for transmitter 2 output or for serial I/O flag 1.
PC1	Input or Output		Port C 1 —The default configuration following reset is GPIO input PC1. When configured as PC1, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC01 through the Port C Control Register.
SC02	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode, and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PC2	Input or Output		Port C 2 —The default configuration following reset is GPIO input PC2. When configured as PC2, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC02 through the Port C Control Register.
SCK0	Input/Output	Ignored Input	Serial Clock —Provides the serial bit rate clock for the ESSI. The SCK0 is a clock input or output, used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PC3	Input or Output		Port C 3 —The default configuration following reset is GPIO input PC3. When configured as PC3, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SCK0 through the Port C Control Register.
SRD0	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD0 is an input when data is received.
PC4	Input or Output		Port C 4 —The default configuration following reset is GPIO input PC4. When configured as PC4, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SRD0 through the Port C Control Register.

 Table 1-12.
 Enhanced Synchronous Serial Interface 0

Signals/Connections

Signal Nam	ne Type	State During Reset ^{1,2}	Signal Description		
STD0	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD0 is an output when data is transmitted.		
PC5	Input or Output	nput or Output Port C 5—The default configuration following reset is GPIO input PC5. When configured as PC5, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal STD0 through the Port C Control Register.			
2.	 In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, the signal is tri-stated. The Wait processing state does not affect the signal state. 				

Table 1-12. Enhanced Synchronous Serial Interface 0 (Continued)

1.9 Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC10	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.
PDO	Input or Output		Port D 0 —The default configuration following reset is GPIO input PD0. When configured as PD0, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC10 through the Port D Control Register.
SC11	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.
PD1	Input or Output		Port D 1 —The default configuration following reset is GPIO input PD1. When configured as PD1, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC11 through the Port D Control Register.
SC12	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PD2	Input or Output		Port D 2 —The default configuration following reset is GPIO input PD2. When configured as PD2, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC12 through the Port D Control Register.

 Table 1-13.
 Enhanced Serial Synchronous Interface 1

Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SCK1	Input/Output	Ignored Input	Serial Clock —Provides the serial bit rate clock for the ESSI. The SCK1 is a clock input or output used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PD3	Input or Output		Port D 3 —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SCK1 through the Port D Control Register.
SRD1	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD1 is an input when data is being received.
PD4	Input or Output		Port D 4 —The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SRD1 through the Port D Control Register.
STD1	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD1 is an output when data is being transmitted.
PD5	Input or Output		Port D 5 —The default configuration following reset is GPIO input PD5. When configured as PD5, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal STD1 through the Port D Control Register.
• If t • If t 2. The	he Stop state, the sig he last state is input, he last state is outpu Wait processing stat nputs are 5 V toleran	the signal is an igno t, the signal is tri-sta te does not affect the	ored input. ted.

 Table 1-13.
 Enhanced Serial Synchronous Interface 1 (Continued)

Signals/Connections

1.10 Serial Communication Interface (SCI)

The SCI provides a full duplex port for serial communication with other DSPs, microprocessors, or peripherals such as modems.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
RXD	Input	Ignored Input	Serial Receive Data—Receives byte-oriented serial data and transfers it to the SCI Receive Shift Register.
PEO	Input or Output		Port E 0 —The default configuration following reset is GPIO input PE0. When configured as PE0, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal RXD through the Port E Control Register.
TXD	Output	Ignored Input	Serial Transmit Data—Transmits data from the SCI Transmit Data Register.
PE1	Input or Output		Port E 1 —The default configuration following reset is GPIO input PE1. When configured as PE1, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal TXD through the Port E Control Register.
SCLK	Input/Output	Ignored Input	Serial Clock —Provides the input or output clock used by the transmitter and/or the receiver.
PE2	Input or Output		Port E 2 —The default configuration following reset is GPIO input PE2. When configured as PE2, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal SCLK through the Port E Control Register.
• If • If 2. The	he Stop state, the sig the last state is input, the last state is outpu wait processing sta inputs are 5 V toleran	the signal is an igno t, the signal is tri-sta te does not affect the	ored input. tted.

Table I-I4. Senai Communication internace	Table 1-14.	Serial Communication	Interface
---	-------------	----------------------	-----------

1.11 Timers

The DSP56309 has three identical and independent timers. Each timer can use internal or external clocking and can either interrupt the DSP56309 after a specified number of events (clocks) or signal an external device after counting a specific number of internal events.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
TIO0	Input or Output	Ignored Input	Timer 0 Schmitt-Trigger Input/Output — When Timer 0 functions as an external event counter or in measurement mode, TIO0 is used as input. When Timer 0 functions in watchdog, timer, or pulse modulation mode, TIO0 is used as output.
			The default mode after reset is GPIO input. TIO0 can be changed to output or configured as a timer I/O through the Timer 0 Control/Status Register (TCSR0).
TIO1	Input or Output	Ignored Input	Timer 1 Schmitt-Trigger Input/Output — When Timer 1 functions as an external event counter or in measurement mode, TIO1 is used as input. When Timer 1 functions in watchdog, timer, or pulse modulation mode, TIO1 is used as output.
			The default mode after reset is GPIO input. TIO1 can be changed to output or configured as a timer I/O through the Timer 1 Control/Status Register (TCSR1).
TIO2	Input or Output	Ignored Input	Timer 2 Schmitt-Trigger Input/Output — When Timer 2 functions as an external event counter or in measurement mode, TIO2 is used as input. When Timer 2 functions in watchdog, timer, or pulse modulation mode, TIO2 is used as output.
			The default mode after reset is GPIO input. TIO2 can be changed to output or configured as a timer I/O through the Timer 2 Control/Status Register (TCSR2).
 Notes: In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, the signal is tri-stated. The Wait processing state does not affect the signal state. 			

Table 1-15.	Triple Timer Signals
-------------	----------------------

3. All inputs are 5 V tolerant.

Signals/Connections

1.12 JTAG and OnCE Interface

The DSP56300 family and in particular the DSP56309 support circuit-board test strategies based on the **IEEE**® Std. 1149.1TM test access port and boundary scan architecture, the industry standard developed under the sponsorship of the Test Technology Committee of **IEEE** and the JTAG.

The OnCE module provides a means to interface nonintrusively with the DSP56300 core and its peripherals so that you can examine registers, memory, or on-chip peripherals. Functions of the OnCE module are provided through the JTAG TAP signals.

For programming models, see the chapter on debugging support in the DSP56300 Family Manual.

Signal Name	Туре	State During Reset	Signal Description
ТСК	Input	Input	Test Clock—A test clock input signal to synchronize the JTAG test logic.
TDI	Input	Input	Test Data Input —A test data serial input signal for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor.
TDO	Output	Tri-stated	Test Data Output —A test data serial output signal for test instructions and data. TDO is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK.
TMS	Input	Input	Test Mode Select —Sequences the test controller's state machine. TMS is sampled on the rising edge of TCK and has an internal pull-up resistor.
TRST	Input	Input	Test Reset —Initializes the test controller asynchronously. TRST has an internal pull-up resistor. TRST must be asserted after powerup.
DE	Input/ Output (open-drain)	Input	Debug Event —As an input, initiates Debug mode from an external command controller, and, as an open-drain output, acknowledges that the chip has entered Debug mode. As an input, DE causes the DSP56300 core to finish executing the current instruction, save the instruction pipeline information, enter Debug mode, and wait for commands to be entered from the debug serial input line. This signal is asserted as an output for three clock cycles when the chip enters Debug mode as a result of a debug request or as a result of meeting a breakpoint condition. The DE has an internal pull-up resistor. This signal is not a standard part of the JTAG TAP controller. The signal connects directly to the OnCE module to initiate debug mode directly or to provide a direct external indication that the chip has entered Debug mode. All other interface with the OnCE module must occur through the JTAG port.

Table 1-16. JTAG/OnCE Interface

Specifications

Note: The DSP56309 is fabricated in high-density CMOS with Transistor-Transistor Logic (TTL) compatible inputs and outputs. The DSP56309 specifications are preliminary and are from design simulations, and may not be fully tested or guaranteed. Finalized specifications will be published after full characterization and device qualifications are complete.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

2.2 Absolute Maximum Ratings

Rating	Symbol	Value	Unit		
Supply Voltage	V _{CC}	- 0 .3 to +4.0	V		
All input voltages excluding "5 V tolerant" inputs	V _{IN}	GND -0.3 to V _{CC} + 0.3	V		
All "5 V tolerant" input voltages ²	V _{IN5}	GND -0.3 to 5.5	V		
Current drain per pin excluding V _{CC} and GND	I	10	mA		
Operating temperature range	Т _Ј	-40 to +100	°C		
Storage temperature	T _{STG}	-55 to +150	°C		
 Notes: 1. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device. 2. At power-up, ensure that the voltage difference between the 5 V tolerant pins and the chip V_{CC} never exceeds 3.5 V. 					

Table 2-1.	Absolute Maximum Ratings	3 ¹
	, aboolato maximani natinge	-

2.3 Thermal Characteristics

Characteristic	Symbol	TQFP Value	MAP-BGA ³ Value	MAP-BGA ⁴ Value	Unit
Junction-to-ambient thermal resistance ¹	$R_{\theta JA}$ or θ_{JA}	49.3	49.4	28.5	°C/W
Junction-to-case thermal resistance ²	$R_{\theta JC}$ or θ_{JC}	8.2	12.0	_	°C/W
Thermal characterization parameter	$\Psi_{\rm JT}$	5.5	2.0	_	°C/W

Table 2-2. Thermal Characteristics

Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed circuit board per JEDEC Specification JESD51-3.

2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that the cold plate temperature is used for the case temperature.

3. These are simulated values. See note 1 for test board conditions.

4. These are simulated values. The test board has two 2-ounce signal layers and two 1-ounce solid ground planes internal to the test board.

2.4 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	3.0	3.3	3.6	V
Input high voltage • D[0–23], BG, BB, TA • MOD ¹ /IRQ ¹ , RESET, PINIT/NMI and all JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁸	V _{IH} V _{IHP} V _{IHX}	2.0 2.0 0.8 × V _{CC}		V _{CC} 5.25 V _{CC}	v v v
Input low voltage • D[0–23], BG, BB, TA, MOD ¹ /IRQ ¹ , RESET, PINIT • All JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁸	V _{IL} V _{ILP} V _{ILX}	-0.3 -0.3 -0.3		0.8 0.8 0.2 × V _{CC}	V V V
Input leakage current	I _{IN}	-10	—	10	μA
High impedance (off-state) input current (@ 2.4 V / 0.4 V)	I _{TSI}	-10	_	10	μA
Output high voltage • TTL $(I_{OH} = -0.4 \text{ mA})^{5,7}$ • CMOS $(I_{OH} = -10 \mu \text{A})^5$	V _{OH}	2.4 V _{CC} – 0.01	_ _		V V
Output low voltage • TTL (I_{OL} = 1.6 mA, open-drain pins I_{OL} = 6.7 mA) ^{5,7} • CMOS (I_{OL} = 10 µA) ⁵	V _{OL}			0.4 0.01	V V
Internal supply current ² : • In Normal mode • In Wait mode ³ • In Stop mode ⁴	I _{CCI} I _{CCW} I _{CCS}		127 7.5 100		mA mA μA
PLL supply current		—	1	2.5	mA
Input capacitance ⁵	C _{IN}	—	—	10	pF

 Table 2-3.
 DC Electrical Characteristics⁶

AC Electrical Characteristics

		Characteristics	Symbol	Min	Тур	Max	Unit			
Notes:	1. Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and MODD/IRQD pins.									
	2.	 Section 4.3 provides a formula to compute the estimated current requirements in Normal mode. In order to obtain these results, all inputs must be terminated (that is, not allowed to float). Measurements are based on synthetic intensive DSP benchmarks (see Appendix A). The power consumption numbers in this specification are 90 percent of the measured resu of this benchmark. This reflects typical DSP applications. Typical internal supply current is measured with V_{CC} = 3.3 V at T_J 100°C. 								
	3.	In order to obtain these results, all inputs must be termin	nated (that is,	not allowed to f	loat).					
	4.	In order to obtain these results, all inputs that are not disconnected at Stop mode must be terminated (that is, not allowed to float). PLL and XTAL signals are disabled during Stop state.								
	5.	Periodically sampled and not 100 percent tested.								
	6.	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{J} = -40^{\circ}\text{C} \text{ to} +100 ^{\circ}\text{C}, C_{L} = 50 \text{ pF}$								
	7.	This characteristic does not apply to XTAL and PCAP.								
	8.	Driving EXTAL to the low V _{IHX} or the high V _{ILX} value may cause additional power consumption (DC current). To minimize power consumption, the minimum V _{IHX} should be no lower than $0.9 \times V_{CC}$ and the maximum V _{ILX} should be no higher than $0.1 \times V_{CC}$.								

Table 2-3.	DC Electrical Characteristics ⁶	(Continued)
------------	--	-------------

2.5 AC Electrical Characteristics

The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in Note 6 of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50 percent point of the respective input signal transition. DSP56309 output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.4 V and 2.4 V, respectively.

Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test conditions are 15 MHz and rated speed.

2.5.1 Internal Clocks

Characteristics	Symbol	Expression ^{1, 2}				
Characteristics	Symbol	Min	Тур	Max		
Internal operation frequency and CLKOUT with PLL enabled	f	_	$(Ef \times MF)/$ (PDF × DF)	_		
Internal operation frequency and CLKOUT with PLL disabled	f	—	Ef/2	_		
 Internal clock and CLKOUT high period With PLL disabled With PLL enabled and MF ≤4 With PLL enabled and MF > 4 	Т _Н	$\begin{array}{c}\\ 0.49 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.47 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	ет _с —	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$		
 Internal clock and CLKOUT low period With PLL disabled With PLL enabled and MF ≤4 With PLL enabled and MF > 4 	TL	$\begin{array}{c} \\ 0.49 \times \text{ET}_{\text{C}} \times \\ \text{PDF} \times \text{DF/MF} \\ 0.47 \times \text{ET}_{\text{C}} \times \\ \text{PDF} \times \text{DF/MF} \end{array}$	ет _с — —	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$		
Internal clock and CLKOUT cycle time with PLL enabled	т _с	_	ET _C × PDF × DF/MF	_		

Table 2-4. Internal Clocks, CLKOUT

Specifications

Table 2-4. Internal Clocks, CLKOUT (Continued)

Characteristics	ation Cumulant		Expression ^{1, 2}			
Characteristics	Symbol	Min	Тур	Мах		
Internal clock and CLKOUT cycle time with PLL disabled	т _с	_	2 × ET _C	_		
Instruction cycle time	I _{CYC}	_	T _C	_		
 Notes: 1. DF = Division Factor; Ef = External frequency; ET_C = External clock cycle; MF = Multiplication Factor; PDF = Predivision Factor; T_C = internal clock cycle 2. See the PLL and Clock Generation section in the <i>DSP56300 Family Manual</i> for a detailed discussion of the PLL. 						

2.5.2 External Clock Operation

The DSP56309 system clock is derived from the on-chip oscillator or is externally supplied. To use the on-chip oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL; examples are shown in **Figure 2-1**.

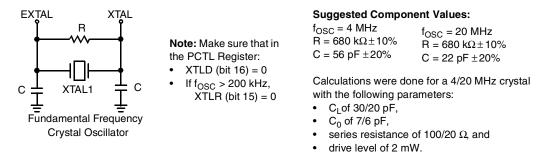


Figure 2-1. Crystal Oscillator Circuits

If an externally-supplied square wave voltage source is used, disable the internal oscillator circuit during bootup by setting XTLD (PCTL Register bit 16 = 1—see the *DSP56309 User's Manual*). The external square wave source connects to EXTAL; XTAL is not physically connected to the board or socket. **Figure 2-2** shows the relationship between the EXTAL input and the internal clock and CLKOUT.

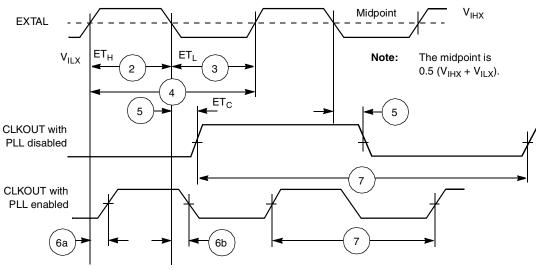


Figure 2-2. External Clock Timing

DSP56309 Technical Data, Rev. 7

AC Electrical Characteristics

No.	Characteristics		100 MHz		
NO.	Characteristics	Symbol	Min	Мах	
1	Frequency of EXTAL (EXTAL Pin Frequency) The rise and fall time of this external clock should be 3 ns maximum.	Ef	0	100.0	
2	 EXTAL input high^{1, 2} With PLL disabled (46.7%–53.3% duty cycle⁶) With PLL enabled (42.5%–57.5% duty cycle⁶) 	ET _H	4.67 ns 4.25 ns	∞ 157.0 μs	
3	 EXTAL input low^{1, 2} With PLL disabled (46.7%–53.3% duty cycle⁶) With PLL enabled (42.5%–57.5% duty cycle⁶) 	ETL	4.67 ns 4.25 ns	∞ 157.0 μs	
4	EXTAL cycle time ² With PLL disabled With PLL enabled 	ET _C	10.00 ns 10.00 ns	∞ 273.1 µs	
5	Internal clock change from EXTAL fall with PLL disabled		4.3 ns	11.0 ns	
6	a.Internal clock rising edge from EXTAL rising edge with PLL enabled (MF = 1 or 2 or 4, PDF = 1, Ef > 15 MHz)^{3,5}		0.0 ns	1.8 ns	
	b. Internal clock falling edge from EXTAL falling edge with PLL enabled (MF ${\leq}4,$ PDF ${\neq}$ 1, $~$ Ef / PDF > 15 MHz)^{3,5}		0.0 ns	1.8 ns	
7	Instruction cycle time = I _{CYC} = T _C ⁴ (see Table 2-4) (46.7%–53.3% duty cycle) • With PLL disabled • With PLL enabled	I _{CYC}	20.0 ns 10.00 ns	∞ 8.53 μs	

Table 2-5. Clock Operation

3. Periodically sampled and not 100 percent tested.

4. The maximum value for PLL enabled is given for minimum VCO frequency and maximum DF.

5. The skew is not guaranteed for any other MF value.

6. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met.

2.5.3 Phase Lock Loop (PLL) Characteristics

Table 2-6. PLL Characteristics

Characteristics	100	Unit				
	Min Max					
Voltage Controlled Oscillator (VCO) frequency when PLL enabled (MF \times E_f \times 2/PDF)	30	200	MHz			
PLL external capacitor (PCAP pin to V _{CCP}) (C _{PCAP} ¹) • @ MF ≤4 • @ MF > 4	(580 × MF) −100 830 × MF	(780 × MF) −140 1470 × MF	pF pF			
Note: C _{PCAP} is the value of the PLL capacitor (connected between the PCAP pin and V _{CCP}) computed using the appropriate expression listed above.						

2.5.4 Reset, Stop, Mode Select, and Interrupt Timing

Na	Observatoristics	Furnessien	100	MHz	Unit
No.	Characteristics	Expression	Min	Max	
8	Delay from RESET assertion to all pins at reset value ³	_		26.0	ns
9	 Required RESET duration⁴ Power on, external clock generator, PLL disabled Power on, external clock generator, PLL enabled Power on, internal oscillator During STOP, XTAL disabled (PCTL Bit 16 = 0) During STOP, XTAL enabled (PCTL Bit 16 = 1) During normal operation 	$\begin{array}{c} 50 \times \text{ET}_{\text{C}} \\ 1000 \times \text{ET}_{\text{C}} \\ 75000 \times \text{ET}_{\text{C}} \\ 75000 \times \text{ET}_{\text{C}} \\ 2.5 \times \text{T}_{\text{C}} \\ 2.5 \times \text{T}_{\text{C}} \end{array}$	500.0 10.0 0.75 0.75 25.0 25.0		ns µs ms ns ns
10	 Delay from asynchronous RESET deassertion to first external address output (internal reset deassertion)⁵ Minimum Maximum 	$3.25 \times T_{C} + 2.0$ $20.25 \times T_{C} + 10$	34.5 —	 212.5	ns ns
11	Synchronous reset set-up time from RESET deassertion to CLKOUT Transition 1 • Minimum • Maximum	T _C	5.9 —	 10.0	ns ns
12	Synchronous reset deasserted, delay time from the CLKOUT Transition 1 to the first external address output • Minimum • Maximum	$3.25 \times T_{C} + 1.0$ $20.25 \times T_{C} + 1.0$	33.5 —		ns ns
13	Mode select setup time		30.0	_	ns
14	Mode select hold time		0.0	—	ns
15	Minimum edge-triggered interrupt request assertion width		6.6	—	ns
16	Minimum edge-triggered interrupt request deassertion width		6.6	—	ns
17	 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory access address out valid Caused by first interrupt instruction fetch Caused by first interrupt instruction execution 	$4.25 \times T_{C} + 2.0$ $7.25 \times T_{C} + 2.0$	44.5 74.5	_	ns ns
18	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general- purpose transfer output valid caused by first interrupt instruction execution	10 × T _C + 5.0	105.0	_	ns
19	Delay from address output valid caused by first interrupt instruction execute to interrupt request deassertion for level sensitive fast interrupts ^{1, 7, 8}	(WS + 3.75) × T _C – 10.94	—	Note 8	ns
20	Delay from RD assertion to interrupt request deassertion for level sensitive fast interrupts ^{1, 7, 8}	$(WS + 3.25) \times T_C - 10.94$	_	Note 8	ns
21	Delay from \overline{WR} assertion to interrupt request deassertion for level sensitive fast interrupts ^{1, 7, 8} • DRAM for all WS • SRAM WS = 1 • SRAM WS = 2, 3 • SRAM WS \geq 4	$\begin{array}{l} (WS+3.5)\times T_C-10.94 \\ (WS+3.5)\times T_C-10.94 \\ (WS+3)\times T_C-10.94 \\ (WS+2.5)\times T_C-10.94 \end{array}$	 	Note 8 Note 8 Note 8 Note 8	ns ns ns ns
22	Synchronous interrupt set-up time from IRQA, IRQB, IRQC, IRQD, NMI assertion to the CLKOUT Transition 2		5.9	т _с	ns
23	Synchronous interrupt delay time from the CLKOUT Transition 2 to the first external address output valid caused by the first instruction fetch after coming out of Wait Processing state • Minimum • Maximum	8.25 × T _C + 1.0 24.75 × T _C + 5.0	83.5 —	 252.5	ns ns

Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing⁶

AC Electrical Characteristics

N	Characteristics	F ormation	100 MHz		
No.	Characteristics	Expression	Min	Max	Unit
24	Duration for IRQA assertion to recover from Stop state		5.9	_	ns
25	Delay from $\overline{\text{IRQA}}$ assertion to fetch of first instruction (when exiting Stop)^{2, 3}				
	 PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (Operating Mode Register Bit 6 = 0) 	$PLC \times ET_C \times PDF + (128 \text{ K} - PLC/2) \times T_C$	1.3	9.1	ms
	 PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (Operating Mode Register Bit 6 = 1) 	, 0	232.5 ns	12.3 ms	
	 PLL is active during Stop (PCTL Bit 17 = 1) (Implies No Stop Delay) 	$(8.25 \pm 0.5) \times T_{\rm C}$	87.5	97.5	ns
26	Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop) ^{2, 3}				
	 PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is enabled (Operating Mode Register Bit 6 = 0) 	$PLC \times ET_C \times PDF + (128K - PLC/2) \times T_C$	13.6	—	ms
	 PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not enabled (Operating Mode Register Bit 6 = 1) 	$PLC \times ET_{C} \times PDF + (20.5 \pm 0.5) \times T_{C}$	12.3	—	ms
	 PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop delay) 	$5.5 \times T_{C}$	55.0	-	ns
27	Interrupt Request Rate	Maximum:			
	HI08, ESSI, SCI, Timer	$12 \times T_C$	—	120.0	ns
	• DMA	$8 \times T_C$	—	80.0	ns
	IRQ, NMI (edge trigger) IRQ, NMI (level trigger)	8 × T _C 12 × T _C	_	80.0 120.0	ns ns
28	DMA Request Rate	Maximum:		120.0	113
20	Data read from HI08, ESSI, SCI	6 × T _C	_	60.0	ns
	Data write to HI08, ESSI, SCI	$7 \times T_{C}$	_	70.0	ns
	• Timer	$2 \times T_{\rm C}$	—	20.0	ns
	IRQ, NMI (edge trigger)	$3 \times T_C$	—	30.0	ns
29	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external	Minimum:			
	memory (DMA source) access address out valid	$4.25 \times T_{C}$ + 2.0	30.3	—	ns

Table 2-7.	Reset, Stop, Mode Select, and Interrupt Timing ⁶	(Continued)
Table 2-7.	Reset, Stop, Mode Select, and Interrupt Timing ^o	(Continu

Specifications

 Table 2-7.
 Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

N-		Characteristics	F arman share	100 MHz		11		
No.			Expression	Min	Max	Unit		
Notes:	1.	prevent multiple interrupt service. To avoid these timing restrictions, the deasserted Edge-triggered mode is recommended						
	2.	 when fast interrupts are used. Long interrupts are recommended for Level-sensitive mode. This timing depends on several settings: For PLL disable, using internal oscillator (PLL Control Register (PCTL) Bit 16 = 0) and oscillator disabled during Stop (PCTL Bit 17 = 0), a stabilization delay is required to assure that the oscillator is stable before programs are executed. Resetting the Stop delay (Operating Mode Register Bit 6 = 0) provides the proper delay. While Operating Mode Register Bit 6 = 1 can be set, it is not recommended, and these specifications do not guarantee timings for that case. For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and oscillator enabled during Stop (PCTL Bit 17=1), no stabilization delay is required and recovery is minimal (Operating Mode Register Bit 6 setting is ignored). For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required mode Register Bit 6 settings. For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the PLL to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000 cycles. This procedure occurs in parallel with the stop delay counter, and stop recovery ends when the last of these two events occurs. The stop delay counter completes count or PLL lock procedure completion. PLC value for PLL disable is 0. The maximum value for ET_C is 4096 (maximum MF) divided by the desired internal frequency (that is, for 66 MHz it is 4096/66 MHz = 62 µs). During the stabilization period, T_C, T_H, and T_L is not constant, and their width may vary, so timing may vary as well. 						
	3.	Periodically sampled and not 100 percent tested.						
	4.	 Value depends on clock source: For an external clock generator, RESET duration is measured while RESET is asserted, V_{CC} is valid, and the EXTAL input is active and valid. For an internal oscillator, RESET duration is measured while RESET is asserted and V_{CC} is valid. The specified timing 						
		 reflects the crystal oscillator stabilization time after power-up. This number is affected both by the specifications of the crystal and other components connected to the oscillator and reflects worst case conditions. When the V_{CC} is valid, but the other "required RESET duration" conditions (as specified above) have not been yet met, the device circuitry is in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to the shortest possible duration. 						
	5.	·						
	6.							
	7.	WS = number of wait states (measured in clock cycles, number of T_C).						
	8.	Use the expression to compute a maximum value.						

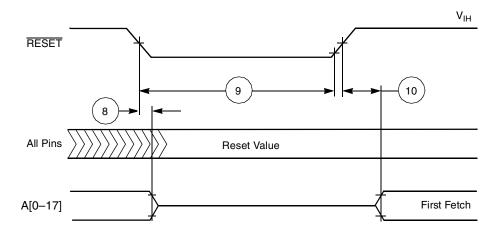
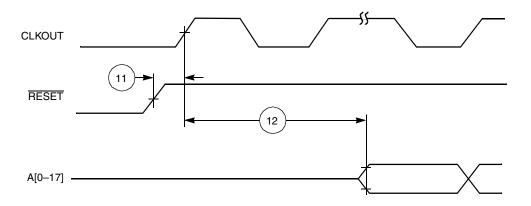
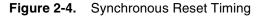
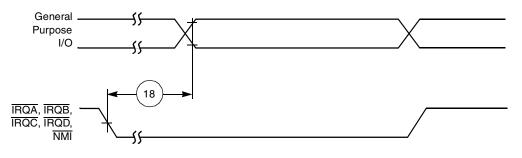
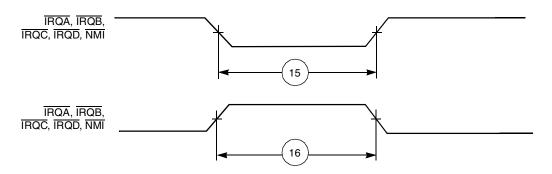




Figure 2-3. Reset Timing


AC Electrical Characteristics


a) First Interrupt Instruction Execution

b) General-Purpose I/O

Figure 2-5. External Fast Interrupt Timing

Specifications

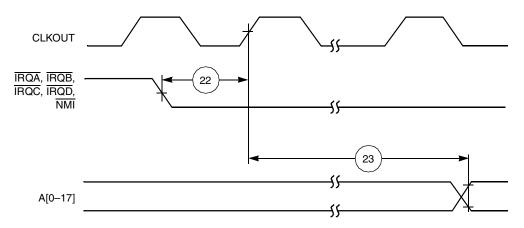
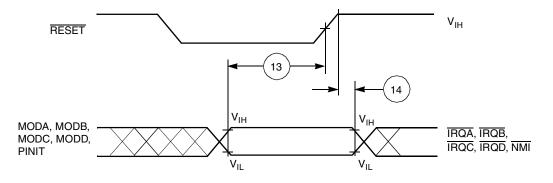
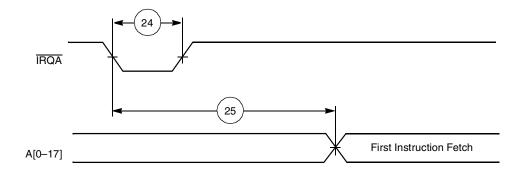
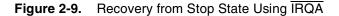
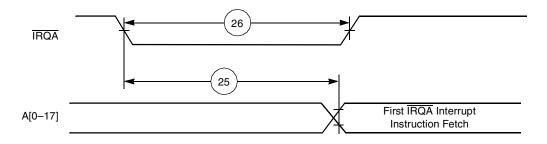
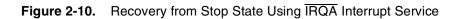


Figure 2-7. Synchronous Interrupt from Wait State Timing


Figure 2-8. Operating Mode Select Timing

AC Electrical Characteristics

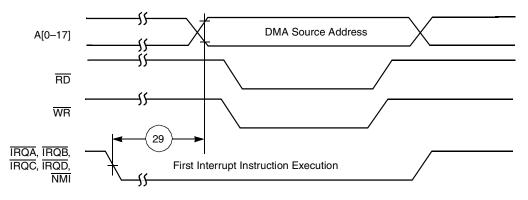


Figure 2-11. External Memory Access (DMA Source) Timing

2.5.5 External Memory Expansion Port (Port A)

2.5.5.1 SRAM Timing

Na	Characteristics	Cumhal	F	100	Unit	
No.		Symbol	Expression ¹	Min	Max	Unit
100	Address valid and AA assertion pulse width ²	t _{RC} , t _{WC}	$(WS + 1) \times T_{C} - 4.0$ [1 ≤WS ≤3] (WS + 2) × T_{C} - 4.0	16.0 56.0	_	ns ns
			$[4 \le WS \le 7]$ (WS + 3) × T _C -4.0 [WS ≥ 8]	106.0	_	ns
101	Address and AA valid to \overline{WR} assertion	t _{AS}	$0.25 \times T_{C} - 2.0$ [WS = 1]	0.5	—	ns
			0.75 × T _C −2.0 [2 ≤WS ≤3]	5.5	—	ns
			$1.25 \times T_{C} - 2.0$ [WS ≥ 4]	10.5	—	ns
102	WR assertion pulse width	t _{WP}	$1.5 \times T_{C} - 4.0$ [WS = 1]	11.0	—	ns
			WS × T _C −4.0 [2 ≤WS ≤3]	16.0	—	ns
			$\begin{array}{c} (\text{WS}-0.5)\times \text{T}_{\text{C}}-4.0\\ [\text{WS}\geq 4] \end{array}$	31.0	—	ns
103	WR deassertion to address not valid	t _{WR}	0.25 × T _C −2.0 [1 ≤WS ≤3]	0.5	-	ns
			1.25 × T _C −4.0 [4 ≤WS ≤7]	8.5	—	ns
			$\begin{array}{c} 2.25 \times T_{C}-4.0\\ [WS \geq 8] \end{array}$	18.5	—	ns
104	Address and AA valid to input data valid	t _{AA} , t _{AC}	$\begin{array}{l} (\text{WS + 0.75)} \times \text{T}_{\text{C}} - 5.0 \\ [\text{WS} \geq 1] \end{array}$	-	12.5	ns
105	RD assertion to input data valid	t _{OE}	$\begin{array}{l} (\text{WS} + 0.25) \times \text{T}_{\text{C}} - 5.0 \\ [\text{WS} \geq 1] \end{array}$	-	7.5	ns
106	RD deassertion to data not valid (data hold time)	t _{OHZ}		0.0	_	ns
107	Address valid to WR deassertion ²	t _{AW}	$\begin{array}{l} (\text{WS} + 0.75) \times \text{T}_{\text{C}} - 4.0 \\ [\text{WS} \geq 1] \end{array}$	13.5	—	ns
108	Data valid to \overline{WR} deassertion (data setup time)	t _{DS} (t _{DW})	$\begin{array}{c} (\text{WS}-0.25)\times\text{T}_{\text{C}}-3.0\\ [\text{WS}\geq1] \end{array}$	4.5	—	ns
109	Data hold time from \overline{WR} deassertion	t _{DH}	0.25 × T _C −2.0 [1 ≤WS ≤3]	0.5	—	ns
			1.25 × T _C −2.0 [4 ≤WS ≤7]	10.5	-	ns
			$2.25 \times T_{C} - 2.0$ [WS ≥ 8]	20.5	_	ns
110	WR assertion to data active	—	0.75 × T _C –3.7 [WS = 1]	3.8	_	ns
			0.25 × T _C – 3.7 [2 ⊴WS ≤3]	-1.2	-	ns
			-0.25 × T _C -3.7 [WS ≥ 4]	-6.2	_	ns

Table 2-8. SRAM Read and Write Accesses

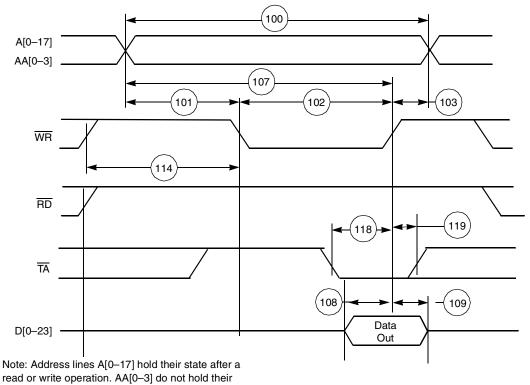
AC Electrical Characteristics

No	Characteristics	Cumbal	1	100 MHz		11
No.		Symbol	Expression ¹	Min	Max	Unit
111	WR deassertion to data high impedance	—	0.25 × T _C + 0.2 [1 ≤WS ≤3]	_	2.7	ns
			1.25 × TC + 0.2 [4 ≤WS ≤7]	-	12.7	ns
			$2.25 \times T_{C} + 0.2$ [WS > 8]	-	22.7	ns
112	Previous RD deassertion to data active (write)	—	1.25 × T _C − 4.0 [1 ≤WS ≤3]	8.5	—	ns
			$[1 \le 10 \le 5]$ 2.25 × T _C - 4.0 $[4 \le WS \le 7]$	18.5	—	ns
			$3.25 \times T_{C} - 4.0$ [WS > 8]	28.5	—	ns
113	RD deassertion time	_	0.75 × T _C −4.0 [1 ≤WS ≤3]	3.5	_	ns
			1.75 × T _C −4.0 [4 ≤WS ≤7]	13.5	-	ns
			$2.75 \times T_{C} - 4.0$ [WS ≥ 8]	23.5	—	ns
114	WR deassertion time	—	$0.5 \times T_{C} - 4.0$ [WS = 1]	1.0	—	ns
			T _C −4.0 [2 ≤WS ≤3]	6.0	-	ns
			2.5 × T _C −4.0 [4 ≤WS ≤7]	21.0	-	ns
			$3.5 \times T_{C} - 4.0$ [WS ≥ 8]	31.0	—	ns
115	Address valid to RD assertion	—	$0.5 imes T_C$ –4.0	1.0	—	ns
116	RD assertion pulse width	—	(WS + 0.25) \times T _C -4.0	8.5	—	ns
117	RD deassertion to address not valid	—	0.25 × T _C −2.0 [1 ≤WS ≤3]	0.5	—	ns
			1.25 × T _C −2.0 [4 ≤WS ≤7]	10.5	_	ns
			$2.25 \times T_{C} - 2.0$ [WS ≥ 8]	20.5	—	ns
118	\overline{TA} setup before \overline{RD} or \overline{WR} deassertion ⁴	—	$0.25 \times T_{C} + 2.0$	4.5	_	ns
119	\overline{TA} hold after \overline{RD} or \overline{WR} deassertion	_		0	_	ns


Table 2-8. SRAM Read and Write Accesses (Continued)

maximum value, as appropriate.

2. Timings 100, 107 are guaranteed by design, not tested.


All timings for 100 MHz are measured from 0.5 × Vcc to 0.5 × Vcc.
 Timing 118 is relative to the deassertion edge of RD or WR even if TA remains asserted.
 V_{CC} = 3.3 V ±0.3 V; T_J = -40°C to +100°C, C_L = 50 pF

Specifications

Note: Address lines A[0-17] noid their state after a read or write operation. AA[0-3] do not hold their state after a read or write operation.

state after a read or write operation.

Figure 2-13. SRAM Write Access

2.5.5.2 DRAM Timing

The selection guides in **Figure 2-14** and **Figure 2-17** are for primary selection only. Final selection should be based on the timing in the following tables. For example, the selection guide suggests that four wait states must be used for 100 MHz operation with Page Mode DRAM. However, consulting the appropriate table, a designer can evaluate whether fewer wait states might suffice by determining which timing prevents operation at 100 MHz, running the chip at a slightly lower frequency (for example, 95 MHz), using faster DRAM (if it becomes available), and manipulating control factors such as capacitive and resistive load to improve overall system performance.



Figure 2-14. DRAM Page Mode Wait State Selection Guide

Specifications

No.	Characteristics	Symbol	Expression ⁴	100 MHz		Unit
NO.				Min	Max	Unit
131	Page mode cycle time for two consecutive accesses of the same direction		$4 \times T_C$	40.0		ns
	Page mode cycle time for mixed (read and write) accesses	t _{PC}	$3.5 imes T_C$	35.0	—	ns
132	CAS assertion to data valid (read)	t _{CAC}	$2 \times T_C - 5.7$	—	14.3	ns
133	Column address valid to data valid (read)	t _{AA}	$3 imes T_C - 5.7$	_	24.3	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	ns
135	Last CAS assertion to RAS deassertion	t _{RSH}	$2.5 imes T_C - 4.0$	21.0	_	ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$4.5 imes T_C - 4.0$	41.0	_	ns
137	CAS assertion pulse width	t _{CAS}	$2 \times T_C - 4.0$	16.0	_	ns
138	Last CAS deassertion to RAS assertion ⁵ • BRW[1–0] = 00, 01—not applicable • BRW[1–0] = 10 • BRW[1–0] = 11	t _{CRP}		 41.5 61.5		ns ns
139	CAS deassertion pulse width	t _{CP}	$1.5 \times T_{C} - 4.0$	11.0	_	ns
140	Column address valid to CAS assertion	t _{ASC}	T _C -4.0	6.0	_	ns
141	CAS assertion to column address not valid	t _{CAH}	$2.5 imes T_C - 4.0$	21.0	_	ns
142	Last column address valid to RAS deassertion	t _{RAL}	$4 \times T_C - 4.0$	36.0	_	ns
143	WR deassertion to CAS assertion	t _{RCS}	$1.25 imes T_C - 4.0$	8.5	_	ns
144	CAS deassertion to WR assertion	t _{RCH}	$0.75 imes T_C - 4.0$	3.5	_	ns
145	CAS assertion to WR deassertion	t _{WCH}	$2.25 imes T_C - 4.2$	18.3	_	ns
146	WR assertion pulse width	t _{WP}	$3.5 imes T_C - 4.5$	30.5	_	ns
147	Last WR assertion to RAS deassertion	t _{RWL}	$3.75 imes T_C - 4.3$	33.2	_	ns
148	WR assertion to CAS deassertion	t _{CWL}	$3.25 imes T_C - 4.3$	28.2	—	ns
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 imes T_C - 4.5$	0.5	_	ns
150	CAS assertion to data not valid (write)	t _{DH}	$2.5 imes T_C - 4.0$	21.0	—	ns
151	WR assertion to CAS assertion	t _{wcs}	$1.25 imes T_C - 4.3$	8.2	—	ns
152	Last RD assertion to RAS deassertion	t _{ROH}	$3.5 imes$ T $_{C}$ –4.0	31.0	_	ns
153	RD assertion to data valid	t _{GA}	$2.5 imes T_C - 5.7$	—	19.3	ns
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	_	ns
155	WR assertion to data active		$0.75 imes T_C - 1.5$	6.0	—	ns
156	WR deassertion to data high impedance		$0.25 imes T_C$		2.5	ns

Table 2-9. DRAM Page Mode Timings, Three Wait States^{1,2,3}

4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t_{PC} equals 4 × T_C for read-after-read or write-after-write sequences). An expression is used to compute the number listed as the minimum or maximum value listed, as appropriate.

5. BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of pageaccess.

6. $\overline{\text{RD}}$ deassertion always occurs after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

Na			4	100	Unit	
No.	Characteristics	Symbol	Expression ⁴	Min	Max	- Unit
131	Page mode cycle time for two consecutive accesses of the same direction		$5 \times T_{C}$	50.0	_	ns
	Page mode cycle time for mixed (read and write) accesses	t _{PC}	$4.5 imes T_C$	45.0	_	ns
132	CAS assertion to data valid (read)	t _{CAC}	$2.75 imes T_{C}$ –5.7	_	21.8	ns
133	Column address valid to data valid (read)	t _{AA}	$3.75 imes T_{C}$ –5.7	—	31.8	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	ns
135	Last CAS assertion to RAS deassertion	t _{RSH}	$3.5 imes T_C - 4.0$	31.0	_	ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$6 imes T_C - 4.0$	56.0	_	ns
137	CAS assertion pulse width	t _{CAS}	$2.5 imes T_C - 4.0$	21.0	_	ns
138	Last CAS deassertion to RAS assertion ⁵ • BRW[1–0] = 00, 01—Not applicable • BRW[1–0] = 10 • BRW[1–0] = 11	t _{CRP}	 5.25 × T _C -6.0 7.25 × T _C -6.0	 46.5 66.5		ns ns
139	CAS deassertion pulse width	t _{CP}	$2 \times T_C - 4.0$	16.0	—	ns
140	Column address valid to CAS assertion	t _{ASC}	T _C -4.0	6.0	_	ns
141	CAS assertion to column address not valid	t _{CAH}	$3.5 imes T_C - 4.0$	31.0	_	ns
142	Last column address valid to RAS deassertion	t _{RAL}	$5 imes T_C - 4.0$	46.0	_	ns
143	WR deassertion to CAS assertion	t _{RCS}	$1.25 imes T_C - 4.0$	8.5	_	ns
144	CAS deassertion to WR assertion	t _{RCH}	$1.25 imes T_C - 3.7$	8.8	_	ns
145	CAS assertion to WR deassertion	t _{WCH}	$3.25 imes T_C - 4.2$	28.3	_	ns
146	WR assertion pulse width	t _{WP}	$4.5 imes T_C - 4.5$	40.5	_	ns
147	Last WR assertion to RAS deassertion	t _{RWL}	$4.75 imes T_C$ –4.3	43.2	_	ns
148	WR assertion to CAS deassertion	t _{CWL}	$3.75 imes T_C - 4.3$	33.2	_	ns
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 imes T_C - 4.5$	0.5	_	ns
150	CAS assertion to data not valid (write)	t _{DH}	$3.5 imes T_C - 4.0$	31.0	_	ns
151	WR assertion to CAS assertion	t _{WCS}	$1.25 imes T_C - 4.3$	8.2	_	ns
152	Last RD assertion to RAS deassertion	t _{ROH}	$4.5 imes T_C - 4.0$	41.0	—	ns
153	RD assertion to data valid	t _{GA}	$3.25 imes T_C$ –5.7	_	26.8	ns
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	_	ns
155	WR assertion to data active		$0.75 imes T_C - 1.5$	6.0	_	ns
156	WR deassertion to data high impedance		$0.25 \times T_{C}$		2.5	ns

Table 2-10. DRAM Page Mode Timings, Four Wait States^{1,2,3}

3. The asynchronous delays specified in the expressions are valid for the DSP56309.

4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t_{PC} equals 3 × T_C for read-after-read or write-after-write sequences). An expressions is used to calculate the maximum or minimum value listed, as appropriate.

5. BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of-page access.

6. $\overline{\text{RD}}$ deassertion always occurs after $\overline{\text{CAS}}$ deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

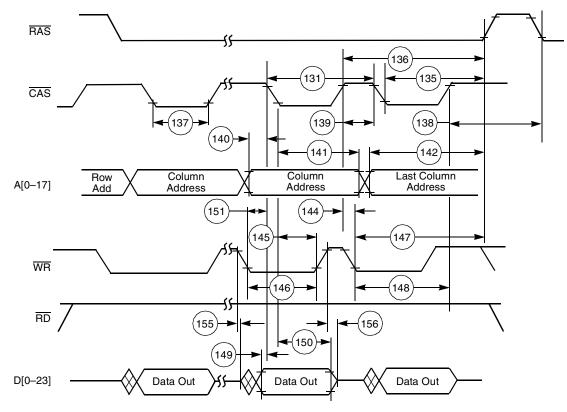


Figure 2-15. DRAM Page Mode Write Accesses

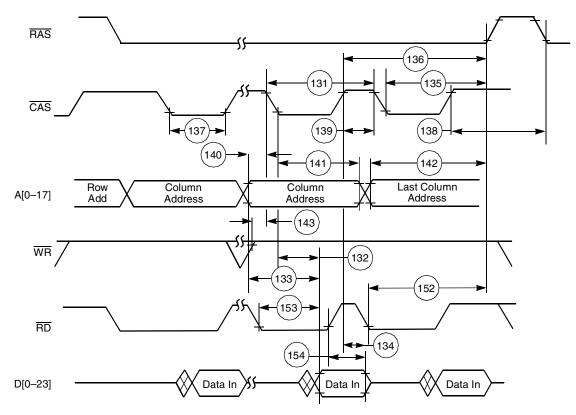


Figure 2-16. DRAM Page Mode Read Accesses

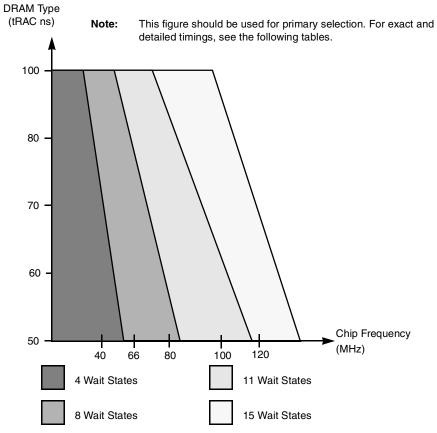


Figure 2-17. DRAM Out-of-Page Wait State Selection Guide

Table 2-11.	DRAM Out-of-Page and Refre	esh Timings, Eleven Wait States ^{1,2}
-------------	----------------------------	--

No.	Characteristics	Symbol	Expression ³	100 MHz		Unit
NO.	Characteristics	Symbol	Expression	Min	Max	Onit
157	Random read or write cycle time	t _{RC}	$12 \times T_{C}$	120.0	—	ns
158	RAS assertion to data valid (read)	t _{RAC}	$6.25 imes T_{C} - 7.0$	—	55.5	ns
159	CAS assertion to data valid (read)	t _{CAC}	$3.75 imes T_{C}$ –7.0	_	30.5	ns
160	Column address valid to data valid (read)	t _{AA}	$4.5 imes T_C - 7.0$	-	38.0	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	ns
162	RAS deassertion to RAS assertion	t _{RP}	$4.25 imes T_C - 4.0$	38.5	—	ns
163	RAS assertion pulse width	t _{RAS}	$7.75 imes T_{C}$ –4.0	73.5	—	ns
164	CAS assertion to RAS deassertion	t _{RSH}	$5.25 imes T_C - 4.0$	48.5	—	ns
165	RAS assertion to CAS deassertion	t _{CSH}	$6.25 imes T_{C} - 4.0$	58.5	—	ns
166	CAS assertion pulse width	t _{CAS}	$3.75 imes T_C - 4.0$	33.5	—	ns
167	RAS assertion to CAS assertion	t _{RCD}	$2.5\timesT_C{\pm}4.0$	21.0	29.0	ns
168	RAS assertion to column address valid	t _{RAD}	$1.75 imes T_{C} \pm 4.0$	13.5	21.5	ns
169	CAS deassertion to RAS assertion	t _{CRP}	$5.75 imes T_{C}$ –4.0	53.5	—	ns
170	CAS deassertion pulse width	t _{CP}	$4.25 imes T_{C} - 6.0$	36.5	—	ns
171	Row address valid to RAS assertion	t _{ASR}	$4.25 imes T_C - 4.0$	38.5	—	ns

DSP56309 Technical Data, Rev. 7

NI -	Ok and a tania ti a a	Characteristics Symbol Symbol				
No.	Characteristics	Symbol	Expression ³	Min	Max	- Unit
172	RAS assertion to row address not valid	t _{RAH}	$1.75 imes T_C - 4.0$	13.5	_	ns
173	Column address valid to CAS assertion	t _{ASC}	$0.75 imes T_C - 4.0$	3.5	_	ns
174	CAS assertion to column address not valid	t _{CAH}	$5.25 imes T_C - 4.0$	48.5	—	ns
175	RAS assertion to column address not valid	t _{AR}	$7.75 imes T_C - 4.0$	73.5	—	ns
176	Column address valid to RAS deassertion	t _{RAL}	$6 imes T_C - 4.0$	56.0	_	ns
177	WR deassertion to CAS assertion	t _{RCS}	$3.0 imes T_C - 4.0$	26.0	—	ns
178	$\overline{\text{CAS}}$ deassertion to $\overline{\text{WR}}^4$ assertion	t _{RCH}	$1.75 \times T_{C} - 3.7$	13.8	_	ns
179	\overline{RAS} deassertion to \overline{WR}^4 assertion	t _{RRH}	$0.25 imes T_C$ –2.0	0.5	—	ns
180	CAS assertion to WR deassertion	t _{WCH}	$5 imes T_C - 4.2$	45.8	_	ns
181	RAS assertion to WR deassertion	t _{WCR}	$7.5 imes T_C - 4.2$	70.8	_	ns
182	WR assertion pulse width	t _{WP}	$11.5 imes T_C - 4.5$	110.5	—	ns
183	WR assertion to RAS deassertion	t _{RWL}	$11.75 imes T_C - 4.3$	113.2	_	ns
184	WR assertion to CAS deassertion	t _{CWL}	$10.25 \times T_C -4.3$	98.2	—	ns
185	Data valid to CAS assertion (write)	t _{DS}	$5.75 imes T_C - 4.0$	53.5	_	ns
186	CAS assertion to data not valid (write)	t _{DH}	$5.25 imes T_C - 4.0$	48.5	_	ns
187	RAS assertion to data not valid (write)	t _{DHR}	$7.75 imes T_C - 4.0$	73.5	—	ns
188	WR assertion to CAS assertion	t _{wcs}	$6.5 imes T_C - 4.3$	60.7	_	ns
189	CAS assertion to RAS assertion (refresh)	t _{CSR}	$1.5 imes T_C - 4.0$	11.0	_	ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$2.75 imes T_C - 4.0$	23.5	—	ns
191	RD assertion to RAS deassertion	t _{ROH}	$11.5 imes T_C - 4.0$	111.0	_	ns
192	RD assertion to data valid	t _{GA}	$10 imes T_C - 7.0$	—	93.0	ns
193	RD deassertion to data not valid ⁵	t _{GZ}		0.0	_	ns
194	WR assertion to data active		$0.75 imes T_{C} - 1.5$	6.0	—	ns
195	WR deassertion to data high impedance		$0.25 imes T_C$	—	2.5	ns

Table 2-11.	DRAM Out-of-Page and Refresh Timings, Eleven Wait States ^{1,2} (Continued)
-------------	---

2. The refresh period is specified in the DRAM Control Register.

3. Use the expression to compute the maximum or minimum value listed (or both if the expression includes \pm).

4.

Either t_{RCH} or t_{RRH} must be satisfied for read cycles. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ} . 5.

Image Min Max 157 Random read or write cycle time l_{RC} $16 \times T_{C}$ 160.0 $$ r 158 RAS assertion to data valid (read) l_{RAC} $8.28 \times T_{C} - 5.7$ $$ 78.8 159 CAS assertion to data valid (read) l_{CAC} $4.75 \times T_{C} - 5.7$ $$ 41.8 r 160 Column address valid to data valid (read) l_{AA} $5.5 \times T_{C} - 5.7$ $$ 49.3 r 161 CAS dessertion to RAS assertion l_{RP} $6.25 \times T_{C} - 4.0$ 58.5 $$ r 162 RAS assertion to RAS assertion l_{RAS} $8.75 \times T_{C} - 4.0$ 78.5 $$ r 164 CAS assertion to CAS assertion l_{CSH} $8.25 \times T_{C} - 4.0$ 78.5 $$ r 166 CAS assertion to CAS assertion l_{CSH} $8.25 \times T_{C} - 4.0$ 73.5 $$ r 167 RAS assertion to CAS assertion l_{RAS} $7.75 \times T_{C} - 4.0$ 73.5 $$ r	N		0h.al	-	100	MHz	11
158 RAS assertion to data valid (read) t_{RAC} 8.25 × T_C - 5.7 76.8 r 159 CAS assertion to data valid (read) t_{AAC} 4.75 × T_C - 5.7 44.8 r 160 Column address valid to data valid (read) t_{AA} 5.5 × T_C - 5.7 49.3 r 161 CAS assertion to KAS assertion t_{CAC} 4.75 × T_C - 4.0 58.5 r 162 RAS deassertion to RAS assertion t_{RAB} 9.75 × T_C - 4.0 9.35 r 163 RAS assertion to CAS deassertion t_{RSH} 8.25 × T_C - 4.0 7.85 r 164 CAS assertion to CAS assertion t_{CSH} 8.25 × T_C - 4.0 7.85 r 167 RAS assertion to CAS assertion t_{CSH} 8.25 × T_C - 4.0 7.85 r 168 RAS assertion to CAS assertion t_{CSH} 8.25 × T_C - 4.0 7.35 r r 169 CAS deassertion to RAS assertion t_{CAH} t_{CS} 7.5 × T_C - 4.0 7.5 × T_C - 4.0 7.5 × T_C - 4.0 7.5	No.	Characteristics	Symbol	Expression ³	Min	Max	Unit
159 CAS assertion to data valid (read) I_{CAC} $4.75 \times T_C - 5.7$ 41.8 r 160 Column address valid to data valid (read) I_{AA} $5.5 \times T_C - 5.7$ 49.3 r 161 CAS dessertion to data not valid (read hold time) I_{OFF} 0.0 0.0 r 161 CAS dessertion to taba not valid (read hold time) I_{OFF} 0.0 0.0 r 163 RAS dessertion pulse width I_{RAS} $9.75 \times T_C - 4.0$ 93.5 r 166 CAS assertion pulse width I_{RAS} $9.75 \times T_C - 4.0$ 78.5 r 167 RAS assertion to CAS assertion I_{CAB} $4.75 \times T_C - 4.0$ 78.5 r 168 RAS assertion to CAS assertion I_{CAB} $4.75 \times T_C - 4.0$ 78.5 r 169 CAS deassertion to CAS assertion I_{CAB} $4.75 \times T_C - 4.0$ 78.5 r 168 RAS assertion to CAS assertion I_{CAB} 1_{CAB} $7.5 \times T_C - 4.0$ 78.5 r <	157	Random read or write cycle time	t _{RC}	$16 \times T_{C}$	160.0	_	ns
160 Column address valid to data valid (read) I_{AA} 5.5 × T _C - 5.7 — 49.3 r 161 CAS deassertion to data not valid (read hold time) I_{OFF} 0.0 0.0 - r 162 RAS deassertion to RAS assertion I_{BP} 6.25 × T _C -4.0 58.5 - r 163 RAS assertion to RAS deassertion I_{BAS} 6.25 × T _C -4.0 58.5 - r 164 CAS assertion to CAS deassertion I_{BAS} 8.25 × T _C -4.0 78.5 - r 166 CAS assertion to CAS assertion I_{BCD} 3.5 × T _C ±2 3.3 97.0 r 168 RAS assertion to column address valid I_{RAD} 2.75 × T _C ±4.0 73.5 - r 170 CAS deassertion to RAS assertion I_{ABR} 8.26 × T _C -4.0 58.5 - r 171 Row address valid to RAS assertion I_{ABR} 2.75 × T _C -4.0 23.5 - r 172 RAS assertion to row address not valid I_{ARH} 2.75	158	RAS assertion to data valid (read)	t _{RAC}	$8.25 imes T_{C}$ –5.7	_	76.8	ns
	159	CAS assertion to data valid (read)	t _{CAC}	$4.75 imes T_{C}$ – 5.7	_	41.8	ns
162 RAS deassertion to RAS assertion Inp 6.25 × T _C -4.0 58.5 r 163 RAS assertion to RAS deassertion Irans 9.75 × T _C -4.0 58.5 r 164 CAS assertion to RAS deassertion IcSH 8.25 × T _C -4.0 58.5 r 166 CAS assertion to CAS deassertion IcSH 8.25 × T _C -4.0 48.5 r 166 CAS assertion to CAS deassertion IcSH 8.25 × T _C -4.0 7.5 × T _C -4.0 43.5 r 167 RAS assertion to Cold assertion IcAS 4.75 × T _C -4.0 43.5 r 168 RAS assertion to column address valid IrAD 2.75 × T _C -4.0 7.5 × T _C -4.0 7.6 × T_C 7.6 × T_C +4.0	160	Column address valid to data valid (read)	t _{AA}	$5.5 imes T_{C}$ – 5.7	-	49.3	ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	161	CAS deassertion to data not valid (read hold time)	t _{OFF}	0.0	0.0		ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	162	RAS deassertion to RAS assertion	t _{RP}	$6.25 imes T_C - 4.0$	58.5		ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	163	RAS assertion pulse width	t _{RAS}	$9.75 imes$ T $_{C}$ –4.0	93.5		ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	164	CAS assertion to RAS deassertion	t _{RSH}	$6.25 imes T_C - 4.0$	58.5	_	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	165	RAS assertion to CAS deassertion	t _{CSH}	$8.25 imes T_C - 4.0$	78.5	_	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	166	CAS assertion pulse width		$4.75 \times T_{C} - 4.0$	43.5	_	ns
168 RAS assertion to column address valid t_{RAD} $2.75 \times T_C \pm 2$ $2.5.5$ 29.5 r 169 CAS deassertion to RAS assertion t_{CRP} $7.75 \times T_C \pm 4.0$ 73.5 r 170 CAS deassertion pulse width t_{CP} $6.25 \times T_C - 4.0$ 56.5 r 171 Row address valid to RAS assertion t_{ASR} $6.25 \times T_C - 4.0$ 58.5 r 172 RAS assertion to row address not valid t_{RAH} $2.75 \times T_C - 4.0$ 58.5 r 173 Column address valid to CAS assertion t_{ASC} $0.75 \times T_C - 4.0$ 58.5 r 174 CAS assertion to column address not valid t_{CAH} $6.25 \times T_C - 4.0$ 58.5 r 175 RAS assertion to CAS assertion t_{RAL} $7 \times T_C - 4.0$ 66.0 r 176 Column address valid to RAS deassertion t_{RAC} $1.75 \times T_C - 3.7$ 13.8 r 177 WR deassertion to WR ⁴ assertion t_{RAC} $0.25 \times T_C - 4.0$ 66.0	167	RAS assertion to CAS assertion	1		33.0	37.0	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	168	RAS assertion to column address valid			25.5	29.5	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	169	CAS deassertion to RAS assertion		$7.75 \times T_{C} - 4.0$	73.5	_	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	170	CAS deassertion pulse width		-	56.5		ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171	Row address valid to RAS assertion	-		58.5		ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172	RAS assertion to row address not valid			23.5		ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	173	Column address valid to CAS assertion	1		3.5		ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174	CAS assertion to column address not valid			58.5		ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	175	RAS assertion to column address not valid	1		93.5		ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176	Column address valid to RAS deassertion		-	66.0		ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	177	$\overline{\rm WR}$ deassertion to $\overline{\rm CAS}$ assertion			46.2		ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	178	\overline{CAS} deassertion to \overline{WR}^4 assertion	1		13.8		ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	179	\overline{RAS} deassertion to \overline{WR}^4 assertion			0.5		ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	180	\overline{CAS} assertion to \overline{WR} deassertion			55.8		ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	181	RAS assertion to WR deassertion			90.8		ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	182	WR assertion pulse width			150.5		ns
184 \overline{WR} assertion to \overline{CAS} deassertion t_{CWL} $14.25 \times T_C - 4.3$ 138.2 r185Data valid to \overline{CAS} assertion (write) t_{DS} $8.75 \times T_C - 4.0$ 83.5 r186 \overline{CAS} assertion to data not valid (write) t_{DH} $6.25 \times T_C - 4.0$ 58.5 r187 \overline{RAS} assertion to data not valid (write) t_{DHR} $9.75 \times T_C - 4.0$ 93.5 r188 \overline{WR} assertion to \overline{CAS} assertion t_{WCS} $9.5 \times T_C - 4.3$ 90.7 r189 \overline{CAS} assertion to \overline{RAS} assertion (refresh) t_{CSR} $1.5 \times T_C - 4.0$ 11.0 r190 \overline{RAS} deassertion to \overline{CAS} assertion (refresh) t_{RPC} $4.75 \times T_C - 4.0$ 15.0 r191 \overline{RD} assertion to \overline{RAS} deassertion t_{ROH} $15.5 \times T_C - 4.0$ 151.0 r192 \overline{RD} assertion to data not valid t_{GA} $14 \times T_C - 5.7$ 134.3 r193 \overline{RD} deassertion to data not valid ⁵ t_{GZ} 0.0 r194 \overline{WR} assertion to data high impedance $0.25 \times T_C$ -2.5 r	183	WR assertion to RAS deassertion					ns
185Data valid to \overline{CAS} assertion (write) t_{DS} $8.75 \times T_C - 4.0$ 83.5 r186 \overline{CAS} assertion to data not valid (write) t_{DH} $6.25 \times T_C - 4.0$ 58.5 r187 \overline{RAS} assertion to data not valid (write) t_{DHR} $9.75 \times T_C - 4.0$ 93.5 r188 \overline{WR} assertion to \overline{CAS} assertion t_{WCS} $9.5 \times T_C - 4.0$ 93.5 r188 \overline{WR} assertion to \overline{CAS} assertion (refresh) t_{CSR} $1.5 \times T_C - 4.0$ 90.7 r190 \overline{RAS} deassertion to \overline{CAS} assertion (refresh) t_{CSR} $1.5 \times T_C - 4.0$ 11.0 r191 \overline{RD} assertion to \overline{CAS} assertion (refresh) t_{ROH} $15.5 \times T_C - 4.0$ 151.0 r191 \overline{RD} assertion to \overline{RAS} deassertion t_{ROH} $15.5 \times T_C - 4.0$ 151.0 r192 \overline{RD} assertion to data valid t_{GA} $14 \times T_C - 5.7$ 134.3 r193 \overline{RD} deassertion to data not valid ⁵ t_{GZ} 0.0 r194 \overline{WR} assertion to data active $0.25 \times T_C$ $ 2.5$ r195 \overline{WR} deassertion to data high impedance $0.25 \times T_C$ 2.5 r	184	$\overline{\rm WR}$ assertion to $\overline{\rm CAS}$ deassertion	1		138.2		ns
186 \overline{CAS} assertion to data not valid (write) t_{DH} $6.25 \times T_C - 4.0$ 58.5 r187 \overline{RAS} assertion to data not valid (write) t_{DHR} $9.75 \times T_C - 4.0$ 93.5 r188 \overline{WR} assertion to \overline{CAS} assertion t_{WCS} $9.5 \times T_C - 4.3$ 90.7 r189 \overline{CAS} assertion to \overline{RAS} assertion (refresh) t_{CSR} $1.5 \times T_C - 4.0$ 11.0 r190 \overline{RAS} deassertion to \overline{CAS} assertion (refresh) t_{RPC} $4.75 \times T_C - 4.0$ 43.5 r191 \overline{RD} assertion to \overline{RAS} deassertion t_{ROH} $15.5 \times T_C - 4.0$ 151.0 r192 \overline{RD} assertion to data valid t_{GA} $14 \times T_C - 5.7$ 134.3 r193 \overline{RD} deassertion to data not valid ⁵ t_{GZ} 0.0 r194 \overline{WR} assertion to data active $0.75 \times T_C - 1.5$ 6.0 r195 \overline{WR} deassertion to data high impedance $0.25 \times T_C$ 2.5 r	185	Data valid to CAS assertion (write)					ns
187 \overline{RAS} assertion to data not valid (write) t_{DHR} $9.75 \times T_C - 4.0$ 93.5 $-$ r188 \overline{WR} assertion to \overline{CAS} assertion t_{WCS} $9.5 \times T_C - 4.3$ 90.7 $-$ r189 \overline{CAS} assertion to \overline{RAS} assertion (refresh) t_{CSR} $1.5 \times T_C - 4.0$ 11.0 $-$ r190 \overline{RAS} deassertion to \overline{CAS} assertion (refresh) t_{RPC} $4.75 \times T_C - 4.0$ 11.0 $-$ r191 \overline{RD} assertion to \overline{RAS} deassertion t_{ROH} $15.5 \times T_C - 4.0$ 151.0 $-$ r192 \overline{RD} assertion to data valid t_{GA} $14 \times T_C - 5.7$ $ 134.3$ r193 \overline{RD} deassertion to data not valid ⁵ t_{GZ} 0.0 $-$ r194 \overline{WR} assertion to data active $0.75 \times T_C - 1.5$ 6.0 $-$ r195 \overline{WR} deassertion to data high impedance $0.25 \times T_C$ $ 2.5$ r	186	CAS assertion to data not valid (write)	1		58.5		ns
188 \overline{WR} assertion to \overline{CAS} assertion t_{WCS} $9.5 \times T_C - 4.3$ 90.7 $-$ r189 \overline{CAS} assertion to \overline{RAS} assertion (refresh) t_{CSR} $1.5 \times T_C - 4.0$ 11.0 $-$ r190 \overline{RAS} deassertion to \overline{CAS} assertion (refresh) t_{RPC} $4.75 \times T_C - 4.0$ 43.5 $-$ r191 \overline{RD} assertion to \overline{RAS} deassertion t_{ROH} $15.5 \times T_C - 4.0$ 151.0 $-$ r192 \overline{RD} assertion to data valid t_{GA} $14 \times T_C - 5.7$ $ 134.3$ r193 \overline{RD} deassertion to data not valid ⁵ t_{GZ} 0.0 $-$ r194 \overline{WR} assertion to data active $0.75 \times T_C - 1.5$ 6.0 $-$ r195 \overline{WR} deassertion to data high impedance $0.25 \times T_C$ $ 2.5$ r	187	RAS assertion to data not valid (write)			93.5		ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	188	WR assertion to CAS assertion			90.7		ns
190 \overline{RAS} deassertion to \overline{CAS} assertion (refresh) t_{RPC} $4.75 \times T_C - 4.0$ 43.5 $-$ r191 \overline{RD} assertion to \overline{RAS} deassertion t_{ROH} $15.5 \times T_C - 4.0$ 151.0 $-$ r192 \overline{RD} assertion to data valid t_{GA} $14 \times T_C - 5.7$ $ 134.3$ r193 \overline{RD} deassertion to data not valid ⁵ t_{GZ} 0.0 $-$ r194 \overline{WR} assertion to data active $0.75 \times T_C - 1.5$ 6.0 $-$ r195 \overline{WR} deassertion to data high impedance $0.25 \times T_C$ $ 2.5$ r	189	CAS assertion to RAS assertion (refresh)			11.0		ns
191 \overline{RD} assertion to \overline{RAS} deassertion t_{ROH} $15.5 \times T_C - 4.0$ 151.0 $ r$ 192 \overline{RD} assertion to data valid t_{GA} $14 \times T_C - 5.7$ $ 134.3$ r 193 \overline{RD} deassertion to data not valid ⁵ t_{GZ} 0.0 $ r$ 194 \overline{WR} assertion to data active $0.75 \times T_C - 1.5$ 6.0 $ r$ 195 \overline{WR} deassertion to data high impedance $0.25 \times T_C$ $ 2.5$ r	190				43.5		ns
192 \overline{RD} assertion to data valid t_{GA} $14 \times T_C -5.7$ 134.3r193 \overline{RD} deassertion to data not valid ⁵ t_{GZ} 0.0r194 \overline{WR} assertion to data active $0.75 \times T_C - 1.5$ 6.0r195 \overline{WR} deassertion to data high impedance $0.25 \times T_C$ 2.5r	191			-		_	ns
193 \overline{RD} deassertion to data not valid ⁵ t_{GZ} 0.0 $ r$ 194 \overline{WR} assertion to data active $0.75 \times T_C - 1.5$ 6.0 $ r$ 195 \overline{WR} deassertion to data high impedance $0.25 \times T_C$ $ 2.5$ r						134.3	ns
194WR assertion to data active $0.75 \times T_{C} - 1.5$ 6.0 $-$ r195WR deassertion to data high impedance $0.25 \times T_{C}$ $ 2.5$ r						_	ns
195 $\overline{\text{WR}}$ deassertion to data high impedance $0.25 \times T_{\text{C}}$ -2.5r			32	0.75 × T _C – 1.5			ns
						2.5	ns
Notes: 1. The number of wait states for an out-of-page access is specified in the DRAM Control Register.	Notes		ified in the DR		1	_	

DRAM Out-of-Page and Refresh Timings, Fifteen Wait States^{1,2} Table 2-12.

3. Use the expression to compute the maximum or minimum value listed (or both if the expression includes \pm).

4.

Either t_{RCH} or t_{RRH} must be satisfied for read cycles. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ} . 5.

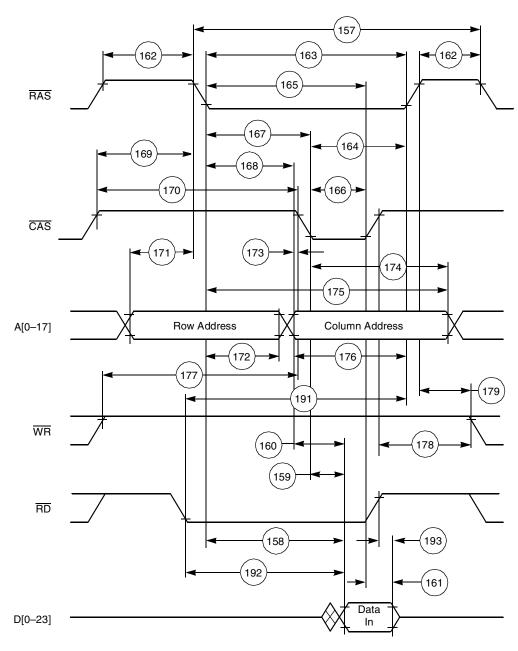


Figure 2-18. DRAM Out-of-Page Read Access

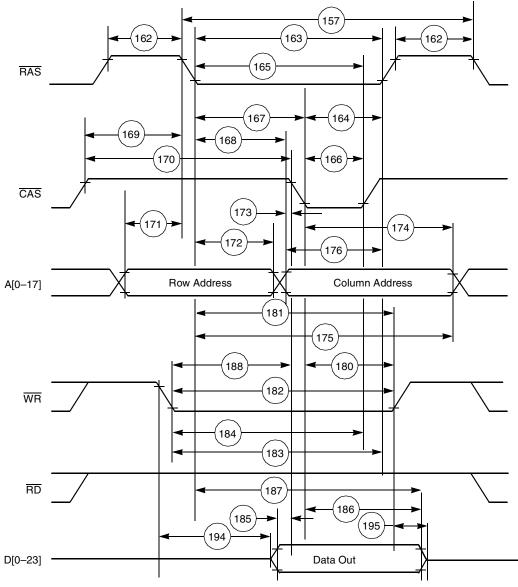


Figure 2-19. DRAM Out-of-Page Write Access

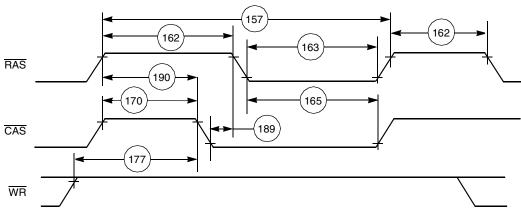
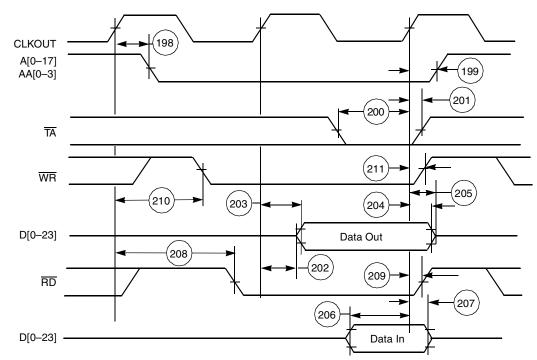
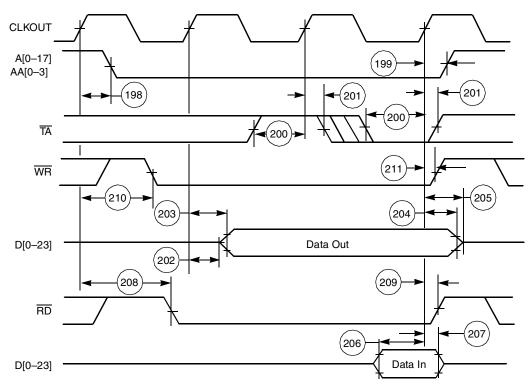


Figure 2-20. DRAM Refresh Access


2.5.5.3 Synchronous Timings

	Characteristics Expression ^{3,4,5}		100	MHz	
No.			Min	Max	Unit
198	CLKOUT high to address, and AA valid ⁶	0.25 × T _C + 4.0	_	6.5	ns
199	CLKOUT high to address, and AA invalid ⁶	$0.25 imes T_{C}$	2.5	_	ns
200	TA valid to CLKOUT high (set-up time)		4.0	—	ns
201	CLKOUT high to \overline{TA} invalid (hold time)		0.0	—	ns
202	CLKOUT high to data out active	$0.25 imes T_{C}$	2.5	—	ns
203	CLKOUT high to data out valid	0.25 × T _C + 4.0	_	6.5	ns
204	CLKOUT high to data out invalid	$0.25 imes T_{C}$	2.5	—	ns
205	CLKOUT high to data out high impedance	$0.25 imes T_{C}$	_	2.5	ns
206	Data in valid to CLKOUT high (set-up)		4.0	—	ns
207	CLKOUT high to data in invalid (hold)		0.0	—	ns
208	CLKOUT high to RD assertion	maximum: $0.75 \times T_{C} + 2.5$	6.7	10.0	ns
209	CLKOUT high to RD deassertion		0.0	4.0	ns
210	CLKOUT high to WR assertion ²	maximum: $0.5 \times T_{C} + 4.3$ for WS = 1 or WS ≥ 4	5.0	9.3	ns
		for 2 ≤WS ≤3	0.0	4.3	ns
211	CLKOUT high to WR deassertion		0.0	3.8	ns
Notes:	 Use external bus synchronous timings only for refere Synchronous Bus Arbitration is not recommended. U WS is the number of wait states specified in the BCF If WS > 1, WR assertion refers to the next rising edg Use the expression to compute the maximum or min 	lse Asynchronous mode whenever pos }. e of CLKOUT.	sible.	the minimum	

Table 2-13.	External Bus Synchronous	Timinas ^{1,2}

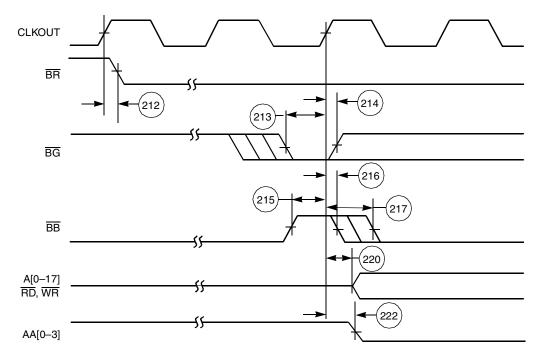

Use the expression to compute the maximum or minimum value listed, as appropriate. For timing 210, the minimum is an absolute value.
 T198 and T199 are valid for Address Trace mode if the ATE bit in the Operating Mode Register is set. when this mode is

enabled, use the status of BR (See T212) to determine whether the access referenced by A[0–17] is internal or external.

Note: Address lines A[0–17] hold their state after a read or write operation. AA[0–3] do not hold their state after a read or write operation.

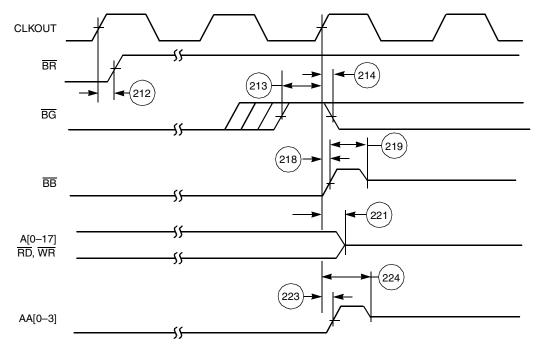
Figure 2-21. Synchronous Bus Timings 1 WS (BCR Controlled)

Note: Address lines A[0-17] hold their state after a read or write operation. AA[0-3] do not hold their state after a read or write operation.

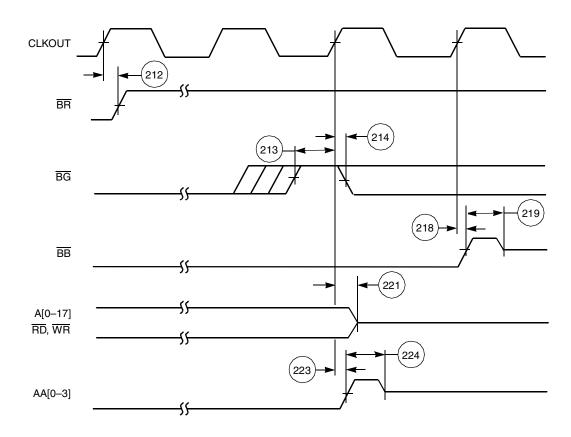

Figure 2-22. Synchronous Bus Timings 2 WS (TA Controlled)

2.5.5.4 Arbitration Timings

	Observation in the second		100	100 MHz				
No.	Characteristics	Expression ²	Min	Max	Unit			
212	CLKOUT high to BR assertion/deassertion ³		0.0	4.0	ns			
213	BG asserted/deasserted to CLKOUT high (setup)		4.0		ns			
214	CLKOUT high to BG deasserted/asserted (hold)		0.0		ns			
215	BB deassertion to CLKOUT high (input set-up)		4.0		ns			
216	CLKOUT high to BB assertion (input hold)		0.0		ns			
217	CLKOUT high to BB assertion (output)		0.0	4.0	ns			
218	CLKOUT high to BB deassertion (output)		0.0	4.0	ns			
219	$\overline{\text{BB}}$ high to $\overline{\text{BB}}$ high impedance (output)		_	4.5	ns			
220	CLKOUT high to address and controls active	$0.25 imes T_C$	2.5	—	ns			
221	CLKOUT high to address and controls high impedance	$0.75 imes T_{C}$	_	7.5	ns			
222	CLKOUT high to AA active	$0.25 imes T_{C}$	2.5		ns			
223	CLKOUT high to AA deassertion	maximum: $0.25 \times T_{C} + 4.0$	2.0	6.5	ns			
224	CLKOUT high to AA high impedance	$0.75 \times T_{C}$	_	7.5	ns			
Notes:	 Synchronous bus arbitration is not recommended. Use Asynchronous mode whenever possible. An expression is used to compute the maximum or minimum value listed, as appropriate. For timing 223, the minimum is an absolute value. Tota is used to compute the maximum or minimum value listed. The provided for intermediate the transmission of the provided for intermediate the transmission of the provided for intermediate the transmission. 							


Table 2-14. Arbitration bus fimings	Table 2-14.	Arbitration Bus Timings
-------------------------------------	-------------	-------------------------

3. T212 is valid for Address Trace mode when the ATE bit in the Operating Mode Register is set. BR is deasserted for internal accesses and asserted for external accesses.


Note: Address lines A[0-17] hold their state after a read or write operation. AA[0-3] do not hold their state after a read or write operation.

Note: Address lines A[0–17] hold their state after a read or write operation. AA[0–3] do not hold their state after a read or write operation.

Figure 2-24. Bus Release Timings Case 1 (BRT Bit in Operating Mode Register Cleared)

Note: Address lines A[0-17] hold their state after a read or write operation. AA[0-3] do not hold their state after a read or write operation.

Figure 2-25. Bus Release Timings Case 2 (BRT Bit in Operating Mode Register Set)

2.5.5.5 Asynchronous Bus Arbitration Timings

No.	Characteristics Expression ³						
					Max	Unit	
250	$\overline{\text{BB}}$ assertion window from $\overline{\text{BG}}$ input deassertion ⁵ 2.5 × Tc + 5 — 30 ns						
251	Delay from \overline{BB} assertion to \overline{BG} assertion ⁵ $2 \times Tc + 5$ 25 $-$ ns						
Notes:	 Bit 13 in the Operating Mode Register must be set to enter Asynchronous Arbitration mode. If Asynchronous Arbitration mode is active, none of the timings in Table 2-14 is required. An expression is used to compute the maximum or minimum value listed, as appropriate. Asynchronous Arbitration mode is recommended for operation at 100 MHz. In order to guarantee timings 250, and 251, BG inputs must be asserted to different DSP56300 devices on the same bus in the non-overlap manner shown in Figure 2-26. 						

 Table 2-15.
 Asynchronous Bus Timings^{1, 2}

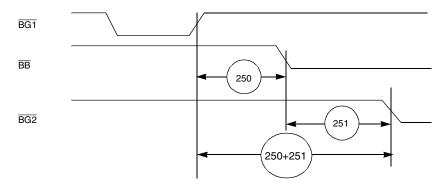


Figure 2-26. Asynchronous Bus Arbitration Timing

The asynchronous bus arbitration is enabled by internal synchronization circuits on \overline{BG} and \overline{BB} inputs. These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a result of this delay, a DSP56300 part may assume mastership and assert \overline{BB} , for some time after \overline{BG} is deasserted. This is the reason for timing 250.

Once \overline{BB} is asserted, there is a synchronization delay from \overline{BB} assertion to the time this assertion is exposed to other DSP56300 components that are potential masters on the same bus. If \overline{BG} input is asserted before that time, and \overline{BG} is asserted and \overline{BB} is deasserted, another DSP56300 component may assume mastership at the same time. Therefore, some non-overlap period between one \overline{BG} input active to another \overline{BG} input active is required. Timing 251 ensures that overlaps are avoided.

2.5.6 Host Interface Timing

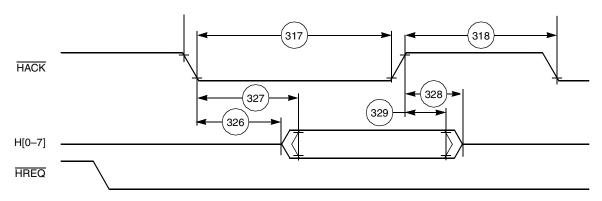

No.	Characteristic ¹⁰	Expression	100	MHz	Unit
NO.	Characteristic	Expression	Min	Max	Unit
317	Read data strobe assertion width ⁵ HACK assertion width	T _C + 9.9	19.9	_	ns
318	Read data strobe deassertion width ⁵ HACK deassertion width		9.9	—	ns
319	Read data strobe deassertion width ⁵ after "Last Data Register" reads ^{8,11} , or between two consecutive CVR, ICR, or ISR reads ³ HACK deassertion width after "Last Data Register" reads ^{8,11}	$2.5 \times T_{C} + 6.6$	31.6	-	ns
320	Write data strobe assertion width ⁶		13.2	—	ns
321	 Write data strobe deassertion width⁸ HACK write deassertion width after ICR, CVR and "Last Data Register" writes after IVR writes, or after TXH:TXM:TXL writes (with HLEND= 0), or after TXL:TXM:TXH writes (with HLEND = 1) 	2.5 × T _C + 6.6	31.8 16.5	_	ns ns
322	HAS assertion width		9.9	—	ns
323	HAS deassertion to data strobe assertion ⁴		0.0	_	ns
324	Host data input setup time before write data strobe deassertion ⁶		9.9	—	ns
325	Host data input hold time after write data strobe deassertion ⁶		3.3	—	ns
326	Read data strobe assertion to output data active from high impedance ⁵ HACK assertion to output data active from high impedance		3.3	_	ns
327	Read data strobe assertion to output data valid ⁵ HACK assertion to output data valid		-	24.5	ns
328	Read data strobe deassertion to output data high impedance ⁵ HACK deassertion to output data high impedance		-	9.9	ns
329	Output data hold time after read data strobe deassertion ⁵ Output data hold time after HACK deassertion		3.3	—	ns
330	HCS assertion to read data strobe deassertion ⁵	T _C + 9.9	19.9	—	ns
331	HCS assertion to write data strobe deassertion ⁶		9.9	—	ns
332	HCS assertion to output data valid		_	19.3	ns
333	HCS hold time after data strobe deassertion ⁴		0.0	—	ns
334	Address (HAD[0–7]) setup time before HAS deassertion (HMUX=1)		4.6	—	ns
335	Address (HAD[0-7]) hold time after HAS deassertion (HMUX=1)		3.3	—	ns
336	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/W setup time before data strobe assertion ⁴ • Read • Write		0 4.6	_	ns ns
337	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/ \overline{W} hold time after data strobe deassertion ⁴		3.3	—	ns
338	Delay from read data strobe deassertion to host request assertion for "Last Data Register" read ^{5, 7, 8}	T _C + 5.3	15.3	-	ns
339	Delay from write data strobe deassertion to host request assertion for "Last Data Register" write ^{6, 7, 8}	$1.5 \times T_{C} + 5.3$	20.3	—	ns

Table 2-16.	Host Interface	Timings ^{1,2,12}
-------------	----------------	---------------------------

Na		Characteristic ¹⁰	Furning a star	100	MHz	11
No.		Characteristic	Expression	Min	Max	Unit
340		y from data strobe assertion to host request deassertion for "Last Data ster" read or write (HROD=0) ^{4, 7, 8}		_	19.3	ns
341		y from data strobe assertion to host request deassertion for "Last Data ster" read or write (HROD=1, open drain host request) ^{4, 7, 8, 9}		_	300.0	ns
Notes:	2. 3. 4. 5. 6.	See the Programmer's Model section in the chapter on the HI08 in the DS In the timing diagrams below, the controls pins are drawn as active low. T This timing is applicable only if two consecutive reads from one of these r The data strobe is Host Read (HRD) or Host Write (HWR) in the Dual Data Single Data Strobe mode. The read data strobe is HRD in the Dual Data Strobe mode and HDS in th The write data strobe is HWR in the Dual Data Strobe mode and HDS in th	he pin polarity is prograr egisters are executed. a Strobe mode and Host he Single Data Strobe mo the Single Data Strobe m	t Data Stro ode. node.	ζ <i>γ</i>	
	7. 8. 9.	The host request is HREQ in the Single Host Request mode and HRRQ a The "Last Data Register" is the register at address \$7, which is the last lo RXL/TXL in the Big Endian mode (HLEND = 0; HLEND is the Interface Co Little Endian mode (HLEND = 1). In this calculation, the host request signal is pulled up by a 4.7 k Ω resistor	cation to be read or writte ontrol Register bit 7—ICF	en in data R[7]), or R2	transfers.	This is

Host Interface Timings^{1,2,12} (Continued) Table 2-16.

- **10.** $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $T_J = -40^{\circ}\text{C}$ to +100 °C, $C_L = 50 \text{ pF}$ **11.** This timing is applicable only if a read from the "Last Data Register" is followed by a read from the RXL, RXM, or RXH registers without first polling RXDF or HREQ bits, or waiting for the assertion of the HREQ signal.
- 12. After the external host writes a new value to the ICR, the HI08 is ready for operation after three DSP clock cycles ($3 \times Tc$).

Note: The IVR is read only by an MC680xx host processor in non-multiplexed mode.

Figure 2-27. Host Interrupt Vector Register (IVR) Read Timing Diagram

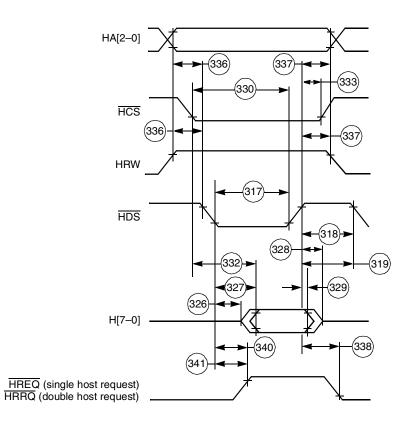


Figure 2-28. Read Timing Diagram, Non-Multiplexed Bus, Single Data Strobe

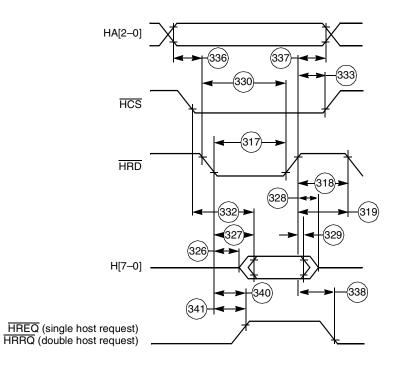


Figure 2-29. Read Timing Diagram, Non-Multiplexed Bus, Double Data Strobe



Figure 2-30. Write Timing Diagram, Non-Multiplexed Bus, Single Data Strobe

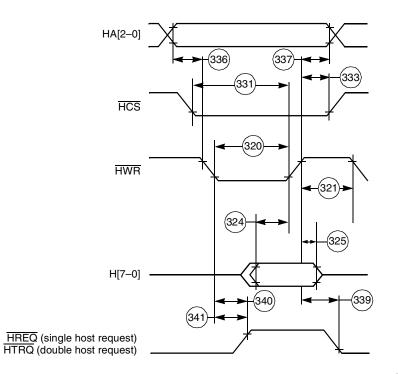


Figure 2-31. Write Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

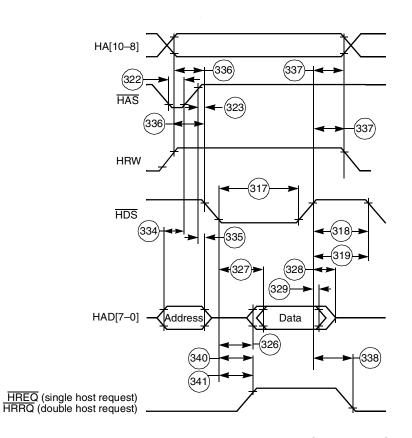


Figure 2-32. Read Timing Diagram, Multiplexed Bus, Single Data Strobe

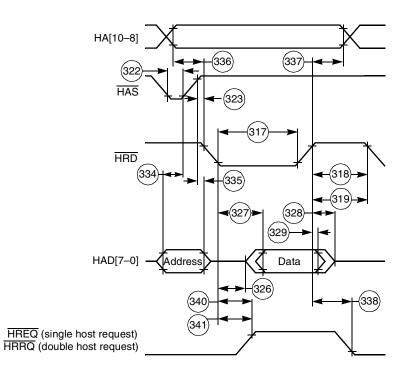


Figure 2-33. Read Timing Diagram, Multiplexed Bus, Double Data Strobe

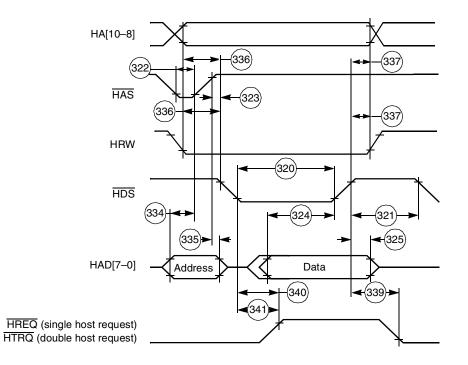


Figure 2-34. Write Timing Diagram, Multiplexed Bus, Single Data Strobe

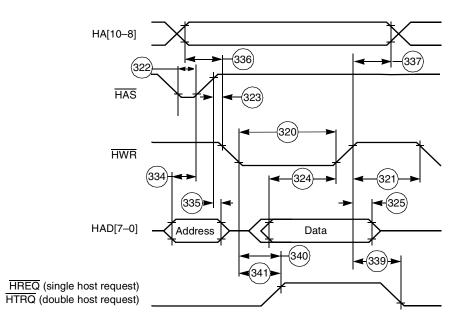
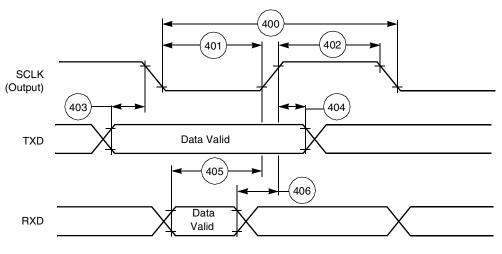


Figure 2-35. Write Timing Diagram, Multiplexed Bus, Double Data Strobe


SCI Timing 2.5.7

	or 1			100	MHz	
No.	Characteristics ¹	Symbol	Expression	Min	Мах	- Unit
400	Synchronous clock cycle	t _{SCC} ²	$8 \times T_{C}$	53.3		ns
401	Clock low period		t _{SCC} /2-10.0	16.7	_	ns
402	Clock high period		t _{SCC} /2-10.0	16.7	_	ns
403	Output data setup to clock falling edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} - 17.0$	8.0	—	ns
404	Output data hold after clock rising edge (internal clock)		$t_{\text{SCC}}/4~0.5\times\text{T}_{\text{C}}$	15.0	—	ns
405	Input data setup time before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} + 25.0$	50.0	—	ns
406	Input data not valid before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_C - 5.5$	_	19.5	ns
407	Clock falling edge to output data valid (external clock)			—	32.0	ns
408	Output data hold after clock rising edge (external clock)		T _C + 8.0	18.0	—	ns
409	Input data setup time before clock rising edge (external clock)			0.0	—	ns
410	Input data hold time after clock rising edge (external clock)			9.0	_	ns
411	Asynchronous clock cycle	t _{ACC} ³	$64 imes T_C$	640.0	—	ns
412	Clock low period		t _{ACC} /2 -10.0	310.0	_	ns
413	Clock high period		t _{ACC} /2 -10.0	310.0	—	ns
414	Output data setup to clock rising edge (internal clock)		t _{ACC} /2 -30.0	290.0	—	ns
415	Output data hold after clock rising edge (internal clock)		t _{ACC} /2 -30.0	290.0	_	ns

Table 2-17. **SCI** Timings

V_{CC} = 3.3 V ± 0.3 V; T_J = 40°C to +100 °C, C_L = 50 pF.
 t_{SCC} = synchronous clock cycle time (for internal clock, t_{SCC} is determined by the SCI clock control register and T_C).
 t_{ACC} = asynchronous clock cycle time; value given for 1X Clock mode (for internal clock, t_{ACC} is determined by the SCI clock control register and T_C).

4. An expression is used to compute the number listed as the minimum or maximum value as appropriate.

a) Internal Clock

b) External Clock

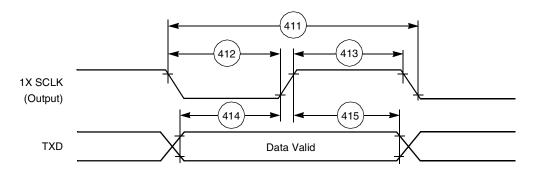


Figure 2-37. SCI Asynchronous Mode Timing

2.5.8 ESSI0/ESSI1 Timing

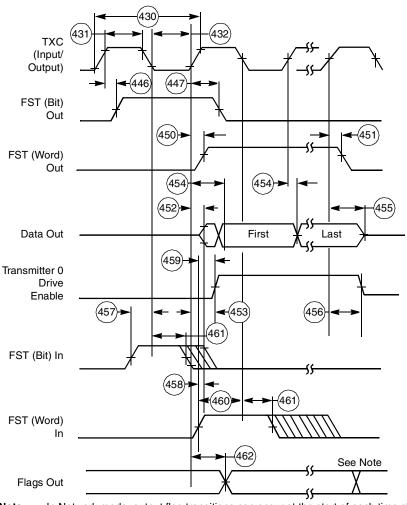

	e		9	100	MHz	Cond-	
No.	Characteristics ^{4, 5, 7}	Symbol	Expression ⁹	Min	Max	ition ⁵	Unit
430	Clock cycle ¹	t _{SSICC}	$3 \times T_C$ $4 \times T_C$	30.0 40.0		x ck i ck	ns
431	Clock high periodFor internal clockFor external clock		2 × T _C - 10.0 1.5 × T _C	10.0 15.0	_		ns ns
432	Clock low period • For internal clock • For external clock		$\begin{array}{c} 2 \times \ T_C \ -10.0 \\ 1.5 \times \ T_C \end{array}$	10.0 15.0	_		ns ns
433	RXC rising edge to FSR out (bit-length) high			_	37.0 22.0	xck icka	ns
434	RXC rising edge to FSR out (bit-length) low			_	37.0 22.0	xck icka	ns
435	RXC rising edge to FSR out (word-length-relative) high ²			-	39.0 37.0	xck icka	ns
436	RXC rising edge to FSR out (word-length-relative) low ²			_	39.0 37.0	xck icka	ns
437	RXC rising edge to FSR out (word-length) high			_	36.0 21.0	xck icka	ns
438	RXC rising edge to FSR out (word-length) low			_	37.0 22.0	xck icka	ns
439	Data in set-up time before RXC (SCK in Synchronous mode) falling edge			10.0 19.0		x ck i ck	ns
440	Data in hold time after RXC falling edge			5.0 3.0	_	x ck i ck	ns
441	FSR input (bl, wr) ⁶ high before RXC falling edge ²			1.0 23.0	_	xck icka	ns
442	FSR input (wl) ⁶ high before RXC falling edge			3.5 23.0	_	xck icka	ns
443	FSR input hold time after RXC falling edge			3.0 0.0	_	x ck i ck a	ns
444	Flags input set-up before RXC falling edge			5.5 19.0	—	xck icks	ns
445	Flags input hold time after RXC falling edge			6.0 0.0		xck icks	ns
446	TXC rising edge to FST out (bit-length) high			_	29.0 15.0	x ck i ck	ns
447	TXC rising edge to FST out (bit-length) low			_	31.0 17.0	x ck i ck	ns
448	TXC rising edge to FST out (word-length-relative) high ²			_	31.0 17.0	x ck i ck	ns
449	TXC rising edge to FST out (word-length-relative) low ²				33.0 19.0	x ck i ck	ns
450	TXC rising edge to FST out (word-length) high				30.0 16.0	x ck i ck	ns
451	TXC rising edge to FST out (word-length) low				31.0 17.0	x ck i ck	ns
452	TXC rising edge to data out enable from high impedance			— —	31.0 17.0	x ck i ck	ns

Table 2-18. ES

. ESSI Timings

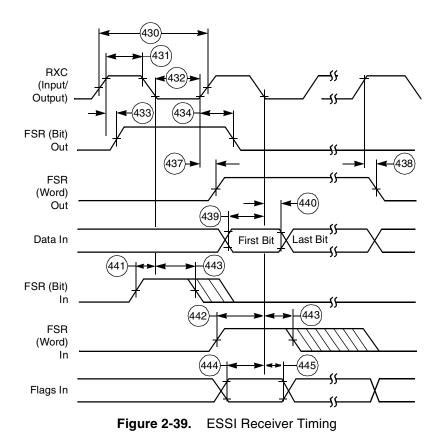

	Characteristics ^{4, 5, 7}	Symbol	Expression ⁹	100		Cond-	Unit
No.		Symbol	Expression	Min	Мах	ition ⁵	Unit
453	TXC rising edge to transmitter 0 drive enable assertion			_	34.0 20.0	x ck i ck	ns
454	TXC rising edge to data out valid			_	20.0 ⁸ 10.0	x ck i ck	ns
455	TXC rising edge to data out high impedance ³			_	31.0 16.0	x ck i ck	ns
456	TXC rising edge to transmitter 0 drive enable deassertion ³			_	34.0 20.0	x ck i ck	ns
457	FST input (bl, wr) ⁶ set-up time before TXC falling edge ²			2.0 21.0	_	x ck i ck	ns
458	FST input (wl) ⁶ to data out enable from high impedance			—	27.0	_	ns
459	FST input (wl) ⁶ to transmitter 0 drive enable assertion			_	31.0	_	ns
460	FST input (wl) ⁶ set-up time before TXC falling edge			2.5 21.0	_	x ck i ck	ns
461	FST input hold time after TXC falling edge			4.0 0.0	-	x ck i ck	ns
462	Flag output valid after TXC rising edge			_	32.0	x ck	ns
				—	18.0	i ck	
Notes:	 For the internal clock, the external clock cycle is defined in the internal clock, the external clock cycle is defined in the internation of the interna	operates the sa ock (same as th oF. vo different clock same clock) tive.	me way as the bit-le e Bit Length Frame s	ength frar Sync sig	I trol Regis ne sync s nal) until 1	I ter. signal wave he one befo	ore las

Table 2-18. ESSI Timings (Continued)

Note: In Network mode, output flag transitions can occur at the start of each time slot within the frame. In Normal mode, the output flag state is asserted for the entire frame period.

Figure 2-38. ESSI Transmitter Timing

DSP56309 Technical Data, Rev. 7

2.5.9 Timer Timing

N	Characteristics	Observation Engineering ²	100	100 MHz		
No.	Characteristics	Expression ²	Min	Max	Unit	
480	TIO Low	$2 \times T_{C} + 2.0$	22.0		ns	
481	TIO High	$2 \times T_{C} + 2.0$	22.0	—	ns	
482	Timer set-up time from TIO (Input) assertion to CLKOUT rising edge		9.0	10.0	ns	
483	Synchronous timer delay time from CLKOUT rising edge to the external memory access address out valid caused by first interrupt instruction execution	10.25 × T _C + 1.0	103.5	_	ns	
484	CLKOUT rising edge to TIO (Output) assertion Minimum Maximum 	$\begin{array}{c} 0.5 \times \mathrm{T_{C}} + 0.5 \\ 0.5 \times \mathrm{T_{C}} + 19.8 \end{array}$	5.5	 24.8	ns ns	
485	CLKOUT rising edge to TIO (Output) deassertion Minimum Maximum 	$0.5 \times T_{C} + 0.5$ $0.5 \times T_{C} + 19.8$	5.5	 24.8	ns ns	

Table 2-19. Timer Timing ¹

2. An expression is used to compute the number listed as the minimum or maximum value as appropriate.

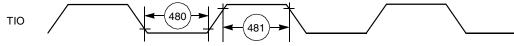


Figure 2-40. TIO Timer Event Input Restrictions

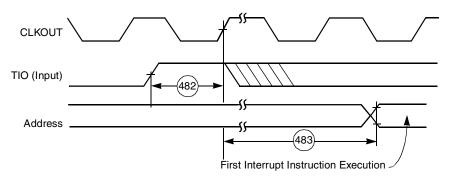


Figure 2-41. Timer Interrupt Generation

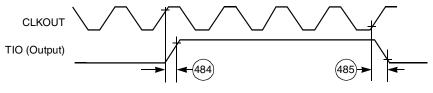
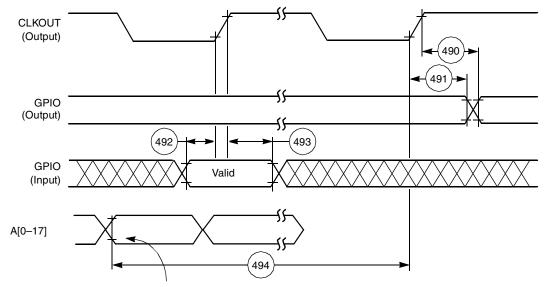



Figure 2-42. External Pulse Generation

2.5.10 GPIO Timing

No.	Characteristics	Expression	100	MHz	Unit
NO.	Characteristics	Expression	Min	Max	Unit
490	CLKOUT edge to GPIO out valid (GPIO out delay time)		_	8.5	ns
491	CLKOUT edge to GPIO out not valid (GPIO out hold time)		0.0	_	ns
492	GPIO In valid to CLKOUT edge (GPIO in set-up time)		8.5	_	ns
493	CLKOUT edge to GPIO in not valid (GPIO in hold time)		0.0	—	ns
494	Fetch to CLKOUT edge before GPIO change	Minimum: 6.75 \times T _C	67.5	_	ns
Note:	V_{CC} = 3.3 V ± 0.3 V; T _J = -40°C to +100 °C, C _L = 50 pF				

Fetch the instruction MOVE X0, X:(R0); X0 contains the new value of GPIO and R0 contains the address of the GPIO data register.

Figure 2-43. GPIO Timing

2.5.11 JTAG Timing

Characteristics	Anneq	All frequencies		
Characteristics	Min	Max	– Unit	
TCK frequency of operation (1/($T_{C} \times 3$); maximum 22 MHz)	0.0	22.0	MHz	
TCK cycle time in Crystal mode	45.0	—	ns	
TCK clock pulse width measured at 1.5 V	20.0	—	ns	
TCK rise and fall times	0.0	3.0	ns	
Boundary scan input data setup time	5.0	—	ns	
Boundary scan input data hold time	24.0	—	ns	
TCK low to output data valid	0.0	40.0	ns	
TCK low to output high impedance	0.0	40.0	ns	
TMS, TDI data setup time	5.0	—	ns	
TMS, TDI data hold time	25.0	—	ns	
TCK low to TDO data valid	0.0	44.0	ns	
TCK low to TDO high impedance	0.0	44.0	ns	
TRST assert time	100.0	—	ns	
TRST setup time to TCK low	40.0	_	ns	
	TCK cycle time in Crystal mode TCK clock pulse width measured at 1.5 V TCK rise and fall times Boundary scan input data setup time Boundary scan input data hold time TCK low to output data valid TCK low to output high impedance TMS, TDI data setup time TMS, TDI data setup time TCK low to TDO data valid TCK low to TDO data valid TCK low to TDO high impedance TRST assert time	MinTCK frequency of operation (1/(T_C × 3); maximum 22 MHz)0.0TCK cycle time in Crystal mode45.0TCK clock pulse width measured at 1.5 V20.0TCK rise and fall times0.0Boundary scan input data setup time5.0Boundary scan input data hold time24.0TCK low to output data valid0.0TCK low to output high impedance0.0TMS, TDI data setup time5.0TCK low to TDO data valid0.0TCK low to TDO high impedance0.0TCK low to TDO high impedance0.0	MinMaxTCK frequency of operation (1/(T_c × 3); maximum 22 MHz)0.022.0TCK cycle time in Crystal mode45.0-TCK clock pulse width measured at 1.5 V20.0-TCK rise and fall times0.03.0Boundary scan input data setup time5.0-Boundary scan input data hold time24.0-TCK low to output data valid0.040.0TCK low to output high impedance0.040.0TMS, TDI data hold time25.0-TCK low to TDO data valid0.044.0TCK low to TDO high impedance0.044.0TRST assert time100.0-	

Table 2-21. JTAG Timing

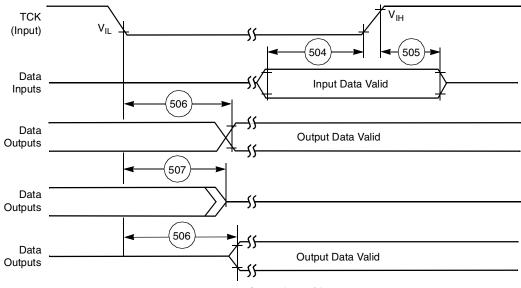
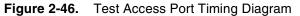




Figure 2-44. Test Clock Input Timing Diagram

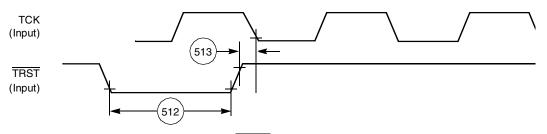


Figure 2-47. TRST Timing Diagram

2.5.12 OnCE Module TimIng

No.	Characteristics	Expression	Min	Max	Unit
500	TCK frequency of operation	Max 22.0 MHz	0.0	22.0	MHz
514	DE assertion time in order to enter Debug mode	$1.5 imes T_{C} + 10.0$	20.0	—	ns
515	Response time when DSP56309 is executing NOP instructions from internal memory	5.5 × T _C + 30.0	_	67.0	ns
516	Debug acknowledge assertion time	$3 \times T_{C} + 5.0$	25.0	_	ns
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{CC} = 1.8 \text{ V} \pm 0.1 \text{ V}$; $T_J = -40^{\circ}\text{C}$ to +100 °C, $C_L =$	50 pF		•	

Table 2-22. OnCE Module Timir

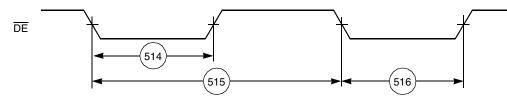
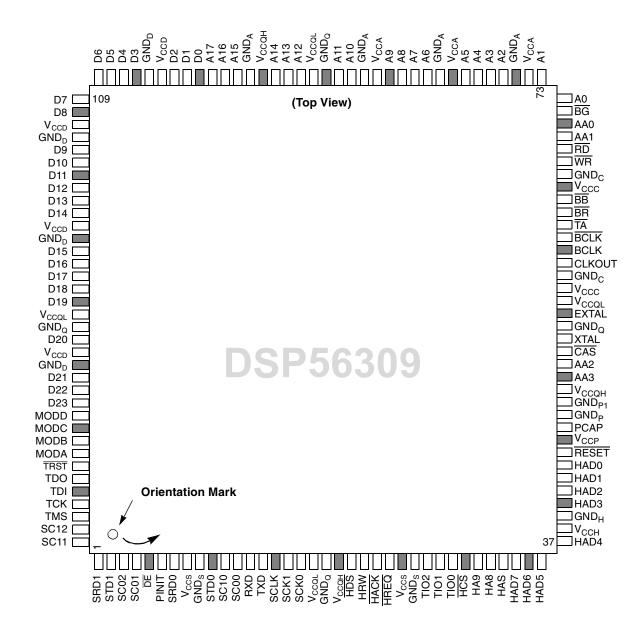
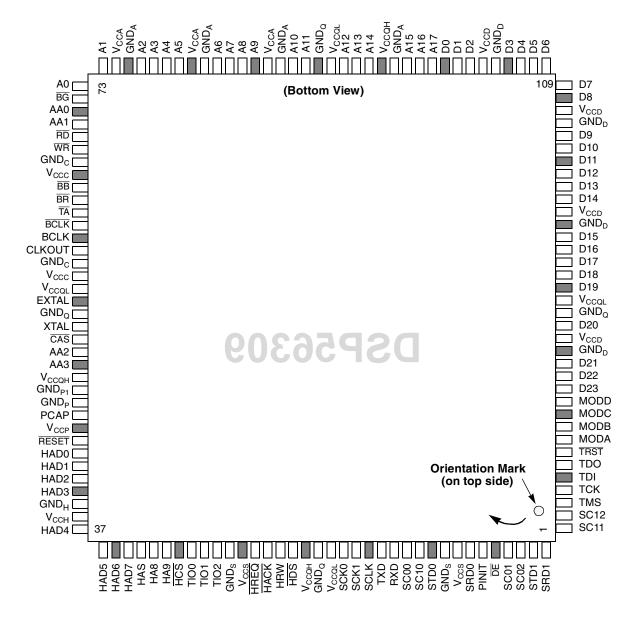


Figure 2-48. OnCE—Debug Request


This section includes diagrams of the DSP56309 package pin-outs and tables showing how the signals described in **Chapter 1**, are allocated for each package.

The DSP56309 is available in two package types:

- 144-pin Thin Quad Flat Pack (TQFP)
- 196-pin Molded Array Process-Ball Grid Array (MAP-BGA)


3.1 TQFP Package Description

Top and bottom views of the TQFP package are shown in Figure 3-1 and Figure 3-2 with their pin-outs.

Notes: Because of size constraints in this figure, only one name is shown for multiplexed pins. Refer to **Table 3-1** and **Table 3-2** for detailed information about pin functions and signal names.

Figure 3-1. DSP56309 Thin Quad Flat Pack (TQFP), Top View

Notes: Because of size constraints in this figure, only one name is shown for multiplexed pins. Refer to **Table 3-1** and **Table 3-2** for detailed information about pin functions and signal names.

Figure 3-2. DSP56309 Thin Quad Flat Pack (TQFP), Bottom View

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	SRD1 or PD4	26	GND _S	51	AA2/RAS2
2	STD1 or PD5	27	TIO2	52	CAS
3	SC02 or PC2	28	TIO1	53	XTAL
4	SC01 or PC1	29	TIO0	54	GND _Q
5	DE	30	HCS/HCS, HA10, or PB13	55	EXTAL
6	PINIT/NMI	31	HA2, HA9, or PB10	56	V _{CCQL}
7	SRD0 or PC4	32	HA1, HA8, or PB9	57	V _{CCC}
8	V _{CCS}	33	HA0, HAS/HAS, or PB8	58	GND _C
9	GND _S	34	H7, HAD7, or PB7	59	CLKOUT
10	STD0 or PC5	35	H6, HAD6, or PB6	60	BCLK
11	SC10 or PD0	36	H5, HAD5, or PB5	61	BCLK
12	SC00 or PC0	37	H4, HAD4, or PB4	62	TA
13	RXD or PE0	38	V _{CCH}	63	BR
14	TXD or PE1	39	GND _H	64	BB
15	SCLK or PE2	40	H3, HAD3, or PB3	65	V _{CCC}
16	SCK1 or PD3	41	H2, HAD2, or PB2	66	GND _C
17	SCK0 or PC3	42	H1, HAD1, or PB1	67	WR
18	V _{CCQL}	43	H0, HAD0, or PB0	68	RD
19	GND _Q	44	RESET	69	AA1/RAS1
20	V _{CCQH}	45	V _{CCP}	70	AA0/RAS0
21	HDS/HDS, HWR/HWR, or PB12	46	PCAP	71	BG
22	HRW, HRD/HRD, or PB11	47	GND _P	72	A0
23	HACK/HACK, HRRQ/HRRQ, or PB15	48	GND _{P1}	73	A1
24	HREQ/HREQ, HTRQ/HTRQ, or PB14	49	V _{CCQH}	74	V _{CCA}
25	V _{CCS}	50	AA3/RAS3	75	GND _A

 Table 3-1.
 DSP56309 TQFP Signal Identification by Pin Number

TQFP Package Description

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name		
76	A2	99	A17	122	D16		
77	A3	100	D0	123	D17		
78	A4	101	D1	124	D18		
79	A5	102	D2	125	D19		
80	V _{CCA}	103	V _{CCD}	126	V _{CCQL}		
81	GND _A	104	GND _D	127	GNDQ		
82	A6	105	D3	128	D20		
83	A7	106	D4	129	V _{CCD}		
84	A8	107	D5	130	GND _D		
85	A9	108	D6	131	D21		
86	V _{CCA}	109	D7	132	D22		
87	GND _A	110	D8	133	D23		
88	A10	111	V _{CCD}	134	MODD/IRQD		
89	A11	112	GND _D	135	MODC/IRQC		
90	GND _Q	113	D9	136	MODB/IRQB		
91	V _{CCQL}	114	D10	137	MODA/IRQA		
92	A12	115	D11	138	TRST		
93	A13	116	D12	139	TDO		
94	A14	117	D13	140	TDI		
95	V _{CCQH}	118	D14	141	тск		
96	GND _A	119	V _{CCD}	142	TMS		
97	A15	120	GND _D	143	SC12 or PD2		
98	A16	121	D15	144	SC11 or PD1		
Notes: Signal names are based on configured functionality. Most pins supply a single signal. Some pins provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some pins have two or more configurable functions; names assigned to these pins indicate the function for a specific configuration. For							

DSP56309 TQFP Signal Identification by Pin Number (Continued) Table 3-1.

pins have two pins have two or more configurable functions; names assigned to these pins indicate the function for a specific configuration. For example, Pin 34 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin.

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	72	BG	71	D7	109
A1	73	BR	63	D8	110
A10	88	CAS	52	D9	113
A11	89	CLKOUT	59	DE	5
A12	92	D0	100	EXTAL	55
A13	93	D1	101	GND _A	75
A14	94	D10	114	GND _A	81
A15	97	D11	115	GND _A	87
A16	98	D12	116	GND _A	96
A17	99	D13	117	GND _C	58
A2	76	D14	118	GND _C	66
A3	77	D15	121	GND _D	104
A4	78	D16	122	GND _D	112
A5	79	D17	123	GND _D	120
A6	82	D18	124	GND _D	130
A7	83	D19	125	GND _H	39
A8	84	D2	102	GND _P	47
A9	85	D20	128	GND _{P1}	48
AA0	70	D21	131	GND _Q	19
AA1	69	D22	132	GND _Q	54
AA2	51	D23	133	GND _Q	90
AA3	50	D3	105	GND _Q	127
BB	64	D4	106	GND _S	9
BCLK	60	D5	107	GND _S	26
BCLK	61	D6	108	H0	43

Table 3-2. DSP56309 TQFP Signal Identification by Name

TQFP Package Description

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
H1	42	HRD/HRD	22	PB4	37
H2	41	HREQ/HREQ	24	PB5	36
НЗ	40	HRRQ/HRRQ	23	PB6	35
H4	37	HRW	22	PB7	34
H5	36	HTRQ/HTRQ	24	PB8	33
H6	35	HWR/HWR	21	PB9	32
H7	34	IRQA	137	PC0	12
HAO	33	IRQB	136	PC1	4
HA1	32	IRQC	135	PC2	3
HA10	30	IRQD	134	PC3	17
HA2	31	MODA	137	PC4	7
HA8	32	MODB	136	PC5	10
HA9	31	MODC	135	PCAP	46
HACK/HACK	23	MODD	134	PD0	11
HAD0	43	NMI	6	PD1	144
HAD1	42	PB0	43	PD2	143
HAD2	41	PB1	42	PD3	16
HAD3	40	PB10	31	PD4	1
HAD4	37	PB11	22	PD5	2
HAD5	36	PB12	21	PE0	13
HAD6	35	PB13	30	PE1	14
HAD7	34	PB14	24	PE2	15
HAS/HAS	33	PB15	23	PINIT	6
HCS/HCS	30	PB2	41	RASO	70
HDS/HDS	21	PB3	40	RAS1	69

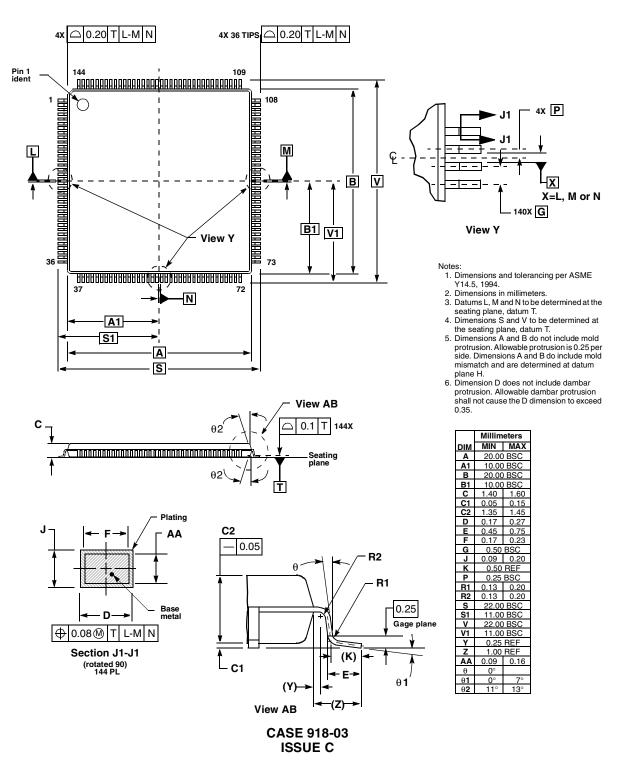
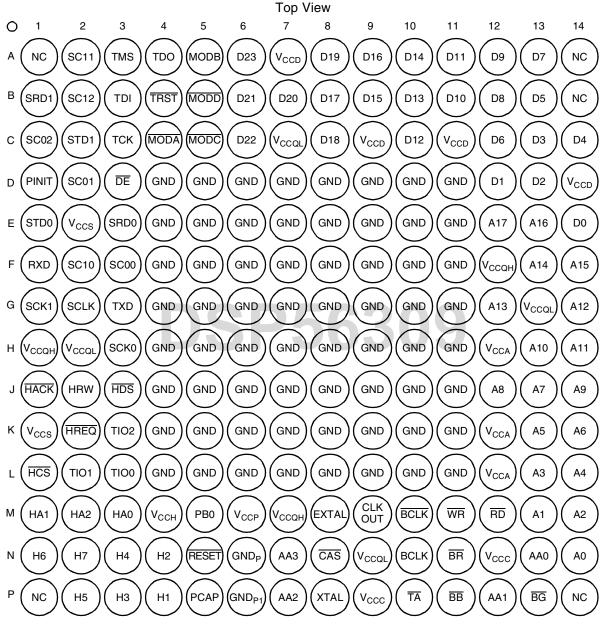
 Table 3-2.
 DSP56309 TQFP Signal Identification by Name (Continued)

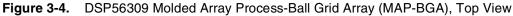
Packaging

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
51	STD1	2	V _{CCD}	111
50	TA	62	V _{CCD}	119
68	ТСК	141	V _{CCD}	129
44	TDI	140	V _{CCH}	38
13	TDO	139	V _{CCP}	45
12	TIO0	29	V _{CCQH}	20
4	TIO1	28	V _{CCQH}	49
3	TIO2	27	V _{CCQH}	95
11	TMS	142	V _{CCQL}	18
144	TRST	138	V _{CCQL}	56
143	TXD	14	V _{CCQL}	91
17	V _{CCA}	74	V _{CCQL}	126
16	V _{CCA}	80	V _{CCS}	8
15	V _{CCA}	86	V _{CCS}	25
7	V _{CCC}	57	WR	67
1	V _{CCC}	65	XTAL	53
10	V _{CCD}	103		
	No. 51 50 68 44 13 12 4 3 11 144 143 17 16 15 7 1	No. Signal Name 51 STD1 50 TA 68 TCK 44 TDI 13 TDO 12 TIO0 4 TDI 3 TIO2 11 TMS 144 TRST 143 TXD 17 V _{CCA} 16 V _{CCA} 7 V _{CCC} 1 V _{CCC}	No. Signal Name No. 51 STD1 2 50 TA 62 68 TCK 141 44 TDI 140 13 TDO 139 12 TIO0 29 4 TIO1 28 3 TIO2 27 11 TMS 142 144 TRST 138 143 TXD 14 17 V _{CCA} 74 16 V _{CCA} 80 15 V _{CCCA} 57 1 V _{CCCC} 57 1 V _{CCCC} 65	No. Signal Name No. Signal Name 51 STD1 2 V _{CCD} 50 TA 62 V _{CCD} 68 TCK 141 V _{CCD} 44 TDI 140 V _{CCP} 13 TDO 139 V _{CCP} 14 TIO 29 V _{CCQH} 4 TIO1 28 V _{CCQH} 11 TMS 142 V _{CCQL} 14 TRST 138 V _{CCQL} 143 TXD 142 V _{CCQL} 143 TXD 14 V _{CCQL} 15 V _{CCA} 80 V _{CCS} 15 V _{CCC} 57 WR 1 V _{CCCC} 65 XTAL

 Table 3-2.
 DSP56309 TQFP Signal Identification by Name (Continued)

3.2 TQFP Package Mechanical Drawing


Figure 3-3. DSP56309 Mechanical Information, 144-pin TQFP Package

Packaging

3.3 MAP-BGA Package Description

Top and bottom views of the MAP-BGA package are shown in Figure 3-4 and Figure 3-5 with their pin-outs.

MAP-BGA Package Description

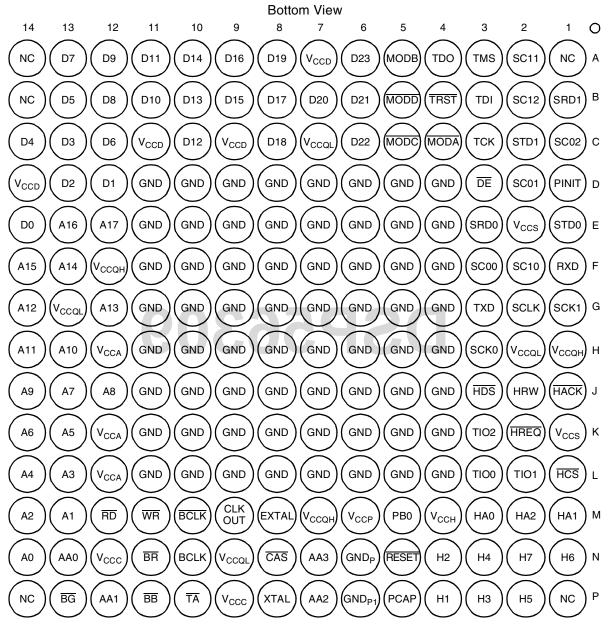


Figure 3-5. DSP56309 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View

Packaging

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
A1	Not Connected (NC), reserved	B12	D8	D9	GND
A2	SC11 or PD1	B13	D5	D10	GND
A3	TMS	B14	NC	D11	GND
A4	TDO	C1	SC02 or PC2	D12	D1
A5	MODB/IRQB	C2	STD1 or PD5	D13	D2
A6	D23	C3	ТСК	D14	V _{CCD}
A7	V _{CCD}	C4	MODA/IRQA	E1	STD0 or PC5
A8	D19	C5	MODC/IRQC	E2	V _{CCS}
A9	D16	C6	D22	E3	SRD0 or PC4
A10	D14	C7	V _{CCQL}	E4	GND
A11	D11	C8	D18	E5	GND
A12	D9	C9	V _{CCD}	E6	GND
A13	D7	C10	D12	E7	GND
A14	NC	C11	V _{CCD}	E8	GND
B1	SRD1 or PD4	C12	D6	E9	GND
B2	SC12 or PD2	C13	D3	E10	GND
B3	TDI	C14	D4	E11	GND
B4	TRST	D1	PINIT/NMI	E12	A17
B5	MODD/IRQD	D2	SC01 or PC1	E13	A16
B6	D21	D3	DE	E14	D0
B7	D20	D4	GND	F1	RXD or PE0
B8	D17	D5	GND	F2	SC10 or PD0
B9	D15	D6	GND	F3	SC00 or PC0
B10	D13	D7	GND	F4	GND
B11	D10	D8	GND	F5	GND

 Table 3-3.
 DSP56309 MAP-BGA Signal Identification by Pin Number

MAP-BGA Package Description

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
F6	GND	НЗ	SCK0 or PC3	J14	A9
F7	GND	H4	GND	K1	V _{CCS}
F8	GND	H5	GND	K2	HREQ/HREQ, HTRQ/HTRQ, or PB14
F9	GND	H6	GND	К3	TIO2
F10	GND	H7	GND	K4	GND
F11	GND	H8	GND	K5	GND
F12	V _{CCQH}	H9	GND	K6	GND
F13	A14	H10	GND	K7	GND
F14	A15	H11	GND	K8	GND
G1	SCK1 or PD3	H12	V _{CCA}	K9	GND
G2	SCLK or PE2	H13	A10	K10	GND
G3	TXD or PE1	H14	A11	K11	GND
G4	GND	J1	HACK/HACK, HRRQ/HRRQ, or PB15	K12	V _{CCA}
G5	GND	J2	HRW, HRD/HRD, or PB11	K13	A5
G6	GND	J3	HDS/HDS, HWR/HWR, or PB12	K14	A6
G7	GND	J4	GND	L1	HCS/HCS, HA10, or PB13
G8	GND	J5	GND	L2	TIO1
G9	GND	J6	GND	L3	TIO0
G10	GND	J7	GND	L4	GND
G11	GND	J8	GND	L5	GND
G12	A13	J9	GND	L6	GND
G13	V _{CCQL}	J10	GND	L7	GND
G14	A12	J11	GND	L8	GND
H1	V _{CCQH}	J12	A8	L9	GND
H2	V _{CCQL}	J13	A7	L10	GND
L11	GND	M13	A1	P1	NC
L12	V _{CCA}	M14	A2	P2	H5, HAD5, or PB5
L13	A3	N1	H6, HAD6, or PB6	P3	H3, HAD3, or PB3
L14	A4	N2	H7, HAD7, or PB7	P4	H1, HAD1, or PB1

 Table 3-3.
 DSP56309 MAP-BGA Signal Identification by Pin Number (Continued)

Packaging

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
M1	HA1, HA8, or PB9	N3	H4, HAD4, or PB4	P5	PCAP
M2	HA2, HA9, or PB10	N4	H2, HAD2, or PB2	P6	GND _{P1}
M3	HA0, HAS/HAS, or PB8	N5	RESET	P7	AA2/RAS2
M4	V _{CCH}	N6	GND _P	P8	XTAL
M5	H0, HAD0, or PB0	N7	AA3/RAS3	P9	V _{CCC}
M6	V _{CCP}	N8	CAS	P10	TA
M7	V _{CCQH}	N9	V _{CCQL}	P11	BB
M8	EXTAL	N10	BCLK	P12	AA1/RAS1
M9	CLKOUT	N11	BR	P13	BG
M10	BCLK	N12	V _{CCC}	P14	NC
M11	WR	N13	AA0/RAS0		
M12	RD	N14	AO		
Notes:			functionality. Most <u>conne</u> ctions sup		

Table 3-3. DSP56309 MAP-BGA Signal Identification by Pin Number (Continued)

tes: Signal names are based on configured functionality. Most <u>connections</u> supply a single signal. Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted but act as interrupt lines during <u>operation</u>. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some connections have two or more configurable functions; names assigned to these connections indicate the function for a specific configuration. For example, connection N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike in the TQFP package, most of the GND pins are connected internally in the center of the connection array and act as heat sink for the chip. Therefore, except for GND_P and GND_{P1} that support the PLL, other GND signals do not support individual subsystems in the chip.

MAP-BGA Package Description

Table 3-4.	DSP56309 MAP-BGA Signal Identification by Name
------------	--

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	N14	BG	P13	D7	A13
A1	M13	BR	N11	D8	B12
A10	H13	CAS	N8	D9	A12
A11	H14	CLKOUT	M9	DE	D3
A12	G14	D0	E14	EXTAL	M8
A13	G12	D1	D12	GND	D4
A14	F13	D10	B11	GND	D5
A15	F14	D11	A11	GND	D6
A16	E13	D12	C10	GND	D7
A17	E12	D13	B10	GND	D8
A2	M14	D14	A10	GND	D9
A3	L13	D15	В9	GND	D10
A4	L14	D16	A9	GND	D11
A5	K13	D17	B8	GND	E4
A6	K14	D18	C8	GND	E5
A7	J13	D19	A8	GND	E6
A8	J12	D2	D13	GND	E7
A9	J14	D20	B7	GND	E8
AA0	N13	D21	B6	GND	E9
AA1	P12	D22	C6	GND	E10
AA2	P7	D23	A6	GND	E11
AA3	N7	D3	C13	GND	F4
BB	P11	D4	C14	GND	F5
BCLK	M10	D5	B13	GND	F6
BCLK	N10	D6	C12	GND	F7

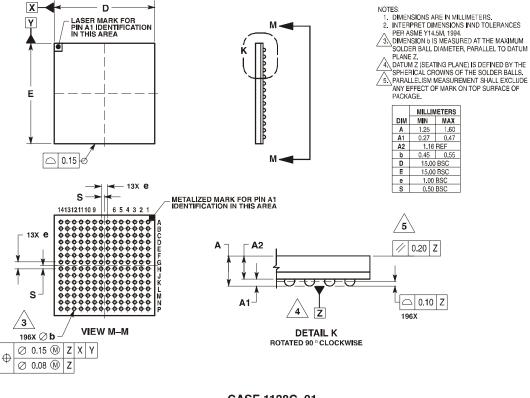
Packaging

 Table 3-4.
 DSP56309 MAP-BGA Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	
GND	F8	GND	J9	H4	N3	
GND	F9	GND	J10	H5	P2	
GND	F10	GND	J11	H6	N1	
GND	F11	GND	K4	H7	N2	
GND	G4	GND	K5	HAO	M3	
GND	G5	GND	K6	HA1	M1	
GND	G6	GND	K7	HA10	L1	
GND	G7	GND	K8	HA2	M2	
GND	G8	GND	К9	HA8	M1	
GND	G9	GND	K10	HA9	M2	
GND	G10	GND	K11	HACK/HACK	J1	
GND	G11	GND	L4	HAD0	M5	
GND	H4	GND	L5	HAD1	P4	
GND	H5	GND	L6	HAD2	N4	
GND	H6	GND	L7	HAD3	P3	
GND	H7	GND	L8	HAD4	N3	
GND	H8	GND	L9	HAD5	P2	
GND	H9	GND	L10	HAD6	N1	
GND	H10	GND	L11	HAD7	N2	
GND	H11	GND _P	N6	HAS/HAS	M3	
GND	J4	GND _{P1}	P6	HCS/HCS	L1	
GND	J5	H0	M5	HDS/HDS	J3	
GND	J6	H1	P4	HRD/HRD	J2	
GND	J7	H2	N4	HREQ/HREQ	K2	
GND	J8	НЗ	P3	HRRQ/HRRQ	J1	

MAP-BGA Package Description

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	
HRW	J2	PB2	N4	RAS0	N13	
HTRQ/HTRQ	K2	PB3	P3	RAS1	P12	
HWR/HWR	J3	PB4	N3	RAS2	P7	
ĪRQĀ	C4	PB5	P2	RAS3	N7	
ĪRQB	A5	PB6	N1	RD	M12	
IRQC	C5	PB7	N2	RESET	N5	
IRQD	B5	PB8	M3	RXD	F1	
MODA	C4	PB9	M1	SC00	F3	
MODB	A5	PC0	F3	SC01	D2	
MODC	C5	PC1	D2	SC02	C1	
MODD	B5	PC2	C1	SC10	F2	
NC	A1	PC3	НЗ	SC11	A2	
NC	A14	PC4	E3	SC12	B2	
NC	B14	PC5	E1	SCK0	НЗ	
NC	P1	PCAP	P5	SCK1	G1	
NC	P14	PD0	F2	SCLK	G2	
NMI	D1	PD1	A2	SRD0	E3	
PB0	M5	PD2	B2	SRD1	B1	
PB1	P4	PD3	G1	STD0	E1	
PB10	M2	PD4	B1	STD1	C2	
PB11	J2	PD5	C2	TA	P10	
PB12	J3	PE0	F1	ТСК	C3	
PB13	L1	PE1	G3	TDI	B3	
PB14	К2	PE2	G2	TDO	A4	
PB15	J1	PINIT	D1	TIO0	L3	


 Table 3-4.
 DSP56309 MAP-BGA Signal Identification by Name (Continued)

Packaging

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
TIO1	L2	V _{CCC}	P9	V _{CCQH}	M7
TIO2	K3	V _{CCD}	A7	V _{CCQL}	C7
TMS	A3	V _{CCD}	C9	V _{CCQL}	G13
TRST	B4	V _{CCD}	C11	V _{CCQL}	H2
TXD	G3	V _{CCD}	D14	V _{CCQL}	N9
V _{CCA}	H12	V _{CCH}	M4	V _{CCS}	E2
V _{CCA}	K12	V _{CCP}	M6	V _{CCS}	K1
V _{CCA}	L12	V _{CCQH}	F12	WR	M11
V _{CCC}	N12	V _{CCQH}	H1	XTAL	P8

 Table 3-4.
 DSP56309 MAP-BGA Signal Identification by Name (Continued)

3.4 MAP-BGA Package Mechanical Drawing

CASE 1128C-01 ISSUE O

DATE 07/28/98

Figure 3-6. DSP56309 Mechanical Information, 196-pin MAP-BGA Package

Design Considerations

This section describes various areas to consider when incorporating the DSP56309 device into a system design.

4.1 Thermal Design Considerations

An estimate of the chip junction temperature, T_J, in °C can be obtained from this equation:

Equation 1:
$$T_J = T_A + (P_D \times R_{\theta JA})$$

Where:

T _A	=	ambient temperature °C
$R_{\theta JA}$	=	package junction-to-ambient thermal resistance °C/W
P _D	=	power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance, as in this equation:

Equation 2:
$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

Where:

$R_{\theta JA}$	=	package junction-to-ambient thermal resistance °C/W
$R_{\theta JC}$	=	package junction-to-case thermal resistance °C/W
$R_{\theta CA}$	=	package case-to-ambient thermal resistance °C/W

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board (PCB) or otherwise change the thermal dissipation capability of the area surrounding the device on a PCB. This model is most useful for ceramic packages with heat sinks; some 90 percent of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device thermal performance may need the additional modeling capability of a system-level thermal simulation tool.

The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package is mounted. Again, if the estimates obtained from $R_{\theta JA}$ do not satisfactorily answer whether the thermal performance is adequate, a system-level model may be appropriate.

A complicating factor is the existence of three common ways to determine the junction-to-case thermal resistance in plastic packages.

• To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink.

Design Considerations

- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to the point at which the leads attach to the case.
- If the temperature of the package case (T_T) is determined by a thermocouple, thermal resistance is computed from the value obtained by the equation $(T_J T_T)/P_D$.

As noted earlier, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable to determine the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, the use of the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will yield an estimate of a junction temperature slightly higher than actual temperature. Hence, the new thermal metric, thermal characterization parameter or Ψ_{JT} , has been defined to be $(T_J - T_T)/P_D$. This value gives a better estimate of the junction temperature in natural convection when the surface temperature of the package is used. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.

4.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

Use the following list of recommendations to ensure correct DSP operation.

- Provide a low-impedance path from the board power supply to each V_{CC} pin on the DSP and from the board ground to each GND pin.
- Use at least six 0.01–0.1 μ F bypass capacitors positioned as close as possible to the four sides of the package to connect the V_{CC} power source to GND.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{CC} and GND pins are less than 0.5 inch per capacitor lead.
- Use at least a four-layer PCB with two inner layers for V_{CC} and GND.
- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB, IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 6 inches are recommended.

Power Consumption Considerations

- Consider all device loads as well as parasitic capacitance due to PCB traces when you calculate capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{CC} and GND circuits.
- All inputs must be terminated (that is, not allowed to float) by CMOS levels except for the three pins with internal pull-up resistors (TRST, TMS, DE).
- Take special care to minimize noise levels on the V_{CCP}, GND_P, and GND_{P1} pins.
- The following pins must be asserted after power-up: RESET and TRST.
- If multiple DSP devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.
- **RESET** must be asserted when the chip is powered up. A stable EXTAL signal should be supplied before deassertion of **RESET**.
- At power-up, ensure that the voltage difference between the 5 V tolerant pins and the chip V_{CC} never exceeds 3.5 V.

4.3 Power Consumption Considerations

Power dissipation is a key issue in portable DSP applications. Some of the factors affecting current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by this formula:

Equation 3: $I = C \times V \times f$

Where:

C = node/pin capacitance V = voltage swing f = frequency of node/pin toggle

Example 4-1. Current Consumption

For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, with a 66 MHz clock, toggling at its maximum possible rate (33 MHz), the current consumption is expressed in **Equation 4**.

Equation 4: $I = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^{6} = 5.48 \ mA$

The maximum internal current (I_{CCI} max) value reflects the typical possible switching of the internal buses on bestcase operation conditions—not necessarily a real application case. The typical internal current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions.

Perform the following steps for applications that require very low current consumption:

- 1. Set the EBD bit when you are not accessing external memory.
- 2. Minimize external memory accesses, and use internal memory accesses.
- 3. Minimize the number of pins that are switching.
- 4. Minimize the capacitive load on the pins.
- 5. Connect the unused inputs to pull-up or pull-down resistors.

Design Considerations

- 6. Disable unused peripherals.
- 7. Disable unused pin activity (for example, CLKOUT, XTAL).

One way to evaluate power consumption is to use a current-per-MIPS measurement methodology to minimize specific board effects (that is, to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in **Appendix A**. Use the test algorithm, specific test current measurements, and the following equation to derive the current-per-MIPS value.

Equation 5: ' MIPS = I/ MHz = $(I_{typF2} - I_{typF1})$ / (F2 - F1

Where:

Note: F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

4.4 PLL Performance Issues

The following explanations should be considered as general observations on expected PLL behavior. There is no test that replicates these exact numbers. These observations were measured on a limited number of parts and were not verified over the entire temperature and voltage ranges.

4.4.1 Phase Skew Performance

The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature and voltage ranges. As defined in **Figure 2**-2, *External Clock Timing*, on page 2-5 for input frequencies greater than 15 MHz and the MF \leq 4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between -1.4 ns and +3.2 ns.

4.4.2 Phase Jitter Performance

The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive load on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies greater than 15 MHz and MF \leq 4, this jitter is less than \pm 0.6 ns; otherwise, this jitter is not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than \pm 2 ns.

4.4.3 Frequency Jitter Performance

The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF (MF < 10) this jitter is smaller than 0.5 percent. For mid-range MF (10 < MF < 500) this jitter is between 0.5 percent and approximately 2 percent. For large MF (MF > 500), the frequency jitter is 2–3 percent.

4.5 Input (EXTAL) Jitter Requirements

The allowed jitter on the frequency of EXTAL is 0.5 percent. If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time), then the allowed jitter can be 2 percent. The phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed values.

Design Considerations

The following benchmark program evaluates DSP56309 power use in a test situation. It enables the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
;*
;*
                 CHECKS Typical Power Consumption
                                                            *
;*
·****
      200,55,0,0,0
     page
     nolist
I_VEC EQU $000000; Interrupt vectors for program debug only
START EQU $8000; MAIN (external) program starting address
INT_PROG EQU $100 ; INTERNAL program memory starting address
INT_XDAT EQU $0; INTERNAL X-data memory starting address
INT_YDAT EQU $0; INTERNAL Y-data memory starting address
     INCLUDE "ioequ.asm"
     INCLUDE "intequ.asm"
     list
     org
           P:START
;
     movep #$0243FF, x:M_BCR ;; BCR: Area 3 = 2 w.s (SRAM)
; Default: 2w.s (SRAM)
;
     movep #$0d0000,x:M_PCTL ; XTAL disable
                            ; PLL enable
                            ; CLKOUT disable
; Load the program
;
     move
           #INT_PROG,r0
     move
          #PROG_START,r1
     do
           #(PROG_END-PROG_START), PLOAD_LOOP
     move p:(r1)+,x0
     move x0, p: (r0) +
     nop
PLOAD_LOOP
;
; Load the X-data
;
     move #INT_XDAT,r0
     move #XDAT_START,r1
           # (XDAT_END-XDAT_START), XLOAD_LOOP
     do
```

```
move
               p:(r1)+,x0
       move
              x0,x:(r0)+
XLOAD_LOOP
;
; Load the Y-data
;
       move
               #INT_YDAT,r0
       move
               #YDAT_START,r1
               #(YDAT_END-YDAT_START),YLOAD_LOOP
       do
       move
               p:(r1)+,x0
       move
               x0,y:(r0)+
YLOAD_LOOP
;
               INT_PROG
       jmp
PROG_START
       move
               #$0,r0
       move
               #$0,r4
       move
               #$3f,m0
               #$3f,m4
       move
;
       clr
               а
       clr
               b
       move
               #$0,x0
       move
               #$0,x1
               #$0,y0
       move
       move
               #$0,y1
       bset
               #4,omr
                              ; ebd
;
sbr
       dor
               #60,_end
       mac
               x0,y0,ax:(r0)+,x1
                                     y:(r4)+,y1
       mac
               x1,y1,ax:(r0)+,x0
                                     y:(r4)+,y0
       add
               a,b
       mac
               x0,y0,ax:(r0)+,x1
       mac
               x1,y1,a
                                     y:(r4)+,y0
       move
               b1,x:$ff
_end
               sbr
       bra
       nop
       nop
       nop
       nop
PROG_END
       nop
       nop
XDAT_START
;
       org
               x:0
               $262EB9
       dc
       dc
               $86F2FE
               $E56A5F
       dc
       dc
               $616CAC
       dc
               $8FFD75
       dc
               $9210A
       dc
               $A06D7B
       dc
               $CEA798
       dc
               $8DFBF1
       dc
               $A063D6
```

dc	\$6C6657
dc	\$C2A544
dc	\$A3662D
dc	\$A4E762
dc	\$84F0F3
dc	\$84F0F3 \$E6F1B0
dc	\$B3829
dc	\$8BF7AE
dc	\$63A94F
dc	\$EF78DC
dc	\$242DE5
dc	\$A3E0BA
dc	\$EBAB6B
dc	\$8726C8
dc	\$CA361
dc	\$2F6E86
dc	\$A57347
dc	\$4BE774
dc	\$8F349D
dc	\$A1ED12
dc	\$4BFCE3
dc	\$EA26E0
dc	\$CD7D99
dc	\$4BA85E
dc	\$27A43F
dc	\$A8B10C
dc	\$D3A55
dc	\$25EC6A
dc	\$2A255B
dc	\$A5F1F8
dc	\$2426D1
dc	\$AE6536
dc	\$CBBC37
dc	\$6235A4
dc	\$37F0D
dc	\$63BEC2
dc	\$A5E4D3
dc	\$8CE810
dc	\$3FF09
dc	\$60E50E
dc	\$CFFB2F
dc	\$40753C
dc	\$8262C5
dc	\$CA641A
dc	\$EB3B4B
dc	\$2DA928
dc	\$AB6641
dc	\$28A7E6
dc	\$4E2127
dc	\$482FD4
dc	\$7257D
dc	\$E53C72
dc	\$1A8C3
dc	\$E27540
XDAT_END	

YDAT_START

;	org	y:0
	dc	\$5B6DA
	dc	\$C3F70B

dc	\$6A39E8
dc	\$81E801
dc	\$C666A6
dc	\$46F8E7
dc	\$AAEC94
dc	\$24233D
dc	\$802732
dc	\$2E3C83
dc	\$A43E00
dc	\$C2B639
dc	\$85A47E
dc	
	\$ABFDDF
dc	\$F3A2C
dc	\$2D7CF5
dc	\$E16A8A
dc	\$ECB8FB
dc	\$4BED18
dc	\$43F371
dc	\$83A556
dc	\$E1E9D7
dc	\$ACA2C4
dc	\$8135AD
dc	\$2CE0E2
dc	\$8F2C73
dc	\$432730
dc	\$A87FA9
dc	\$4A292E
dc	\$A63CCF
dc	\$6BA65C
dc	\$E06D65
dc	\$1AA3A
dc	\$A1B6EB
dc	\$48AC48
dc	\$EF7AE1
dc	\$6E3006
dc	\$62F6C7
dc	\$6064F4
dc	\$87E41D
	-
dc	\$CB2692
dc	\$2C3863
dc	1
	\$C6BC60
dc	\$43A519
dc	\$6139DE
dc	\$ADF7BF
dc	\$4B3E8C
	-
dc	\$6079D5
dc	\$E0F5EA
dc	\$8230DB
dc	\$A3B778
dc	\$2BFE51
dc	\$E0A6B6
dc	\$68FFB7
dc	\$28F324
dc	\$8F2E8D
dc	\$667842
dc	\$83E053
dc	\$A1FD90
dc	\$6B2689
dc	\$85B68E
dc	\$622EAF
uc	уUZZEAF

dc \$6162BC dc \$E4A245 YDAT END ; EQUATES for DSP56309 I/O registers and ports ; ; Last update: June 11 1995 ; page 132,55,0,0,0 opt mex ioequ ident 1,0 ;-----; ; EQUATES for I/O Port Programming ; ;-----Register Addresses ; ; Host port GPIO data Register ; Host port GPIO direction Register M_HDR_EQU \$FFFFC9 M_HDDR_EQU \$FFFFC8 M_PCRC EQU \$FFFFBF ; Port C Control Register M_PRRC EQU \$FFFFBE ; Port C Direction Register M_PDRC EQU \$FFFFBD ; Port C GPIO Data Register M_PCRD EQU \$FFFFAF ; Port D Control register M_PRRD EQU \$FFFFAE ; Port D Direction Data Register ; Port D GPIO Data Register M_PDRD EQU \$FFFFAD ; Port E Control register M_PCRE EQU \$FFFF9F M_PRRE EQU \$FFFF9E ; Port E Direction Register M_PDRE EQU \$FFFF9D ; Port E Data Register M_OGDB EQU \$FFFFFC ; OnCE GDB Register ;-----; EQUATES for Host Interface ; ; ;-----Register Addresses ; M_HCR EQU \$FFFFC2 ; Host Control Register ; Host Status Register M_HSR EQU \$FFFFC3 ; Host Polarity Control Register ; Host Base Address Register M_HPCR_EQU_\$FFFFC4 M_HBAR EQU \$FFFFC5 M_HRX EQU \$FFFFC6 ; Host Receive Register M_HTX EQU \$FFFFC7 ; Host Transmit Register ; HCR bits definition M_HRIE EQU \$0 ; Host Receive interrupts Enable ; Host Transmit Interrupt Enable M_HTIE EQU \$1 M_HCIE EQU \$2 ; Host Command Interrupt Enable M_HF2 EQU \$3 ; Host Flag 2 M_HF3 EQU \$4 ; Host Flag 3

```
HSR bits definition
•
M HRDF EOU $0
                               ; Host Receive Data Full
M_HTDE EQU $1
                               ; Host Receive Data Empty
M_HCP EQU $2
                                ; Host Command Pending
M_HF0 EQU $3
                                ; Host Flag 0
M_HF1 EQU $4
                                ; Host Flag 1
; HPCR bits definition
                               ; Host Port GPIO Enable
M_HGEN EQU $0
M_HA8EN EQU $1
                               ; Host Address 8 Enable
M_HA9EN EQU $2
                               ; Host Address 9 Enable
M_HCSEN EQU $3
                               ; Host Chip Select Enable
M_HREN EQU $4
                               ; Host Request Enable
M_HAEN EQU $5
                               ; Host Acknowledge Enable
                                ; Host Enable
M_HEN EQU $6
                               ; Host Request Open Drain mode
M_HOD EQU $8
                               ; Host Data Strobe Polarity
M_HDSP EQU $9
                              ; Host Address Strobe Polarity
M HASP EQU $A
                              ; Host Multiplexed bus select
M HMUX EOU SB
                              ; Host Double/Single Strobe select
M_HD_HS EQU $C
M_HCSP EQU $D
                              ; Host Chip Select Polarity
M_HRP EQU $E
                               ; Host Request Polarity
M_HAP EQU $F
                               ; Host Acknowledge Polarity
;------
;
     EQUATES for Serial Communications Interface (SCI)
;
:
Register Addresses
;
                              ; SCI Transmit Data Register (high)
M_STXH EQU $FFFF97
M_STXM EQU $FFFF96
                               ; SCI Transmit Data Register (middle)
M_STXL EQU $FFFF95
                               ; SCI Transmit Data Register (low)
M_SRXH EQU $FFFF9A
                               ; SCI Receive Data Register (high)
                               ; SCI Receive Data Register (middle)
; SCI Receive Data Register (low)
M_SRXM EQU $FFFF99
M_SRXL EQU $FFFF98
M_STXA EQU $FFFF94
                               ; SCI Transmit Address Register
                               ; SCI Control Register
M_SCR EQU $FFFF9C
                              ; SCI Status Register
M_SSR EQU $FFFF93
M_SCCR EQU $FFFF9B
                                ; SCI Clock Control Register
      SCI Control Register Bit Flags
;
M_WDS EQU $7
                                ; Word Select Mask (WDS0-WDS3)
M_WDS0 EQU 0
                                ; Word Select 0
                                ; Word Select 1
M_WDS1 EQU 1
M_WDS2 EQU 2
                                ; Word Select 2
M_SSFTD EQU 3
                                ; SCI Shift Direction
M_SBK EQU 4
                                ; Send Break
                               ; Wakeup Mode Select
M_WAKE EQU 5
                               ; Receiver Wakeup Enable
M_RWU EQU 6
                               ; Wired-OR Mode Select
M WOMS EQU 7
M_SCRE EQU 8
                               ; SCI Receiver Enable
M_SCTE EQU 9
                               ; SCI Transmitter Enable
M_ILIE EQU 10
                               ; Idle Line Interrupt Enable
```

M SCRIE EOU 11 ; SCI Receive Interrupt Enable M_SCTIE EQU 12 ; SCI Transmit Interrupt Enable M_TMIE EQU 13 ; Timer Interrupt Enable M_TIR EQU 14 ; Timer Interrupt Rate M_SCKP EQU 15 ; SCI Clock Polarity M_REIE EQU 16 ; SCI Error Interrupt Enable (REIE) SCI Status Register Bit Flags ; ; Transmitter Empty M_TRNE EQU 0 M_TDRE EQU 1 ; Transmit Data Register Empty M_RDRF EQU 2 ; Receive Data Register Full M_IDLE EQU 3 ; Idle Line Flag M OR EQU 4 ; Overrun Error Flag ; Parity Error M_PE EQU 5 M_FE EQU 6 ; Framing Error Flag M_R8 EQU 7 ; Received Bit 8 (R8) Address SCI Clock Control Register ; ; Clock Divider Mask (CD0-CD11) M_CD EQU \$FFF ; Clock Out Divider M_COD EQU 12 M_SCP EQU 13 ; Clock Prescaler M_RCM EQU 14 ; Receive Clock Mode Source Bit M_TCM EQU 15 ; Transmit Clock Source Bit ;------; EQUATES for Synchronous Serial Interface (SSI) ; ; ; Register Addresses Of SSI0 M_TX00 EQU \$FFFFBC ; SSI0 Transmit Data Register 0 M_TX01 EQU \$FFFFBB; SSIO Transmit Data Register 1M_TX02 EQU \$FFFFBA; SSIO Transmit Data Register 2M_TSR0 EQU \$FFFFB9; SSIO Time Slot RegisterM_RX0 EQU \$FFFFB8; SSIO Receive Data RegisterM_CRB0 EQU \$FFFFB6; SSIO Status Register BM_CRA0 EQU \$FFFFB5; SSIO Control Register AM_TSMA0 EQU \$FFFFB4; SSIO Transmit Slot Mask Register BM_RSMA0 EQU \$FFFFB3; SSIO Transmit Slot Mask Register AM_RSMA0 EQU \$FFFFB4; SSIO Receive Slot Mask Register AM_RSMB0 EQU \$FFFFB1; SSIO Receive Slot Mask Register A M_TX01 EQU \$FFFFBB ; SSIO Transmit Data Register 1 M_RSMB0 EQU \$FFFFB1 ; SSIO Receive Slot Mask Register B Register Addresses Of SSI1 ; M_TX10 EQU \$FFFFAC ; SSI1 Transmit Data Register 0 ; SSI1 Transmit Data Register 2 ; SSI1 Transmit Data Register 2 ; SSI1 Time Slot Register : SSI1 Receive Data Register M_TX11 EQU \$FFFFAB M_TX12 EQU \$FFFFAA ; SSI1 Time Slot Register ; SSI1 Receive Data Register M_TSR1 EQU \$FFFFA9 M_RSMB1 EQU \$FFFFA1; SSI1 Receive Data RegisterM_RSMB1 EQU \$FFFFA2; SSI1 Status Register BM_CRA1 EQU \$FFFFA5; SSI1 Control Register AM_TSMA1 EQU \$FFFFA4; SSI1 Transmit Slot Mask Register AM_RSMA1 EQU \$FFFFA3; SSI1 Receive Slot Mask Register A

SSI Control Register A Bit Flags ; M PM EOU SFF ; Prescale Modulus Select Mask (PM0-PM7) M_PSR EQU 11 ; Prescaler Range M_DC EQU \$1F000 ; Frame Rate Divider Control Mask (DC0-DC7) M_ALC EQU 18 ; Alignment Control (ALC) ; Word Length Control Mask (WL0-WL7) M_WL EQU \$380000 M_SSC1 EQU 22 ; Select SC1 as TR #0 drive enable (SSC1) SSI Control Register B Bit Flags ; M_OF EQU \$3 ; Serial Output Flag Mask M_OF0 EQU 0 ; Serial Output Flag 0 M_OF1 EQU 1 ; Serial Output Flag 1 ; Serial Control Direction Mask M_SCD EQU \$1C M_SCD0 EQU 2 ; Serial Control 0 Direction ; Serial Control 1 Direction M_SCD1 EQU 3 ; Serial Control 2 Direction M SCD2 EOU 4 ; Clock Source Direction M_SCKD EQU 5 ; Shift Direction M SHFD EOU 6 ; Frame Sync Length Mask (FSL0-FSL1) M_FSL EQU \$180 M_FSL0 EQU 7 ; Frame Sync Length 0 ; Frame Sync Length 1 M_FSL1 EQU 8 ; Frame Sync Relative Timing ; Frame Sync Polarity M_FSR EQU 9 M_FSP EQU 10 M CKP EOU 11 ; Clock Polarity ; Sync/Async Control M_SYN EQU 12 M_MOD EQU 13 ; SSI Mode Select M_SSTE EQU \$1C000 ; SSI Transmit enable Mask ; SSI Transmit #2 Enable M_SSTE2 EQU 14 ; SSI Transmit #1 Enable M_SSTE1 EQU 15 ; SSI Transmit #0 Enable M_SSTE0 EQU 16 ; SSI Receive Enable M_SSRE EQU 17 M_SSTIE EQU 18 ; SSI Transmit Interrupt Enable M_SSRIE EQU 19 ; SSI Receive Interrupt Enable M_STLIE EQU 20 ; SSI Transmit Last Slot Interrupt Enable M_SRLIE EQU 21 ; SSI Receive Last Slot Interrupt Enable M_STEIE EQU 22 ; SSI Transmit Error Interrupt Enable M_SREIE EQU 23 ; SI Receive Error Interrupt Enable ; SSI Status Register Bit Flags M_IF EQU \$3 ; Serial Input Flag Mask M_IF0 EQU 0 ; Serial Input Flag 0 M_IF1 EQU 1 ; Serial Input Flag 1 M_TFS EQU 2 ; Transmit Frame Sync Flag M_RFS EQU 3 ; Receive Frame Sync Flag m tue eou 4 ; Transmitter Underrun Error FLag M_ROE EQU 5 ; Receiver Overrun Error Flag M_TDE EQU 6 ; Transmit Data Register Empty M_RDF EQU 7 ; Receive Data Register Full SSI Transmit Slot Mask Register A ; M_SSTSA EQU \$FFFF ; SSI Transmit Slot Bits Mask A (TS0-TS15) SSI Transmit Slot Mask Register B ; M_SSTSB EQU \$FFFF ; SSI Transmit Slot Bits Mask B (TS16-TS31)

SSI Receive Slot Mask Register A ; M_SSRSA EQU \$FFFF ; SSI Receive Slot Bits Mask A (RS0-RS15) ; SSI Receive Slot Mask Register B ; SSI Receive Slot Bits Mask B (RS16-RS31) M_SSRSB EQU \$FFFF ;-----; EQUATES for Exception Processing ; :-----Register Addresses : ; Interrupt Priority Register Core M_IPRC EQU \$FFFFFF M_IPRP EQU \$FFFFFE ; Interrupt Priority Register Peripheral Interrupt Priority Register Core (IPRC) ; M_IAL EQU \$7 ; IRQA Mode Mask M IALO EOU O ; IRQA Mode Interrupt Priority Level (low) M_IAL1 EQU 1 ; IRQA Mode Interrupt Priority Level (high) M_IAL2 EQU 2 ; IRQA Mode Trigger Mode M_IBL EQU \$38 ; IRQB Mode Mask ; IRQB Mode Interrupt Priority Level (low) M_IBL0 EQU 3 M_IBL1 EQU 4 ; IRQB Mode Interrupt Priority Level (high) ; IRQB Mode Trigger Mode M_IBL2 EQU 5 ; IRQC Mode Mask M_ICL EQU \$1C0 M_ICLO EQU 6 ; IRQC Mode Interrupt Priority Level (low) M_ICL1 EQU 7 ; IRQC Mode Interrupt Priority Level (high) M_ICL2 EQU 8 ; IRQC Mode Trigger Mode M_IDL EQU \$E00 ; IRQD Mode Mask ; IRQD Mode Interrupt Priority Level (low) M_IDL0 EQU 9 ; IRQD Mode Interrupt Priority Level (high) M_IDL1 EQU 10 ; IRQD Mode Trigger Mode M_IDL2 EQU 11 ; DMA0 Interrupt priority Level Mask M_D0L EQU \$3000 ; DMA0 Interrupt Priority Level (low) M_DOLO EQU 12 ; DMA0 Interrupt Priority Level (high) M_DOL1 EQU 13 ; DMA1 Interrupt Priority Level Mask M_D1L EQU \$C000 M_D1L0 EQU 14 ; DMA1 Interrupt Priority Level (low) M_D1L1 EQU 15 ; DMA1 Interrupt Priority Level (high) M_D2L EQU \$30000 ; DMA2 Interrupt priority Level Mask M_D2L0 EQU 16 ; DMA2 Interrupt Priority Level (low) M_D2L1 EQU 17 ; DMA2 Interrupt Priority Level (high) M_D3L EQU \$C0000 ; DMA3 Interrupt Priority Level Mask M_D3L0 EQU 18 ; DMA3 Interrupt Priority Level (low) M_D3L1 EQU 19 ; DMA3 Interrupt Priority Level (high) M_D4L EQU \$300000 ; DMA4 Interrupt priority Level Mask ; DMA4 Interrupt Priority Level (low) M_D4L0 EQU 20 ; DMA4 Interrupt Priority Level (high) M_D4L1 EQU 21 M_D5L EQU \$C00000 ; DMA5 Interrupt priority Level Mask M_D5L0 EQU 22 ; DMA5 Interrupt Priority Level (low) M_D5L1 EQU 23 ; DMA5 Interrupt Priority Level (high)

Interrupt Priority Register Peripheral (IPRP) ; M_HPL EQU \$3 ; Host Interrupt Priority Level Mask M_HPL0_EQU_0 ; Host Interrupt Priority Level (low) M_HPL1 EQU 1 ; Host Interrupt Priority Level (high) ; SSIO Interrupt Priority Level Mask M_SOL EQU \$C M_SOLO EQU 2 ; SSIO Interrupt Priority Level (low) ; SSIO Interrupt Priority Level (high) M_SOL1 EQU 3 M_S1L EQU \$30 ; SSI1 Interrupt Priority Level Mask M_S1L0 EQU 4 ; SSI1 Interrupt Priority Level (low) ; SSI1 Interrupt Priority Level (high) M_S1L1 EQU 5 M_SCL EQU \$C0 ; SCI Interrupt Priority Level Mask M_SCLO EQU 6 ; SCI Interrupt Priority Level (low) ; SCI Interrupt Priority Level (high) M_SCL1 EQU 7 M_TOL EQU \$300 ; TIMER Interrupt Priority Level Mask ; TIMER Interrupt Priority Level (low) M_TOLO EQU 8 M_TOL1 EQU 9 ; TIMER Interrupt Priority Level (high) ; EQUATES for TIMER ; ; Register Addresses Of TIMER0 m_TCSRU EQU \$FFFF8F ; Timer 0 Control/Status Register
M_TLR0 EQU \$FFFF8E ; TIMER0 Load Reg
M_TCPR0 EQU \$FFFF8D ; TIMER0 Compare Register
M_TCR0 EQU \$FFFF8C ; TIMER0 Count Perioter Register Addresses Of TIMER1 ; M_TCSR1 EQU \$FFFF8B ; TIMER1 Control/Status Register M_TLR1 EQU \$FFFF8A ; TIMER1 Load Reg M_TCPR1 EQU \$FFFF89 ; TIMER1 Compare Register M_TCR1 EQU \$FFFF88 ; TIMER1 Count Register ; Register Addresses Of TIMER2 ; TIMER2 Control/Status Register M_TCSR2 EQU \$FFFF87 M_TLR2 EQU \$FFFF86 ; TIMER2 Load Reg M_TCPR2 EQU \$FFFF85 ; TIMER2 Compare Register ; TIMER2 Count Register ; TIMER Prescaler Load Register ; TIMER Prescalar Count Register M_TCR2 EQU \$FFFF84 M_TPLR EQU \$FFFF83 M_TPCR EQU \$FFFF82 ; TIMER Prescalar Count Register Timer Control/Status Register Bit Flags ; M_TE EQU 0 ; Timer Enable ; Timer Overflow Interrupt Enable M_TOIE EQU 1 ; Timer Compare Interrupt Enable M_TCIE EQU 2 M_TC EQU \$F0 ; Timer Control Mask (TCO-TC3) M_INV EQU 8 ; Inverter Bit ; Timer Restart Mode M_TRM EQU 9 M_DIR EQU 11 ; Direction Bit

M_DI EQU 12 ; Data Input M_DO EQU 13 ; Data Output M_PCE EQU 15 ; Prescaled Clock Enable M_TOF EQU 20 ; Timer Overflow Flag M_TCF EQU 21 ; Timer Compare Flag Timer Prescaler Register Bit Flags ; M_PS EQU \$600000 ; Prescaler Source Mask M_PS0 EQU 21 M_PS1 EQU 22 ; Timer Control Bits -M_TCO EQU 4 ; Timer Control 0 M_TC1 EQU 5 ; Timer Control 1 M_TC2 EQU 6 ; Timer Control 2 ; Timer Control 3 M_TC3 EQU 7 ;------; EQUATES for Direct Memory Access (DMA) ; ; Register Addresses Of DMA • M_DSTREQUFFFFF4; DMAStatusRegisterM_DOR0EQU\$FFFFF3; DMAOffsetRegister0M_DOR1EQU\$FFFFF2; DMAOffsetRegister1M_DOR2EQU\$FFFFF1; DMAOffsetRegister2M_DOR3EQU\$FFFFF0; DMAOffsetRegister3 ; Register Addresses Of DMA0 M_DSR0 EQU \$FFFFEF ; DMA0 Source Address Register M_DSKU EQU \$FFFFEE M_DDR0 EQU \$FFFFEE ; DMA0 Destination Address Register M_DCO0 EQU \$FFFFED ; DMA0 Counter M_DCR0 EQU \$FFFFEC ; DMA0 Control Register Register Addresses Of DMA1 ; M_DDR1 EQU \$FFFFEA M_DC01 EQU \$FFFFE9 M_DSR1 EQU \$FFFFEB ; DMA1 Source Address Register ; DMA1 Destination Address Register ; DMA1 Counter M_DCR1 EQU \$FFFFE8 ; DMA1 Control Register Register Addresses Of DMA2 ; M_DSR2 EQU \$FFFFE7 ; DMA2 Source Address Register M_DDR2 EQU \$FFFFE6 ; DMA2 Destination Address Register M_DCO2 EQU \$FFFFE5 ; DMA2 Counter M_DCR2 EQU \$FFFFE4 ; DMA2 Control Register ; Register Addresses Of DMA4 M_DSR3 EQU \$FFFFE3 M_DDR3 EQU \$FFFFE2 M_DCO3 EQU \$FFFFE1 M DCR3 EOU \$FFFFE0 ; DMA3 Source Address Register M_DSR3 EQU \$FFFFE3 ; DMA3 Destination Address Register ; DMA3 Counter M_DCR3 EQU \$FFFFE0 ; DMA3 Control Register

; Register Addresses Of DMA4

M_DSR4 EQU \$FFFFDF ; DMA4 Source Address Register M_DDR4 EQU \$FFFFDE ; DMA4 Destination Address Register M_DCO4 EQU \$FFFFDD ; DMA4 Counter M_DCR4 EQU \$FFFFDC ; DMA4 Control Register Register Addresses Of DMA5 ; ; DMA5 Source Address Register M_DSR5 EQU \$FFFFDB M_DDR5 EQU \$FFFFDA ; DMA5 Destination Address Register M_DCO5 EQU \$FFFFD9 ; DMA5 Counter ; DMA5 Control Register M_DCR5 EQU \$FFFFD8 DMA Control Register ; M DSS EOU \$3 ; DMA Source Space Mask (DSS0-Dss1) ; DMA Source Memory space 0 M_DSS0 EQU 0 ; DMA Source Memory space 1 M DSS1 EOU 1 ; DMA Destination Space Mask (DDS-DDS1) M_DDS_EQU_\$C ; DMA Destination Memory Space 0 M DDS0 EQU 2 M_DDS1 EQU 3 ; DMA Destination Memory Space 1 M_DAM EQU \$3f0 ; DMA Address Mode Mask (DAM5-DAM0) M_DAMO EQU 4 ; DMA Address Mode 0 M DAM1 EOU 5 ; DMA Address Mode 1 M_DAM2 EQU 6 ; DMA Address Mode 2 M DAM3 EQU 7 ; DMA Address Mode 3 ; DMA Address Mode 4 M_DAM4 EQU 8 ; DMA Address Mode 5 M_DAM5 EQU 9 ; DMA Three Dimensional Mode M_D3D EQU 10 ; DMA Request Source Mask (DRS0-DRS4) M DRS EOU \$F800 M_DPR EQU \$60000 M_DPR0 EQU 17 M_DPR1 EQU 18 M_DTM EQU \$380000 M_DTM0 EQU 19 ; DMA Continuous Mode M_DCON EQU 16 ; DMA Channel Priority ; DMA Channel Priority Level (low) ; DMA Channel Priority Level (high) ; DMA Transfer Mode Mask (DTM2-DTM0) ; DMA Transfer Mode 0 ; DMA Transfer Mode 1 M_DTM1 EQU 20 ; DMA Transfer Mode 2 M_DTM2 EQU 21 M_DIE EQU 22 ; DMA Interrupt Enable bit M_DE EQU 23 ; DMA Channel Enable bit DMA Status Register ; M_DTD EQU \$3F ; Channel Transfer Done Status MASK (DTD0-DTD5) M_DTD0 EQU 0 ; DMA Channel Transfer Done Status 0 M_DTD1 EQU 1 ; DMA Channel Transfer Done Status 1 M_DTD2_EQU_2 ; DMA Channel Transfer Done Status 2 M_DTD3_EQU_3 ; DMA Channel Transfer Done Status 3 ; DMA Channel Transfer Done Status 4 ; DMA Channel Transfer Done Status 5 M_DTD4 EQU 4 M_DTD5 EQU 5 ; DMA Active State M_DACT EQU 8 ; DMA Active Channel Mask (DCH0-DCH2) M_DCH EQU \$E00 ; DMA Active Channel 0 M_DCH0 EQU 9 ; DMA Active Channel 1 M_DCH1 EQU 10 M_DCH2 EQU 11 ; DMA Active Channel 2

;------

; EQUATES for Phase Locked Loop (PLL) ; ;------; Register Addresses Of PLL ; PLL Control Register M_PCTL EQU \$FFFFFD ; PLL Control Register M_MF EQU \$FFF ; Multiplication Factor Bits Mask (MF0-MF11) M_DF EQU \$7000 ; Division Factor Bits Mask (DF0-DF2) ; XTAL Range select bit M_XTLR EQU 15 M_XTLD EQU 16 ; XTAL Disable Bit M_PSTP EQU 17 ; STOP Processing State Bit M_PEN EQU 18 ; PLL Enable Bit M_PCOD EQU 19 ; PLL Clock Output Disable Bit M_PD EQU \$F00000 ; PreDivider Factor Bits Mask (PD0-PD3) ;-----; EQUATES for BIU ; ; Register Addresses Of BIU ; ; Bus Control Register M_BCR EQU \$FFFFFB M_DCR EQU \$FFFFFA ; DRAM Control Register ; Address Attribute Register 0 M_AAR0 EQU \$FFFFF9 M_AAR1 EQU \$FFFFF8 ; Address Attribute Register 1 M_AAR2 EQU \$FFFFF7 ; Address Attribute Register 2 M_AAR3 EQU \$FFFFF6 ; Address Attribute Register 3 M_IDR EQU \$FFFFF5 ; ID Register Bus Control Register ; M_BAOW EQU \$1F ; Area 0 Wait Control Mask (BAOW0-BAOW4) ; Area 1 Wait Control Mask (BA1W0-BA14) ; Area 2 Wait Control Mask (BA2W0-BA2W2) ; Area 3 Wait Control Mask (BA3W0-BA3W3) M_BA1W EQU \$3E0 M_BA2W EQU \$1C00 M_BA3W EQU \$E000 M_BDFW EQU \$1F0000 ; Default Area Wait Control Mask (BDFW0-BDFW4) M_BBS EQU 21 ; Bus State M_BLH EQU 22 ; Bus Lock Hold M_BRH EQU 23 ; Bus Request Hold ; DRAM Control Register ; In Page Wait States Bits Mask (BCW0-BCW1) M_BCW EQU \$3 ; Out Of Page Wait States Bits Mask (BRW0-BRW1) M_BRW EQU \$C ; DRAM Page Size Bits Mask (BPS0-BPS1) M_BPS EQU \$300 ; Page Logic Enable M_BPLE EQU 11 M_BME EQU 12 ; Mastership Enable M_BRE EQU 13 ; Refresh Enable M_BSTR EQU 14 ; Software Triggered Refresh M_BRF EQU \$7F8000 ; Refresh Rate Bits Mask (BRF0-BRF7)

M_BRP EQU 23 ; Refresh prescaler Address Attribute Registers ; M BAT EQU \$3 ; Ext. Access Type and Pin Def. Bits Mask (BAT0-BAT1) M_BAAP EQU 2 ; Address Attribute Pin Polarity M_BPEN EQU 3 ; Program Space Enable M_BXEN EQU 4 ; X Data Space Enable ; Y Data Space Enable M_BYEN EQU 5 ; Address Muxing M BAM EQU 6 M_BPAC EQU 7 ; Packing Enable ; Number of Address Bits to Compare Mask (BNC0-BNC3) M_BNC EQU \$F00 M_BAC EQU \$FFF000 ; Address to Compare Bits Mask (BAC0-BAC11) control and status bits in SR ; M_CP EQU \$c00000 ; mask for CORE-DMA priority bits in SR M_CA EQU 0 ; Carry M_V EQU 1 ; Overflow ; Zero MZEOU2 ; Negative M N EQU 3 M U EQU 4 ; Unnormalized M_E EQU 5 ; Extension M_L EQU 6 ; Limit M_S EQU 7 ; Scaling Bit M IO EOU 8 ; Interupt Mask Bit 0 M_I1 EQU 9 ; Interupt Mask Bit 1 M_S0 EQU 10 ; Scaling Mode Bit 0 M_S1 EQU 11 ; Scaling Mode Bit 1 M_SC EQU 13 ; Sixteen_Bit Compatibility M_DM_EQU_14 ; Double Precision Multiply M_LF EQU 15 ; DO-Loop Flag ; DO-Forever Flag M_FV EQU 16 M_SA EQU 17 ; Sixteen-Bit Arithmetic M_CE EQU 19 ; Instruction Cache Enable M_SM EQU 20 ; Arithmetic Saturation M_RM_EQU_21 ; Rounding Mode ; bit 0 of priority bits in SR M CPO EQU 22 M_CP1 EQU 23 ; bit 1 of priority bits in SR control and status bits in OMR ; M_CDP EQU \$300 ; mask for CORE-DMA priority bits in OMR M_MA equ0 ; Operating Mode A M_MB equl ; Operating Mode B M_MC equ2 ; Operating Mode C M_MD equ3 ; Operating Mode D M_EBD EQU 4 ; External Bus Disable bit in OMR M_SD EQU 6 ; Stop Delay M_MS_EQU_7 ; Memory Switch bit in OMR M CDP0 EQU 8 ; bit 0 of priority bits in OMR M_CDP1 EQU 9 ; bit 1 of priority bits in OMR M_BEN EQU 10 ; Burst Enable M_TAS EQU 11 ; TA Synchronize Select M_BRT EQU 12 ; Bus Release Timing ; Address Tracing Enable bit in OMR. M ATE EQU 15 M XYS EQU 16 ; Stack Extension space select bit in OMR. M_EUN EQU 17 ; Extensed stack UNderflow flag in OMR. M_EOV EQU 18 ; Extended stack OVerflow flag in OMR. M_WRP EQU 19 ; Extended WRaP flag in OMR.

M_SEN EQU 20

; EQUATES for DSP56309 interrupts ; ; Last update: June 11 1995 ; ; page 132,55,0,0,0 opt mex intequ ident 1,0 if @DEF(I_VEC) ;leave user definition as is. else I_VEC EQU \$0 endif ;------; Non-Maskable interrupts ; Hardware RESET I_RESET EQU I_VEC+\$00 I_STACK EQU I_VEC+\$02 ; Stack Error I_ILL EQU I_VEC+\$04 ; Illegal Instruction I_DBG EQU I_VEC+\$06 ; Debug Request I_TRAP EQU I_VEC+\$08 ; Trap I_NMI EQU I_VEC+\$0A ; Non Maskable Interrupt ;------; Interrupt Request Pins ;------I_IRQA EQU I_VEC+\$10 ; IRQA ; IRQB I_IRQB EQU I_VEC+\$12 ; IRQC I_IRQC EQU I_VEC+\$14 I_IRQD EQU I_VEC+\$16 ; IRQD :-----; DMA Interrupts ;------I_DMA0 EQU I_VEC+\$18 ; DMA Channel 0 I_DMA1 EQU I_VEC+\$1A ; DMA Channel 1 I_DMA2 EQU I_VEC+\$1C ; DMA Channel 2 I_DMA3 EQU I_VEC+\$1E ; DMA Channel 3 ; DMA Channel 4 I_DMA4 EQU I_VEC+\$20 I_DMA5 EQU I_VEC+\$22 ; DMA Channel 5 ;------; Timer Interrupts :-----I_TIMOC EQU I_VEC+\$24 ; TIMER 0 compare I_TIMOOF EQU I_VEC+\$26 ; TIMER 0 overflow I_TIM1C EQU I_VEC+\$28 ; TIMER 1 compare

I_TIM1OF EQU I_VEC+\$2A ; TIMER 1 overflow I_TIM2C EQU I_VEC+\$2C ; TIMER 2 compare I_TIM2OF EQU I_VEC+\$2E ; TIMER 2 overflow :------; ESSI Interrupts ;------; ESSIO Receive Data I_SIORD EQU I_VEC+\$30 ; ESSIO Receive Data w/ exception Status I_SIORDE EQU I_VEC+\$32 ; ESSIO Receive last slot I_SIORLS EQU I_VEC+\$34 ; ESSIO Transmit data I_SIOTD EQU I_VEC+\$36 ; ESSIO Transmit Data w/ exception Status I_SIOTDE EQU I_VEC+\$38 I_SIOTLS EQU I_VEC+\$3A ; ESSIO Transmit last slot I_SI1RD EQU I_VEC+\$40 ; ESSI1 Receive Data ; ESSI1 Receive Data w/ exception Status I_SI1RDE EQU I_VEC+\$42 ; ESSI1 Receive last slot I_SI1RLS EQU I_VEC+\$44 ; ESSI1 Transmit data I_SI1TD EQU I_VEC+\$46 ; ESSI1 Transmit Data w/ exception Status I_SI1TDE EQU I_VEC+\$48 I_SI1TLS EQU I_VEC+\$4A ; ESSI1 Transmit last slot ;------; SCI Interrupts ; SCI Receive Data ; SCI Receive Data With Exception Status ; SCI Transmit Data ; SCT TAIL T ;------I_SCIRD EQU I_VEC+\$50 I_SCIRDE EQU I_VEC+\$52 I_SCITD EQU I_VEC+\$54 ; SCI Idle Line ; SCI Timer I_SCIIL EQU I_VEC+\$56 I_SCITM EQU I_VEC+\$58 •_____ ; HOST Interrupts ;------I_HRDF EQU I_VEC+\$60 ; Host Receive Data Full I_HTDE EQU I_VEC+\$62 ; Host Transmit Data Empty I_HC EQU I_VEC+\$64 ; Default Host Command ;------; INTERRUPT ENDING ADDRESS ;------; last address of interrupt vector space I_INTEND EQU I_VEC+\$FF

Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Solder Spheres	Order Number
DSP56309	3.3 V	Thin Quad Flat Pack (TQFP)	144	100	Lead-free	XC56309AG100A
				Lead-bearing	XC56309PV100A	
		Molded Array Process-Ball Grid Array (MAP-BGA)	196	100	Lead-free	XC56309VL100A
					Lead-bearing	XC56309VF100A

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations not listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GMBH Technical Information Center Schatzbogen 7 81829 München, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T. Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Order No.: DSP56309 Rev. 7 2/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 1996, 2005.

