

PRELIMINARY

ZMD31050

Advanced Differential Sensor Signal Conditioner

Datasheet

Features

- Digital compensation of sensor offset, sensitivity, temperature drift and non-linearity
- Accommodates nearly all bridge sensor types (signal spans from 1 up to 275mV/V processable)
- Digital one-shot calibration: quick and precise
- Selectable compensation temperature T1 source: bridge, thermistor, internal diode or external diode
- Output options: voltage (0...5V), current (4...20mA), PWM, I²C, SPI, ZACwireTM (one-wire-interface), alarm
- Adjustable output resolution (up to 15 bits) versus sampling rate (up to 3.9kHz)
- Selectable bridge excitation: ratiometric voltage, constant voltage or constant current
- Input channel for separate temperature sensor
- Sensor connection and common mode check (Sensor aging detection)
- operation temperature, depending on product version, up to -40...+125℃ (-40...+150℃ derated)
- Supply voltage +2.7V...+5.5V
- Available in SSOP16 or as die

Benefits

- No external trimming components required
- PC-controlled configuration and calibration via digital bus interface - simple, low cost
- High accuracy (±0.1% FSO @ -25...85℃; ±0.25% FSO @ -40...125℃)

Application Circuit (Examples)

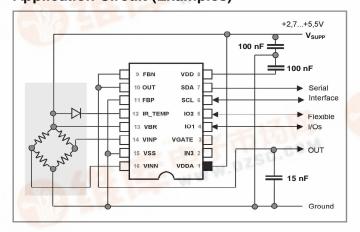


Fig.1: Ratiometric measurement with voltage output, temperature compensation via external diode

Brief Description

ZMD31050 is a CMOS integrated circuit for highly-accurate amplification and sensor-specific correction of bridge sensor signals. The device provides digital compensation of sensor offset, sensitivity, temperature drift and non-linearity by a 16-bit RISC micro controller running a correction algorithm with correction coefficients stored in non-volatile EEPROM.

The ZMD31050 accommodates virtually any bridge sensor (e.g. piezo-resistive, ceramic-thickfilm or steel membrane based). In addition, the IC can interface a separate temperature sensor.

The bi-directional digital interfaces (I²C, SPI, ZACwireTM) can be used for a simple PC-controlled one-shot calibration procedure, in order to program a set of calibration coefficients into an on-chip EEPROM. Thus a specific sensor and a ZMD31050 are mated digitally: fast, precise and without the cost overhead associated with laser trimming, or mechanical potentiometer methods.

- Application kit available (SSOP16 samples, calibration PCB, calibration software, technical documentation)
- Support for industrial mass calibration available
- Quick circuit customization possible for large production volumes

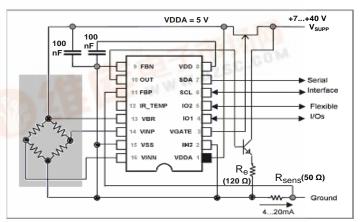


Fig.2: Two-wire-(4 to 20) mA configuration [(7 to 40) V], temperature compensation via internal diode

Refer also chapter 2 for additional application circuits and details

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

Contents

1.	CIRCUIT DESCRIPTION	3
1.1		
1.2		
1.3	· · · · · · · · · · · · · · · · · · ·	
	1.3.1. Programmable Gain Amplifier	
	1.3.2. Analog Sensor Offset Compensation - A nalog Z ero Point S hift (AZS)	
	1.3.3. Measurement Cycle realized by Multiplexer	
1	1.3.4. Analog-to-Digital Converter	
1.4	01012M 00111102	
1.5		
	1.5.1. Analog Output	
	1.5.2. Comparator Module (ALARM Output)	
1	1.5.3. Serial Digital Interface	
1.6		
1.7	WATCHDOG AND ERROR DETECTION	11
2.	APPLICATION CIRCUIT EXAMPLES	12
3.	ESD/LATCH-UP-PROTECTION	40
ა.	ESD/LATCH-UP-PROTECTION	13
4.	PIN CONFIGURATION AND PACKAGE	13
5.	IC CHARACTERISTICS	14
5.1	ABSOLUTE MAXIMUM RATINGS	1.1
5.2		14
5.3		
5.4		17
5.5		
6.	TEST	
о.	IE51	19
7.	RELIABILITY	19
8.	CUSTOMIZATION	19
9.	RELATED DOCUMENTS	19

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

1. CIRCUIT DESCRIPTION

1.1 Signal Flow

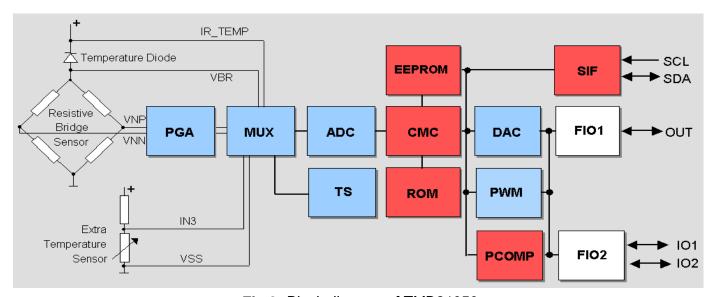


Fig.3: Block diagram of ZMD31050

PGA	programmable gain amplifier
MUX	multiplexer
ADC	analog-to-digital converter
CMC	calibration microcontroller
DAC	digital-to-analog converter
FIO1	flexible I/O 1: analog out (voltage/current), PWM2,
	ZACwire TM (one-wire-interface)
FIO2	flexible I/O 2: PWM1, SPI data out, SPI slave select, Alarm1, Alarm2SIF
	serial interface: I2C data I/O, SPI data in, clock
PCOMP	programmable comparator
EEPROM	for calibration parameters and configuration
TS	on-chip temperature sensor (pn-junction)
ROM	for correction formula and –algorithm
PWM	PWM module

The ZMD31050's signal path is partly analog (blue) and partly digital (red). The analog part is realized differential – this means internal is the differential bridge sensor signal also handled via two signal lines, which are rejected symmetrically around a common mode potential (analog ground = VDDA/2). Consequently it is possible to amplify positive and negative input signals, which are located in the common mode range of the signal input.

The differential signal from the bridge sensor is pre-amplified by the programmable gain amplifier (PGA). The Multiplexer (MUX) transmits the signals from bridge sensor, external diode or separate temperature sensor to the ADC in a certain sequence (instead of the temperature diode the internal pn-junction (TS) can be used optionally). Afterwards the ADC converts these signals into digital values.

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

The digital signal correction takes place in the calibration micro-controller (CMC). It is based on a special correction formula located in the ROM and on sensor-specific coefficients (stored into the EEPROM during calibration). Dependent on the programmed output configuration the corrected sensor signal is output as analog value, as PWM signal or in digital format (SPI, I²C, ZACwire™). The output signal is provided at 2 flexible I/O modules (FIO) and at the serial interface (SIF). The configuration data and the correction parameters can be programmed into the EEPROM via the digital interfaces. The modular circuit concept enables fast custom designs varying these blocks and, as a result, functionality and die size.

1.2 Application Modes

For each application a configuration set has to be established (generally prior to calibration) by programming the on-chip EEPROM regarding to the following modes:

- § Sensor channel
 - Sensor mode: ratiometric voltage or current supply mode.
 - Input range: The gain of the analog front end has to be chosen with respect to the maximum sensor signal span and to this has also adjusted the zero point of the ADC
- Additional offset compensation: The extended analog offset compensation has to be enabled if required, e.g. if the sensor offset voltage is near to or larger than the sensor span.
- Resolution/response time: The A/D converter has to be configured for resolution and converting scheme (first or second order). These settings influence the sampling rate, signal integration time and this way the noise immunity. The Sample Order influences the response time too.
- Ability to invert the sensor bridge inputs

S Analog output

- Choice of output method (voltage value, current loop, PWM) for output register 1.
- Optional choice of additional output register 2: PWM via IO1 or alarm out module via IO1/2.
- S Digital communication: The preferred protocol and its parameter have to be set.
- **S** Temperature
 - The temperature measure source for the temperature correction has to be chosen.
 - The temperature measure source T1 sensor type for the temperature correction has to be chosen (only T1 is usable for correction!!!)
- Optional: the temperature measure channel as the second output has to be chosen.
- Supply voltage: For non-ratiometric output the voltage regulation has to be configured.

Note: Not all possible combinations of settings are allowed (see section 1.5).

The calibration procedure must include

- the set of coefficients of calibration calculation
- and, depending on configuration,
 - the adjustment of the extended offset compensation,
 - the zero compensation of temperature measurement,
 - the adjustment of the bridge current

and, if necessary,

the set of thresholds and delays for the alarms and the reference voltage.

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

1.3 Analog Front End (AFE)

The analog front end consists of the programmable gain amplifier (PGA), the multiplexer (MUX) and the analog-to-digital converter (ADC).

1.3.1. Programmable Gain Amplifier

The following tables show the adjustable gains, the processable sensor signal spans and the allowed common mode range.

No.	PGA Gain a _{IN}	Gain Amp1	Gain Amp2	Gain Amp3	Max. span V _{IN_SP} in mV/V	Input range V _{IN_CM} in % VDDA *
1	420	30	7	2	2	43 - 57
2	280	30	4,66	2	3	40 - 59
3	210	15	7	2	4	43 - 57
4	140	15	4,66	2	6	40 - 59
5	105	15	3,5	2	8	38 - 62
6	70	7,5	4,66	2	12	40 - 59
7	52,5	7,5	3,5	2	16	38 - 62
8	35	3,75	4,66	2	24	40 - 59
9	26,3	3,75	3,5	2	32	38 - 62
10	14	1	7	2	50	43 - 57
11	9,3	1	4,66	2	80	40 - 59
12	7	1	3,5	2	100	38 - 62
13	2,8	1	1,4	2	280	21 - 76

Table 1: Adjustable gains, resulting sensor signal spans and common mode ranges

1.3.2. Analog Sensor Offset Compensation - Analog Zero Point Shift (AZS)

The ZMD31050 supports two methods of sensor offset cancellation (zero shift):

- digital offset correction
- analog cancellation for large offset values (up to approx 300% of span)

Digital sensor offset correction will be processed at the digital signal correction/conditioning by the CMC. Analog sensor offset pre-compensation will be needed for compensation of large offset values, which would be overdrive the analog signal path by uncompensated gaining. For analog sensor offset pre-compensation a compensation voltage will be added in the analog pre-gaining signal path (coarse offset removal). The analog offset compensation in the AFE can be adjusted by 6 EEPROM bits. It allows an Analog Zero Point Shift up to 300% of the processable signal span.

The zero point shift of the temperature measurements can also be adjusted by 6 EEPROM bits $(Z_{A7S} = -25...+25)$ and is calculated by:

$$V_{AZS} / VDD_{BR} = k * Z_{AZS} / (20 * a_{IN})$$

^{*} Bridge in voltage mode, refer "ZMD31050 Functional description" for usable input signal/common mode range at bridge in current mode

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

PGA gain a _{IN}	Max. span V _{IN_SP} in mV/V	Calculation factor k	Offset shift per step in % full span	Approx. maximum offset shift in mV/V	Approx. maximum shift in [% V _{IN_SP}] (@ ± 25)
420	2	3,0	15%	+/- 9	450
280	3	1,833	9%	+/- 8	266
210	4	3,0	15%	+/- 18	450
140	6	1,833	9%	+/- 18	300
105	8	1,25	6%	+/- 15	187
70	12	1,833	9%	+/- 33	275
52,5	16	1,25	6%	+/- 44	275
35	24	1,833	9%	+/-66	275
26,3	32	1,25	6%	+/- 87	272
14	50	3,0	15%	+/- 270	540
9,3	80	1,833	9%	+/- 250	312
7	100	1,25	6%	+/- 225	225
2,8	280	0,2	1%	+/- 90	32

Table 2: Analog Zero Point Shift Ranges

1.3.3. Measurement Cycle realized by Multiplexer

The Multiplexer selects, depending on EEPROM settings, the following inputs in a certain sequence.

- S Bridge temperature signal measured by external diode
- § Bridge temperature signal measured by internal pn-junction
- § Bridge temperature signal measured by bridge resistors
- § Separate temperature signal measured by external thermistor
- § Internal offset of the input channel measured by input short circuiting
- § Pre-amplified bridge sensor signal Start routine The complete measurement cycle is Pressure measurement n controlled by the CMC. The cycle diagram Temp 1 auto zero 1 at the right shows its principle structure. n Pressure measurement The EEPROM adjustable parameters are: 1 Temp 1 measurement n Pressure measurement Pressure measurement count, n=<1,2,4,8,16,32,64,128> Pressure auto zero Enable temperature measurement 2, n . e2 Pressure measurement e2 = < 0.1 >e2 Temp 2 auto zero After Power ON the start routine is called. It n + e2 + Pressure measurement contains the pressure and auto zero e2 * Temp 2 measurement measurement. When enabled it measures the temperature and its auto zeros.

Fig. 4: Measurement cycle ZMD31050

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

1.3.4. Analog-to-Digital Converter

The ADC is a charge balancing converter in full differential switched capacitor technique. It can be used as first or second order converter:

In the **first order** mode it is inherently monotone and insensitive against short and long term instability of the clock frequency. The conversion cycle time depends on the desired resolution and can be roughly calculated by:

$$t_{CYC}$$
 1 = $2^{r_{ADC}} \mu s$

The available ADC-resolutions are $r_{ADC} = \langle 9, 10, 11, 12, 13, 14, 15 \rangle$.

In the second order mode two conversions are stacked with the advantage of much shorter conversion cycle time and the drawback of a lower noise immunity caused by the shorter signal integration period. The conversion cycle time at this mode is roughly calculated by:

$$t_{CYC_2} = 2^{(r_{ADC} + 3)/2} \mu s$$

The available ADC-resolutions are $r_{ADC} = <10,11,12,13,14,15>$.

The result of the AD conversion is a relative counter result corresponding to the following equation:

$$Z_{ADC} = 2^{r_{ADC}} * [(V_{ADC DIFF}/V_{ADC REF}) + (1 - RS_{ADC})]$$

number of counts (result of the conversion) Z_{ADC} :

V_{ADC DIFF}:

V_{ADC REF}:

differential input voltage of ADC (= $a_{IN} * V_{IN_DIFF}$) reference voltage of ADC (= VDD_{BR} at ratiometric measurement) digital ADC Range Shift (RS_{ADC} = $^{15}/_{16}$, $^{7}/_{8}$, $^{3}/_{4}$, $^{1}/_{2}$, controlled by the EEPROM content)

With the RS_{ADC} value a sensor input signal can be shifted in the optimal input range of the ADC.

Note: The AD conversion time is only a part of a whole sample cycle. Thus the sample rate is lower then the AD conversion rate.

ADC	N	laximum Out	n	Sample	e Rate f _{con}	
Order	r _{ADC} *	Digital-OUT	Analog-OUT	r _{PWM}	f _{CLK} =2MHz	f _{CLK} =2.25MHz
O _{ADC}	Bit	Bit	Bit	Bit	Hz	Hz
1	9	9	9	9	1302	1465
1	10	10	10	10	781	879
1	11	11	11	11	434	488
1	12	12	11	12	230	259
1	13	13	11	12	115	129
1	14	14	11	12	59	67
1	15	15	11	12	30	34
2	10	10	10	10	3906	4395
2	11	11	11	11	3906	4395
2	12	12	11	12	3906	4395
2	13	13	11	12	1953	2197
2	14	14	11	12	1953	2197
2	15	15	11	12	977	1099

Table 3: Output resolution versus sample rate

*ADC Resolution should be 1 or 2 Bits higher then applied Output Resolution

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

1.4 System Control

The system control has the following features:

- S Control of the I/O relations and of the measurement cycle regarding to the EEPROM-stored configuration data
- § 16 bit correction calculation for each measurement signal using the EEPROM stored calibration coefficients and ROM-based algorithms
- S Started by internal POC, internal clock generator or external clock
- § For safety improvement the EEPROM data are proved with a signature within initialization procedure, the registers of the CMC are steadily observed with a parity check. Once an error is detected, the error flag of the CMC is set and the outputs are driven to a diagnostic value

Note: The conditioning includes up to third order sensor input correction. The available adjustment ranges depend on the specific calibration parameters, a detailed description will be issued later. To give a rough idea: Offset compensation and linear correction are only limited by the loose of resolution it will cause, the second order correction is possible up to about 30% full scale difference to straight line, third order up to about 20% (ADC resolution = 13bit). The temperature calibration includes first and second order correction and should be fairly sufficient in all relevant cases. ADC resolution influences also calibration possibilities — 1 bit more resolution reduces calibration range by approximately 50%.

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

1.5 Output Stage

	Used so	erial IF	Used I/O pins						
No.	I ² C	SPI	OUT	IO1	IO2	SDA			
1	X					Data I/O			
2	Х			ALARM1		Data I/O			
3	Х				ALARM2	Data I/O			
4	Х			ALARM1	ALARM2	Data I/O			
5	Х			PWM1		Data I/O			
6	Х			PWM1	ALARM2	Data I/O			
7	Х		Analog			Data I/O			
8	Х		Analog	ALARM1		Data I/O			
9	X		Analog		ALARM2	Data I/O			
10	X		Analog	ALARM1	ALARM2	Data I/O			
11	Х		Analog	PWM1		Data I/O			
12	Х		Analog	PWM1	ALARM2	Data I/O			
13	Х		PWM2			Data I/O			
14	Х		PWM2	ALARM1		Data I/O			
15	X		PWM2		ALARM2	Data I/O			
16	X		PWM2	ALARM1	ALARM2	Data I/O			
17	Х		PWM2	PWM1		Data I/O			
18	X		PWM2	PWM1	ALARM2	Data I/O			
19		Х		Data out	Slave select	Data in			
20		Х		Data out ALARM1	Slave select -	Data in -			
21		Х		Data out PWM1	Slave select	Data in -			
22		Х	Analog	Data out	Slave select	Data in			
23		Х	Analog	Data out ALARM1	Slave select -	Data in -			
24		Х	Analog	Data out PWM1	Slave select	Data in -			
25		Х	PWM2	Data out	Slave select	Data in			
26		Х	PWM2	Data out ALARM1	Slave select -	Data in -			
27		Х	PWM2	Data out PWM1	Slave select -	Data in -			

Table 4: Output configurations overview

The ZMD31050 provides the following I/O pins: OUT, IO1, IO2 and SDA.

Via these pins the following signal formats can be output: Analog (voltage/current), PWM, Data (SPI/I²C), Alarm.

The following values can be provided at the O/I pins: bridge sensor signal, temperature signal 1, temperature signal 2, alarm.

Note:

The Alarm signal only refers to the bridge sensor signal, but never to a temperature signal.

Due to the necessary pin sharing there are restrictions to the possible combinations of outputs and interface connections.

The table beside gives an overview about possible combinations.

Note:

In the SPI mode the pin IO2 is used as Slave select. Thus no Alarm 2 can be output in this mode.

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

1.5.1. Analog Output

For the analog output 3 registers of 15 bit depth are available, which can store the actual pressure and the results of temperature measurement 1 and 2. Each register can be independently switched to one of two output slots connected to the Pin OUT and IO1 respectively. In these output slots different output modules are available according to the following table:

Output slot:	OUT	IO1
Voltage	Х	
PWM	Х	Х

Table 5: Analog output configuration

The Voltage module consists of an 11bit resistor string – DAC with buffered output and a subsequent inverting amplifier with class AB rail-to-rail OPAMP. The two feedback nets are connected to the Pins FBN and FBP. This structure offers wide flexibility for the output configuration, for example voltage output and 4 mA to 20 mA current loop output. To short circuit the analog output against VSS or VDDA does not damage the ZMD31050.

The PWM module provides pulse streams with signal dependent duty cycle. The PWM – frequency depends on resolution and clock divider. The maximum resolution is 12 bit, the maximum PWM – frequency is 4 kHz (9 bit). If both, second PWM and SPI protocol are activated, the output pin IO1 is shared between the PWM output and the SPI_SDO output of the serial interface (Interface communication interrupts the PWM output).

1.5.2. Comparator Module (ALARM Output)

The comparator module consists of two comparator channels connectable to IO1 and IO2 respectively. Each of them can be independently programmed referring to the parameters threshold, hysteresis, switching direction and on/off – delay, additional a window comparator mode is available.

1.5.3. Serial Digital Interface

The ZMD31050 includes a serial digital interface which is able to communicate in three different communication protocols – I^2C^{TM} , SPITM and ZACwireTM (one wire communication). In the SPI mode the pin IO2 operates as slave select input, the pin IO1 as data output.

Initializing Communication

After power-on the interface is for about 20ms (start window) in the state ZACwire. During the start window it is possible to communicate via the one wire interface (pin OUT).

Detecting a proper request inside the start window the interface stays in the state ZACwire. This state can be left by certain commands or a new power-on.

If no request happens during the start window then the serial interface switches to I²C or SPI mode (depending on EEPROM settings) and the OUT pin is used as analog output or as PWM output (also depending on EEPROM settings. The start window can generally be disabled (or enabled) by a special EEPROM setting.

For detailed description of the serial interfaces see "ZMD31050 Functional Description".

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

1.6 Voltage Regulator

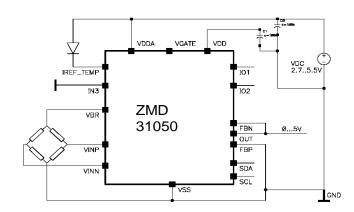
For ratiometric applications 3V to 5V ($\pm 10\%$) the external supply voltage can be used for sensor element biasing. If an absolute analog output is desired then the internal voltage regulator with external power regulation element (FET) can be used. It is bandgap reference based and designed for an external supply range V_{SUPP} = (7 to 40) VDC. With the voltage regulator the internal supply and sensor bridge voltage can be varied between 3V and 5V.

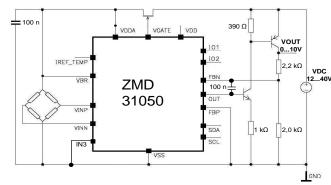
1.7 Watchdog and Error Detection

The ZMD31050 detects various possible errors. A detected error is signalized by changing in a diagnostic mode. In this case the analog output is set to High or Low (maximum or minimum possible output value) and the output registers of the digital serial interface are set to a significant error code.

A watchdog oversees the continuous working of the CMC and the running measurement loop.

A check of the sensor bridge for broken wires is done permanently by two comparators watching the input voltage of each input [(VSSA + 0.5V) to (VDDA - 0.5V)]. Add on the common mode voltage of the sensor is watched permanently (sensor aging).

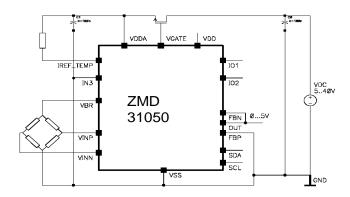

Different functions and blocks in digital part are watched like RAM-, ROM,- EEPROM- and Register content continuously, the document "ZMD31050 Functional Description" contains in chapter 1.3.4 a detailed description of all watched blocks and methods of messaging of errors.

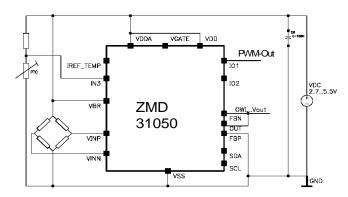


Advanced Differential Sensor Signal Conditioner

Datasheet **PRELIMINARY**

2. **Application Circuit Examples**





Example 1

Typical ratiometric measurement with voltage 0V to 10V output configuration, supply regulator output, temperature compensation via external (external JFET), temperature compensation via diode, internal VDD regulator and active sensor internal diode and bridge in voltage mode connection check (bridge must not be at VDDA)

Example 2

Example 3

Absolute voltage output. supply (external JFET), constant current excitation of the measurement, 3-wire connection for end of line sensor bridge, temperature compensation by calibration at pin OUT (ZACwire™), additional bridge voltage drop measurement, internal VDD temperature regulator without ext. capacitor

Example 4

regulator Ratiometric bridge differential signal measurement with external thermistor and PWM-output at pin IO1

It is possible to combine or split connectivity of different application examples. For VDD generation ZMD recommends to use internal supply voltage regulator with external capacitor (refer example 1).

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

3. ESD/Latch-Up-Protection

All pins have an ESD Protection of >2000V (except the pins INN, INP and FBP with > 1200V) and a Latch-up protection of ± 100 mA or of ± 8 V/ ± 4 V (to VSS/VSSA) – refer chapter 4 for details and restrictions. ESD Protection referred to the human body model is tested with devices in SSOP16 packages during product qualification. The ESD test follows the human body model with 1.5kOhm/100pF based on MIL 883, Method 3015.7.

4. Pin Configuration and Package

Pin	Name	Description	Remarks	Latch-Up related Application Circuit Restrictions and/or Remarks
1	VDDA	Positive analog supply voltage	Supply	
2	IN3	Resistive temp sensor IN & external clock IN	Analog IN	free accessible (latch-up related)
3	VGATE	Gate voltage for external regulator FET	Analog OUT	only connection to external FET
4	IO1	SPI data out & ALARM1 & PWM1 Output	Digital IO	free accessibility
5	IO2	SPI chip select & ALARM2	Digital IO	free accessibility
6	SCL	I ² C clock & SPI clock	Digital IN, pull-up	free accessibility
7	SDA	Data IO for I ² C & data IN for SPI	Digital IO, pull-up	free accessibility
8	VDD	Positive digital supply voltage	Supply	only short to VDDA or capacitor to VSS allowed, otherwise no application access
9	FBN	Negative feedback connection output stage	Analog IO	free accessibility
10	OUT	Analog output & PWM2 Output & one wire interface i/o	Analog OUT & dig. IO	free accessibility
11	FBP	Positive feedback connection output stage	Analog IO	free accessibility
12	IR_TEMP	Current source resistor i/o & temp. diode in	Analog IO	circuitry secures potential inside of VSS-VDDA range, otherwise no application access
13	VBR	Bridge top sensing in bridge current out	Analog IO	only short to VDDA or connection to sensor bridge, otherwise no application access
14	VINP	Positive input sensor bridge	Analog IN	free accessibility
15	VSS	Negative supply voltage	Ground	
16	VINN	Negative input sensor bridge	Analog IN	free accessibility

Table 6: Pin configuration

The standard package of the ZMD31050 is a SSOP16 (5.3mm body width) with lead-pitch 0.65mm:

Pin-Nr 9 10 11 12 13 14	Pin-Name FBN OUT FBP IR_TEMP VBR VINP	ZMD U23456 abcd xxxx YYWW	Pin-Name VDD SDA SCL IO2 IO1 VGATE	Pin-Nr 8 7 6 5 4 3
14	VINP		VGATE	3
15	VSS		IN3	2
16	VINN	T [= 5]	VDDA	1

13/20

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

5. IC Characteristics

5.1 Absolute Maximum Ratings

No.	Parameter	Symbol	min	typ	max	Unit	Conditions
5.1.1	Digital Supply Voltage	VDD_{AMR}	-0.3		6.5	V DC	to VSS
5.1.2	Analog Supply Voltage	VDDA _{AMR}	-0.3		6.5	V DC	to VSS
5.1.3	Voltage at all analog and digital I/O – Pins	V _{A_I/O} , V _{D_I/O}	-0.3		VDDA +0.3	V DC	Exception s. 5.1.4
5.1.4	Voltage at Pin FBP	V_{FBP_AMR}	-1.2		VDDA +0.3	V DC	4 mA to 20mA – Interface
5.1.5	Storage temperature	T _{STG}	-45		150	°C	

5.2 Operating Conditions

(Voltages related to VSS)

No.	Parameter	Symbol	min	typ	max	Unit	Conditions
5.2.1	Ambient temperature	T _{AMB}	-40		125	°C	
5.2.2	Ambient temperature advanced performance	T_{AMB_ADV}	-25		85	°C	
5.2.3	Ambient temperature EEPROM programming	T _{AMB_EEP}	-25		85	°C	
5.2.4	EEPROM programming cycles				100		
5.2.5	Data retention (EEPROM)				15	а	avg. temp < 85grd
5.2.6	Analog Supply Voltage	VDDA	2.7		5.5	V DC	ratiometric mode
5.2.7	Analog Supply Voltage advanced performance	VDDA _{ADV}	4.5		5.5	V DC	ratiometric mode
5.2.8	Digital Supply Voltage	VDD	- 2.7		1.05 -	VDDA V DC	external powered
5.2.9	External Supply Voltage	V_{SUPP}	VDDA + 2V		40	V DC	voltage regulator mode with ext. JFET
5.2.10	Common mode input range	V _{IN_CM}	0.21		0.76	V _{ADC_REF}	depends on gain adjustment - refer chapter 1.3.1

Advanced Differential Sensor Signal Conditioner

PRELIMINARY Datasheet

No.	Parameter	Symbol	min	typ	max	Unit	Conditions
5.2.11	Input Voltage Pin FBP	V_{IN_FBP}	-1		VDDA	V DC	
5.2.12	Sensor Bridge Resistance *	R_{BR}	3.0 ¹ 5.0		25.0 25.0	kΩ kΩ	full temperature range 4mA to 20mA – Interface
5.2.13	Reference Resistor for Bridge Current Source *	R_{BR_REF}	0.07			R_{BR}	leads to $I_{BR} = V_{DDA} / (16.R_{BR_REF})$
5.2.14	Stabilization Capacitor *	C_{VDDA}	50	100	470	nF	between VDDA and VSS, external
5.2.15	Optional Stabilization Capacitor *	C_{VDD}	0 2	100	470	nF	between VDD and VSS, external
5.2.16	Maximum allowed load capacitance at OUT ³	C_{L_OUT}			50	nF	Output Voltage mode
5.2.17	Minimum allowed load resistance	R _{L_OUT}	2			kΩ	Output Voltage mode
5.2.18	Maximum allowed load capacitance at VGATE	C _{L_VGATE}			10	nF	summarized to all potentials

5.3 **Build In Characteristics**

No.	Parameter	Symbol	min	typ	max	Unit	Conditions
5.3.1.	Selectable Input Span, Pressure Measurement	V_{IN_SP}	1		275	mV/V	4 Bit setting s. 3.3.1
5.3.2	Analog Offset Compensation Range (6 Bit setting)		-20 -25 -31		20 25 31	count	ADJREF:BCUR>3 ADJREF:BCUR=7
5.3.3	A/D Resolution	r _{ADC}	9		15	Bit	3 Bit setting
5.3.4	D/A Resolution	r _{DAC}		11		Bit	@ analogue output
5.3.5	PWM - Resolution	r _{PWM}	9		12	Bit	
5.3.6	Reference current for external temperature diodes	I _{TS}	8	18	40	μΑ	
5.3.7	Sensitivity internal temperature diode	ST _{T_SI}	2800	3200	3600	ppm f.s./K	Raw values - without conditioning

^{*} no measurement in mass production, parameter is guarantied by design and/or quality observation no limitations with an external connection between VDDA and VBR

² lower stabilization capacitors can increase noise level at the output

³ if used, consider special requirements of ZACwire™ single wire interface stated in "Functional Description" chapter 4.3

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

5.3.8 Cycle Rate versus A/D-Resolution *

(linear related to master clock frequency¹ - values calculated at exact 2 MHz)

ADC Order	Resolution	Conversion	n Cycle f _{cyc}			
O _{ADC}	r _{ADC}	f _{CLK} =2MHz	f _{CLK} =2.25MHz			
	Bit	Bit Hz				
1	9	1302	1465			
	10	781	879			
	11	434	488			
	12	230	259			
	13	115	129			
	14	59	67			
	15	30	34			
2	11	3906	4395			
	12	3906	4395			
	13	1953	2197			
	14	1953	2197			
	15	977	1099			

5.3.9 PWM Frequency *

PWM	PWM F	req./Hz a	at 2 MHz	Clock ¹	PWM Freq./Hz at 2.25 MHz Clock ²				
Resolution		Clock I	Divider		Clock Divider				
r _{PWM} [Bit]	1 0,5 0,25 0,125		1	0,5	0,25	0,125			
9	3906	1953	977	488	4395	2197	1099	549	
10	1953	977	488	244	2197	1099	549	275	
11	977	488	244	122	1099	549	275	137	
12	488	244	122	61	549	275	137	69	

no measurement in mass production, parameter is guarantied by design and/or quality observation

¹ Internal RC – Oscillator: coarse adjustment to1, 2 and 4 MHz, fine tuning +/- 25%, external clock is also possible ² Internal RC – Oscillator: coarse adjustment to1.125, 2.25 and 4.5 MHz, fine tuning +/- 25%, external clock is also possible

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

5.4 Electrical Parameters

(Voltages related to VSS)

No.	Parameter	Symbol	min	typ	max	Unit	Conditions			
5.4.1 Supply / Regulation										
5.4.1.1	Supply current	I _{SUPP}		2.5	4	mA	without bridge current and without load current, f _{CLK} ≤ 2.25MHz			
5.4.1.2	Supply current for current loop	I _{SUPP_CL}		2.0	2.75		without bridge current, $f_{CLK} \le 1.2 MHz$, Bias-Adjustment ≤ 1			
5.4.1.2	Temperature Coeff. Voltage Reference	TC _{REF}	-200	+/- 50	200	ppm/K				
		5.4.	2 Analo	g Front	End					
5.4.2.1	Parasitic differential input offset current *	I _{IN_OFF}	-2 to - 10		2 to 10	nA	temp. range 5.2.2., T _{ADV}			
	5.4	4.3 DAC 8	& Analo	g Outpu	t (Pin C	OUT)				
5.4.3.1	Output signal range	$V_{\text{OUT_SR}}$	0.025		0.975	VDDA	Voltage mode, assuming maximum load of 2k			
5.4.3.2	Output slew rate *	SR _{OUT}	0.1			V/μs	Voltage mode, C _L <20nF @ V _{OUT_SR} : 5.4.2.1			
5.4.3.3	Short circuit current *	I _{OUT_max}	5	10	20	mA				
5.4.3.4	addressable output signal range *	$V_{\text{OUT_ADR}}$	0		1	VDDA	2048 steps			
		5.4.4 PW	M Outp	ut (Pin (OUT, IO	1)				
5.4.4.1	PWM high voltage	V_{PWM_H}	0.9			VDDA	$R_L > 10 \text{ k}\Omega$			
5.4.4.2	PWM low voltage	V_{PWM_L}			0.1	VDDA	$R_L > 10 \text{ k}\Omega$			
5.4.4.3	PWM output slew rate*	SR _{PWM}	15			V/μs	C _L < 1nF			
	5.4.5	Tempera	ature Se	ensors (Pin IR_	ГЕМР)				
5.4.5.1	Sensitivity external diode / resistor meas.	ST _{TS_E}	75		210	μV / LSB	at r _{ADC} = 13 Bit			
	5.4.6 Digital Outputs (IO1, IO2, OUT in digital mode)									
5.4.6.1	Output-High-Level	V_{DOUT_H}	0.9			VDDA	$R_L > 1 \text{ k}\Omega$			
5.4.6.2	Output-Low-Level	V_{DOUT_L}			0.1	VDDA	$R_L > 1 \text{ k}\Omega$			
5.4.6.3	Output Current *	I _{DOUT}	4			mA				

^{*} no measurement in mass production, parameter is guarantied by design and/or quality observation

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

No.	Parameter	Symbol	min	typ	ma	X	Unit	Conditions		
5.4.7 System Response										
5.4.7.1	Startup time ¹	t _{ST}	. 2	2	5	1		Power up to first measure result at output, OWI – start window disabled		
5.4.7.2	Response time	t _{RES}	P 2/f	CON	3/f _C	ON		refer chapter 1.3.4 for f _{CON}		
5.4.7.3	Overall accuracy (deviation from ideal line including INL	AC _O	JT		0.	1		T _{ADV} , V _{ADV} (-25 to +85)°C, (4.5 to 5.5)V		
	gain and offset errors)				0.2	:5	, •	For decreased current consumption ADJREF:BCUR>3		
5.4.7.4	Peak-to-Peak- Noise@output *	V _{OUT}	NS		5	r		shorted inputs, bandwidth ≤ 2kHz		
5.4.7.5	Ratiometricity Error	RE _{ou} RE _{ou}			50 100	'		4.5 – 5.0V & 5.0 – 5.5V 2.7 – 3.0V & 3.0 – 3.3V		

5.5 Interface Characteristics

No.	Parameter	Symbol	min	typ	max	Unit	Conditions			
	5.5.1 Multiport Serial Interfaces (I ² C, SPI)									
5.5.1.1	Input-High-Level	$V_{I2C_IN_H}$	0.7		1	VDDA				
5.5.1.2	Input-Low-Level	$V_{I2C_IN_L}$	0		0.3	VDDA				
5.5.1.3	Output-Low-Level	$V_{I2C_OUT_L}$			0.1	VDDA				
5.5.1.4	load capacitance @ SDA	C_{SDA}			400	pF				
5.5.1.5	Clock frequency SCL	f_{SCL}			400	kHz				
5.5.1.6	Pull-up Resistor	R _{I2C_PU}	500			Ω				
	5.5.2 On	e Wire Ser	ial Int	erfac	e (ZAC	wire™)				
5.5.2.1	Pull-up resistance master	R _{OWI_PU}	330			Ω				
5.5.2.2	OWI line resistance	R _{OWI_LINE}			0.05	R_{OWI_PU}				
5.5.2.3	OWI load capacitance	C _{OWI_LOA}			0.08	t _{OWI_BIT} / R _{OWI_PU}	20μs < t _{OWI_BIT} < 100μs			
5.5.2.4	Voltage level Low	V _{OWI_L}			0.2	VDDA				
5.5.2.5	Voltage level High	V_{OWI_H}	0.75			VDDA				

^{*} no measurement in mass production, parameter is guarantied by design and/or quality observation

¹ Depends on resolution and configuration - start routine begins approximately 0.8ms after power on

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

6. Test

Refer "ZMD31050 Test Flow Description" for a detailed test flow and test conditions.

7. Reliability

A reliability investigation according to the in-house non-automotive standard will be performed.

8. Customization

For high-volume applications, which require an up- or downgraded functionality compared to the ZM31050, ZMD can customize the circuit design by adding or removing certain functional blocks. For it ZMD has a considerable library of sensor-dedicated circuitry blocks.

Thus ZMD can provide a custom solution quickly. Please contact ZMD for further information.

9. Related Documents

- ZMD31050 Feature Sheet
- ZMD31050 Functional Description
- ZMD31050 Evaluation Kit Description
- ZMD31050 Development Status Report (including parts identification table)
- ZMD31050 Test Flow Description
- ZMD31050 Application Notes

Advanced Differential Sensor Signal Conditioner

Datasheet PRELIMINARY

NOTES:

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. ZMD assumes no obligation regarding future manufacture unless otherwise agreed in writing. The information furnished hereby is believed to be correct and accurate. However, ZMD shall not be liable to any customer, licensee or any other third party for any damages in connection with or arising out of the furnishing, performance or use of this technical data. No obligation or liability to any customer, licensee or any other third party shall result from ZMD's rendering of technical or other services.

For further information:

ZMD AG Grenzstrasse 28 01109 Dresden, Germany Phone +49 (0)351-8822-366 Fax +49 (0)351-8822-337

Fax +49 (0)351-8822-33 sales@zmd.de www.zmd.biz ZMD America, Inc. 201 Old Country Road, Suite 204 Melville, NY 11747, USA Phone +01 (631) 549-2666 Fax +01 (631) 549-2882 sales@zmda.com www.zmd.biz ZMD America, Inc. 15373 Innovation Drive, Suite 110 San Diego, CA 92128, USA Phone +01 (858) 674-8070 Fax +01 (858) 674-8071 sales@zmda.com www.zmd.biz