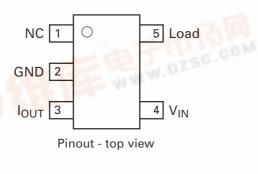


ZXCT1010 Enhanced high-side current monitor

Description

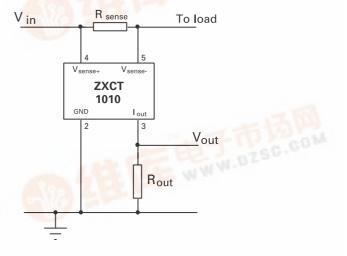

The ZXCT1010 is a high side current sense monitor. Using this device eliminates the need to disrupt the ground plane when sensing a load current.

It is an enhanced version of the ZXCT1009 offering reduced typical output offset and improved accuracy at low sense voltage.

Features

- Low cost, accurate high-side current sensing
- Output voltage scaling
- Up to 2.5V sense voltage
- 2.5V 20V supply range
- 300nA typical offset current
- 3.5µA quiescent current
- 1% typical accuracy
- SOT23-5 package

Pinout information



The wide input voltage range of 20V down to as low as 2.5V make it suitable for a range of applications. A minimum operating current of just $4\mu A$, combined with its SOT23-5 package make suitable for portable battery equipment.

Applications

- Battery chargers
- Smart battery packs
- DC motor control
- Over current monitor
- Power management
- Programmable current source

Typical application circuit

Ordering information

Device	Package	Device marking	Reel size (inches)	Tape width (mm)	Quantity per reel
ZXCT1010E5TA	SOT23-5	101	7	8	3000

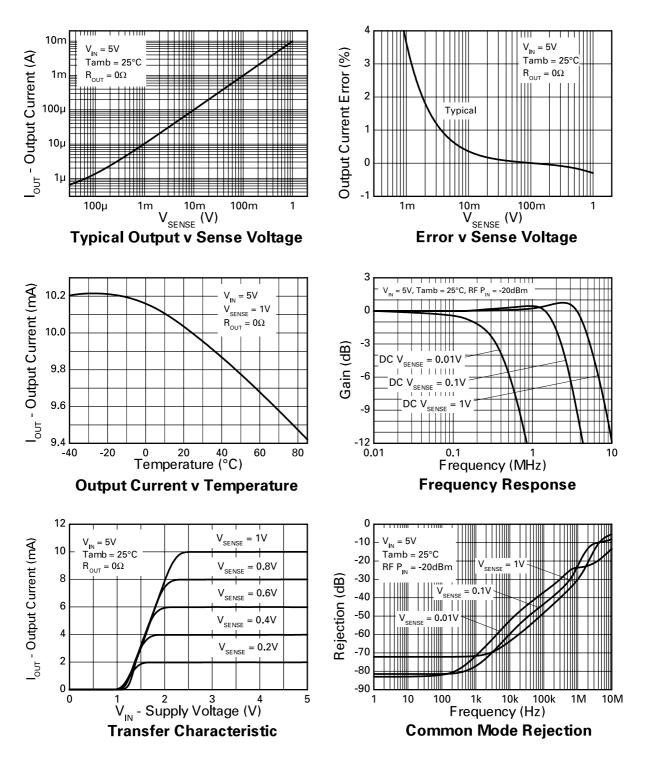
Pin information

Pin	Name	Description	
1	N/C	Not connection	
2	GND	Ground connection	
3	I _{OUT}	Output current, proportional to V _{IN} - V _{LOAD}	
4	V _{SENSE+} Supply voltage		
5	V _{SENSE-}	Connection to load/battery	

Absolute maximum ratings

Voltage on any pin (relative to GND pin)	-0.6 to 20V (relative to GND)
Continuous output current	25mA
Continous sense voltage	V_{IN} + 0.5V > V_{SENSE} > V_{IN} - 5V
Ambient operating temperature range	-40 to 85°C
Storage temperature	-55 to 150°C
Package power dissipation	T _{amb} = 25°C
SOT23-5	300mW

Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability.


Electrical characteristics

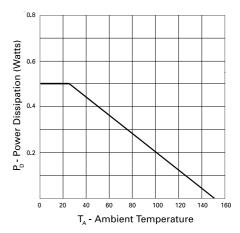
Symbol	Parameter	Conditions		Limits		
			Min.	Тур.	Max.	1
V _{IN}	V _{CC} range		2.5		20	V
I _{OUT} ^(a)	Output current	V _{SENSE} = 0V	0	0.3	10	μA
001		V _{SENSE} = 10mV	85	100	115	μA
		V _{SENSE} = 100mV	0.975	1.00	1.025	mA
		V _{SENSE} = 200mV	1.95	2.00	2.05	mA
		V _{SENSE} = 1V	9.7	10.0	10.3	mA
Ι _Q	Ground pin current	V _{SENSE} = 0V		3.5	8	μA
V _{SENSE} ^(b)	Sense voltage		0		2500	mV
I _{SENSE-}	V _{SENSE-} input current				100	nA
Acc	Accuracy	$R_{SENSE} = 0.1\Omega$				
		V _{SENSE} = 200mV	-2.5		2.5	%
Gm	Transconductance, I _{OUT} /V _{SENSE}			10000		μA/V
BW	Bandwidth	RF P _{IN} = -20dBm ^(c)				1
		V _{SENSE} = 10mV DC		300		kHz
		V _{SENSE} = 100mV DC		2		MHz

Test conditions T_{amb} = 25°C, V_{IN} = 5V, R_{OUT} = 100 Ω

NOTES:

(a) Includes input offset voltage contribution (b) V_{SENSE} = $V_{IN}\text{-}V_{LOAD}$ (c) -20dBm = 63mVp-p into 50 Ω

Typical characteristics


Power dissipation

The maximum allowable power dissipation of the device for normal operation (P_{max}), is a function of the package junction to ambient thermal resistance (Θ_{ja}), maximum junction temperature (Tj_{max}), and ambient temperature (T_{amb}), according to the expression:

 $Pmax = (Tj_{max} - T_{amb}) / \Theta_{ja}$

The device power dissipation, P_D is given by the expression:

P_D=I_{OUT}.(V_{IN}-V_{OUT}) Watts

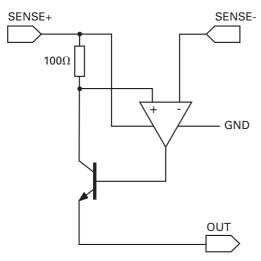
Applications information

The following lines describe how to scale a load current to an output voltage.

 $V_{SENSE} = V_{IN} - V_{LOAD}$

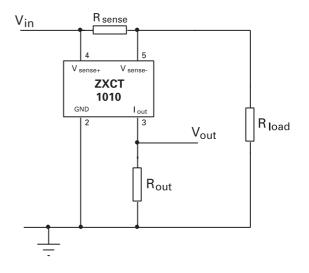
For example:

A 1A current is to be represented by a 100mV output voltage:

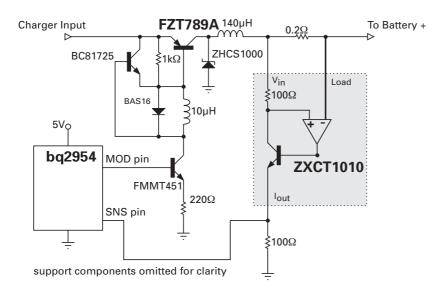

- 1 Choose the value of R_{SENSE} to give 50mV > V_{SENSE} > 500mV at full load. For example V_{SENSE} = 100mV at 1.0A. R_{SENSE} = 0.1/1.0 => 0.1 Ω .
- 2 Choose R_{OUT} to give V_{OUT} = 100mV, when V_{SENSE} = 100mV.

Rearranging ⁽¹⁾ for R_{OUT} gives:

 $R_{OUT} = V_{OUT} / (V_{SENSE} \times 0.01)$


 $R_{OUT} = 0.1 / (0.1 \times 0.01) = 100\Omega$

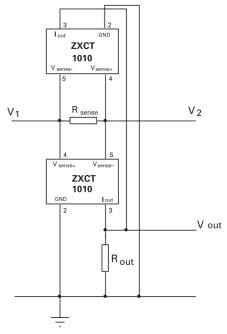
Schematic diagram


Typical circuit application

Where R_{LOAD} represents any load including DC motors, a charging battery or further circuitry that requires monitoring, R_{SENSE} can be selected on specific requirements of accuracy, size and power rating.

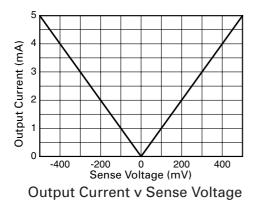
Li-lon charger circuit

The figure below shows the ZXCT1010 supporting the Benchmarq bq2954 charge management IC. Most of the support components for the bq2954 are omitted for clarity. This design also uses the Zetex FZT789A high current Super- β PNP as the switching transistor in the DC-DC step down converter and the FMMT451 as the drive NPN for the FZT789A. The circuit can be configured to charge up to four Li-lon cells at a charge current of 1.25A. Charge can be terminated on maximum voltage, selectable minimum current, or maximum time out. Switching frequency of the PWM loop is approximately 120kHz.



Bi-directional current sensing

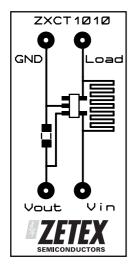
The ZXCT1010 can be used to measure current bidirectionally, if two devices are connected as shown opposite.


If the voltage V1 is positive with respect to the voltage V2 the lower device will be active, delivering a proportional output current to R_{OUT} . Due to the polarity of the voltage across Rsense, the upper device will be inactive and will not contribute to the current delivered to R_{OUT} . When V2 is more positive than V1, current will be flowing in the opposite direction, causing the upper device to be active instead.

Non-linearity will be apparent at small values of V_{SENSE} due to offset current contribution. Devices can use separate output resistors if the current direction is to be monitored independently.

Bi-directional transfer function

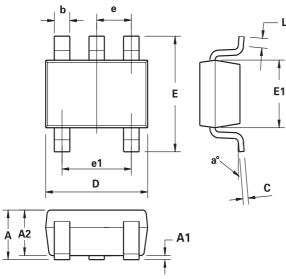

Bidirectional Transfer Function



PCB trace shunt resistor for low cost solution

The figure opposite shows output characteristics of the device when using a PCB resistive trace for a low cost solution in replacement for a conventional shunt resistor. The graph shows the linear rise in voltage across the resistor due to the PTC of the material and demonstrates how this rise in resistance value over temperature compensates for the NTC of the device.

The figure below shows a PCB layout suggestion. The resistor section is 25mm x 0.25mm giving approximately 150mW using 1oz copper. The data for the normalised graph was obtained using a 1A load current and a 100W output resistor. An electronic version of the PCB layout is available at www.zetex.com/isense



Layout shows area of shunt resistor compared to ZSOT23-5 package (not actual size).

Intentionally left blank

Package outline - SOT23-5

DIM	Millin	Millimeters		hes	
	Min.	Max.	Min.	Max.	
А	0.90	1.45	0.0354	0.0570	
A1	0.00	0.15	0.00	0.0059	
A2	0.90	1.30	0.0354	0.0511	
b	0.20	0.50	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.70	3.10	0.1062	0.1220	
E	2.20	3.20	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
е	0.95	0.95 REF		0.0374 REF	
e1	1.90 REF		0.0748 REF		
L	0.10	0.60	0.0039	0.0236	
a°	0°	30°	0°	30°	

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone: (44) 161 622 4444
Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com

For international sales offices visit www.zetex.com/offices

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.