

SUPPLY VOLTAGE MONITOR ISSUE 3 – JULY 2006

DEVICE DESCRIPTION

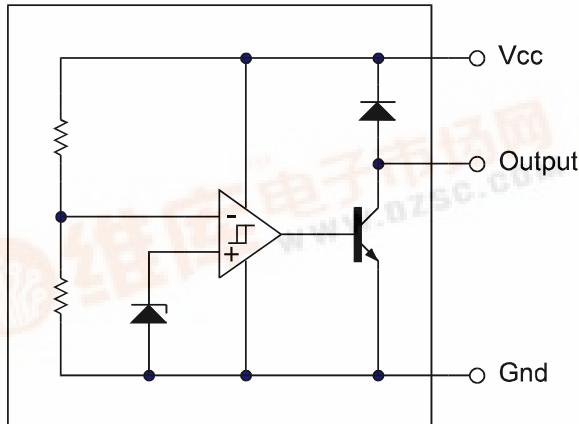
The ZSM330 is a three terminal under voltage monitor circuit for use in microprocessor systems. The threshold voltage of the device has been set to 3.1 volts making it ideal for 3.3 volt circuits.

Included in the device is a precise voltage reference and a comparator with built in hysteresis to prevent erratic operation. The ZSM330 features an open collector output capable of sinking at least 10mA which only requires a single external resistor to interface to following circuits.

Operation of the device is guaranteed from one volt upwards, from this level to the device threshold voltage the output is held low providing a power on reset function. Should the supply voltage, once established, at any time drop below the threshold level then the output again will pull low.

The device is available in a TO92 package for through hole applications as well as SOT223 for surface mount requirements.

ZSM330


FEATURES

- SOT223 and TO92 packages
- Power on reset generator
- Automatic reset generation
- Low standby current
- Guaranteed operation from 1 volt
- Wide supply voltage range
- Internal clamp diode to discharge delay capacitor
- 3.1 volt threshold for 3.3 volt logic
- 20mV hysteresis prevents erratic operation

APPLICATIONS

- Microprocessor systems
- Computers
- Computer peripherals
- Instrumentation
- Automotive
- Battery powered equipment

SCHEMATIC DIAGRAM

ZSM330

ABSOLUTE MAXIMUM RATING

Input Supply Voltage -1 to 10V

Offstate Output Voltage 10V

Onstate Output

Sink Current(Note 1) Internally limited

Clamp Diode

Forward Current(Note 1) 100mA

Operating Junction

Temperature 150°C

Operating Temperature -40 to 85°C

Storage Temperature -55 to 150°C

Power Dissipation

TO92

780mW

SOT223

2W(Note 2)

TEST CONDITIONS

($T_{amb}=25^{\circ}C$ for typical values, $T_{amb}=-40$ to $85^{\circ}C$ for min/max values (Note3))

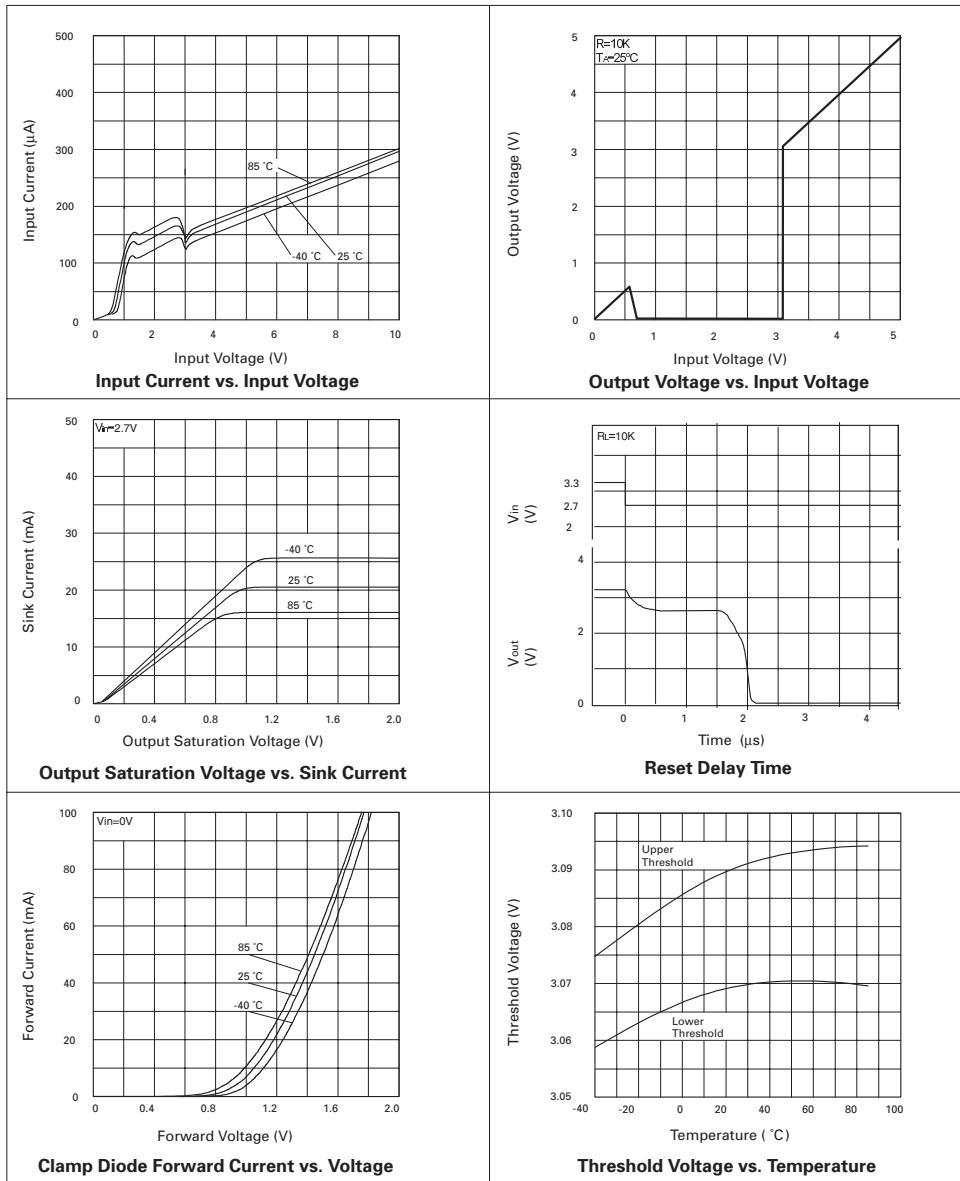
COMPARATOR

PARAMETER	SYMBOL	MIN	TYP.	MAX.	UNITS
Threshold Voltage High state output (V_{cc} increasing)	V_{IH}	3.01	3.09	3.15	V
Threshold Voltage Low state output (V_{cc} decreasing)	V_{IL}	3.01	3.07	3.15	V
Hysteresis	V_H	0.01	0.02	0.05	V

OUTPUT

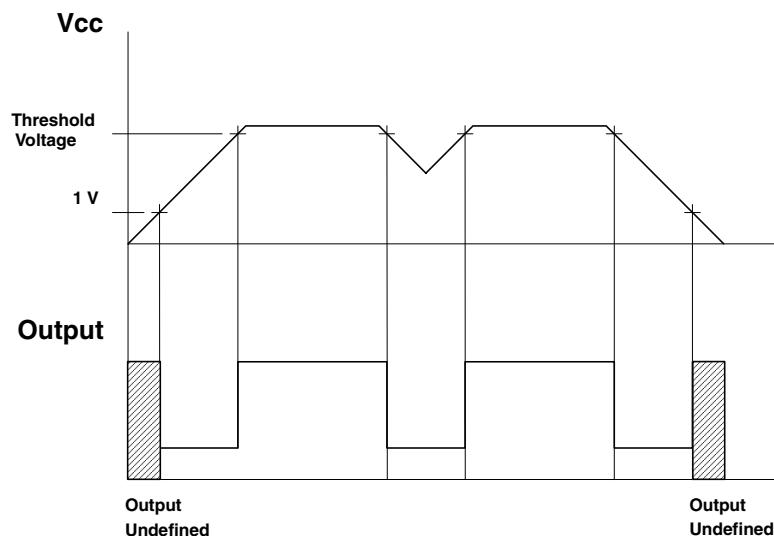
Output sink saturation: ($V_{cc}=2.7V$, $I_{sink}=8.0mA$)	V_{OL}		0.46	1.0	V
($V_{cc}=2.7V$, $I_{sink}=2.0mA$)			0.15	0.4	V
($V_{cc}=1.0V$, $I_{sink}=0.1mA$)				0.25	V
Onstate output sink current (V_{cc} , Output=2.7V)	I_{sink}	10	27	60	mA
Offstate output leakage current (V_{cc} , Output=3.3V)	I_{oh}		0.02	0.5	μ A
Clamp diode forward voltage ($I_f=10mA$)	V_f	0.6	1.2	1.5	V
Propagation delay (V_{in} 3.3V to 2.7V, $R_l=10k$, $T_{amb}=25^{\circ}C$)	T_d		2.2		μ s

TOTAL DEVICE

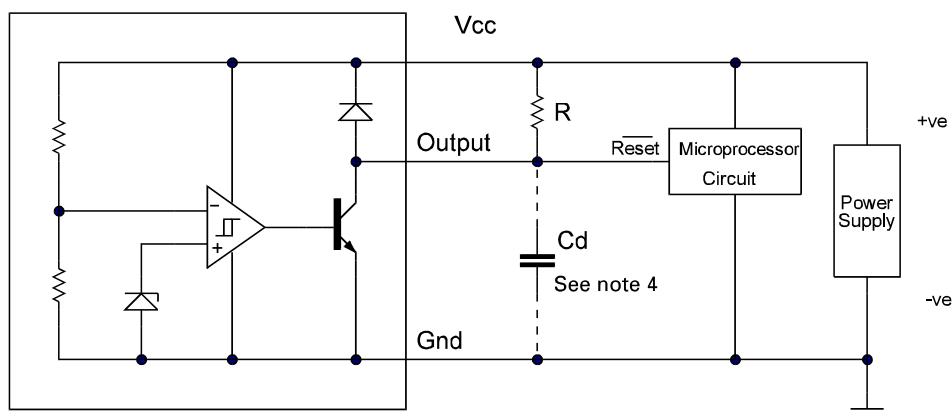

Operating input voltage range	V_{cc}	1.0 to 6.5			V
Quiescent input current ($V_{cc}=3.3V$)	I_q		120	180	μ A

Note:

1. Maximum package power dissipation must be observed
2. Maximum power dissipation, for the SOT223 package is calculated assuming that the device is mounted on a PCB measuring 2 inches square.
3. Low duty cycle pulse techniques are used during test to maintain junction temperatures as close to ambient as possible


ZSM330

TYPICAL CHARACTERISTICS

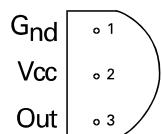


ZSM330

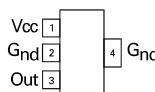
TIMING DIAGRAM

APPLICATION CIRCUIT

Note 4: A time delayed reset can be accomplished with the additional Cd.


$$T_{DY} = RCd \ln \left(\frac{1}{1 - \frac{V_{TH(mu)}}{V_{in}}} \right)$$

T_{DY} = Time (Seconds)
 V_{TH} = Microprocessor Reset Threshold
 V_{in} = Power Supply Voltage


ZSM330

CONNECTION DIAGRAMS

TO92 Package Suffix – C

SOT223 Package Suffix – G

ORDERING INFORMATION

Part Number	Package	Part Mark
ZSM330G	SOT223	ZSM330
ZSM330C	TO92	ZSM330

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH Streifeldstraße 19 D-81673 München Germany	Zetex Inc 700 Veterans Memorial Highway Hauppauge, NY 11788 USA	Zetex (Asia Ltd) 3701-04 Metroplaza Tower 1 Hing Fong Road, Kwai Fong Hong Kong	Zetex Semiconductors plc Zetex Technology Park, Chadderton Oldham, OL9 9LL United Kingdom
Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 europe.sales@zetex.com	Telephone: (1) 631 360 2222 Fax: (1) 631 360 8222 usa.sales@zetex.com	Telephone: (852) 26100 611 Fax: (852) 24250 494 asia.sales@zetex.com	Telephone: (44) 161 622 4444 Fax: (44) 161 622 4446 hq@zetex.com

For international sales offices visit www.zetex.com/offices

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.