

1N5400 thru 1N5408

1N5404 and 1N5406 are Preferred Devices

Axial-Lead Standard Recovery Rectifiers

Lead mounted standard recovery rectifiers are designed for use in power supplies and other applications having need of a device with the following features:

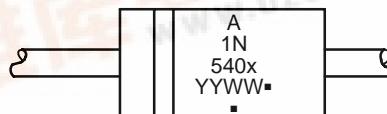
Features

- High Current to Small Size
- High Surge Current Capability
- Low Forward Voltage Drop
- Void-Free Economical Plastic Package
- Available in Volume Quantities
- Plastic Meets UL 94 V-0 for Flammability
- These are Pb-Free Devices

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.1 Gram (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Cathode Indicated by Polarity Band

ON Semiconductor®


<http://onsemi.com>

STANDARD RECOVERY RECTIFIERS 50–1000 VOLTS 3.0 AMPERES

AXIAL LEAD
CASE 267-05
STYLE 1

MARKING DIAGRAM

A = Assembly Location

1N540x = Device Number

x = 0, 1, 2, 4, 6, 7 or 8

YY = Year

WW = Work Week

■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

1N5400 thru 1N5408

MAXIMUM RATINGS

Rating	Symbol	1N5400	1N5401	1N5402	1N5404	1N5406	1N5407	1N5408	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V_{RRM} V_{RWM} V_R	50	100	200	400	600	800	1000	V
Non-repetitive Peak Reverse Voltage	V_{RSM}	100	200	300	525	800	1000	1200	V
Average Rectified Forward Current (Single Phase Resistive Load, 1/2 in. Leads, $T_L = 105^\circ\text{C}$)	I_O				3.0				A
Non-repetitive Peak Surge Current (Surge Applied at Rated Load Conditions)	I_{FSM}				200 (one cycle)				A
Operating and Storage Junction Temperature Range	T_J T_{stg}				$-65 \text{ to } +170$	$-65 \text{ to } +175$			$^\circ\text{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Typ	Unit
Thermal Resistance, Junction-to-Ambient (PC Board Mount, 1/2 in. Leads)	$R_{\theta,JA}$	53	$^\circ\text{C/W}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
Forward Voltage ($I_F = 3.0 \text{ Amp}$, $T_A = 25^\circ\text{C}$)	V_F	—	—	1.0	V
Reverse Current (Rated DC Voltage) $T_A = 25^\circ\text{C}$ $T_A = 150^\circ\text{C}$	I_R	— —	— —	10 100	μA

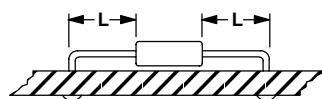
Ratings at 25°C ambient temperature unless otherwise specified.

60 Hz resistive or inductive loads.

For capacitive load, derate current by 20%.

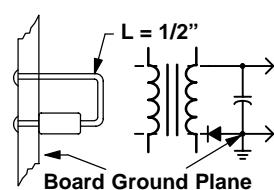
1N5400 thru 1N5408

NOTE 1 — AMBIENT MOUNTING DATA

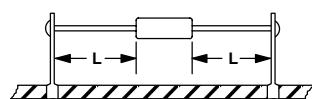

Data shown for thermal resistance junction-to-ambient ($R_{\theta JA}$) for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $R_{\theta JA}$ IN STILL AIR

Mounting Method	Lead Length, L (IN)				$R_{\theta JA}$
	1/8	1/4	1/2	3/4	
1	50	51	53	55	°C/W
2	58	59	61	63	°C/W
3	28				°C/W


MOUNTING METHOD 1

P.C. Board Where Available
Copper Surface area is small


MOUNTING METHOD 3

P.C. Board with
1-1/2" x 1-1/2"
Copper Surface

MOUNTING METHOD 2

Vector Push-In Terminals T-28

1N5400 thru 1N5408

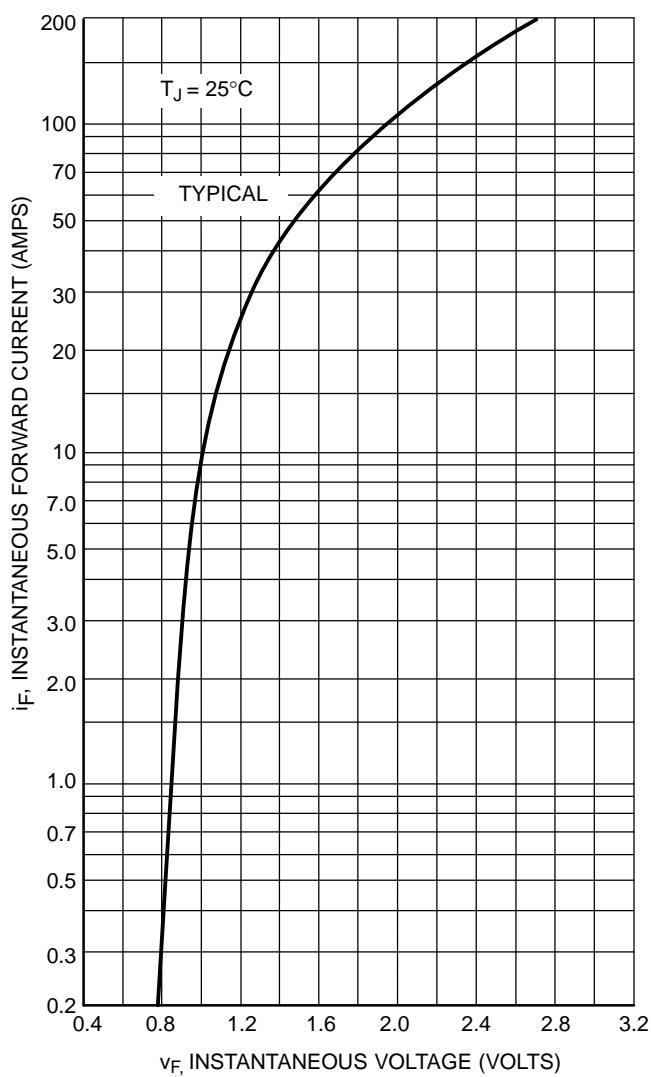


Figure 1. Forward Voltage

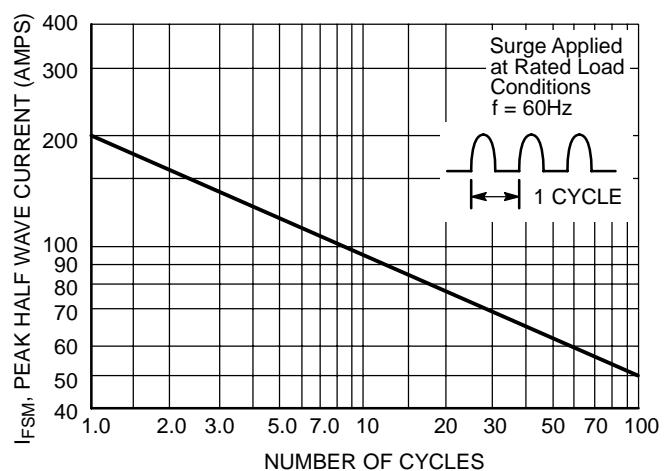


Figure 2. Maximum Nonrepetitive Surge Current

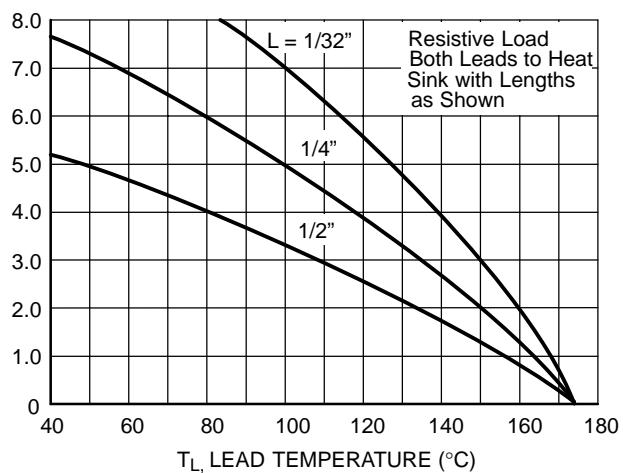


Figure 3. Current Derating Various Lead Lengths

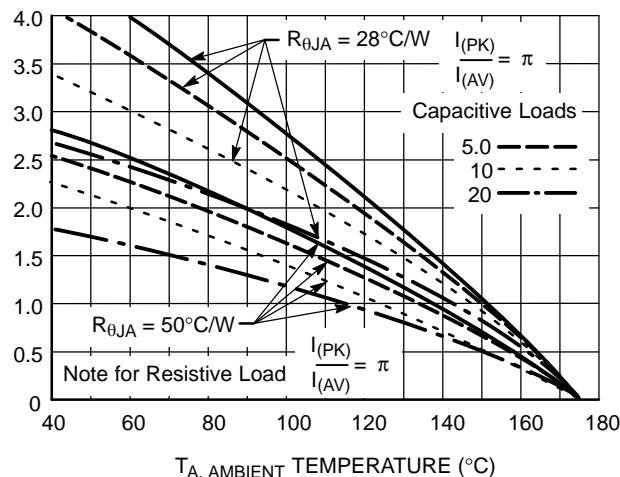


Figure 4. Current Derating PC Board Mounting

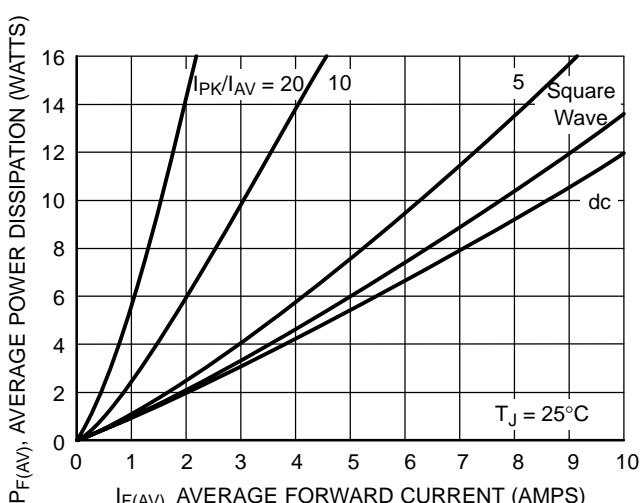
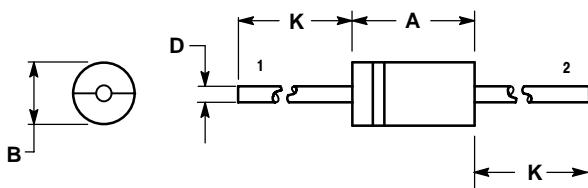


Figure 5. Forward Power Dissipation

1N5400 thru 1N5408

ORDERING INFORMATION

Device	Package	Shipping [†]
1N5400	Axial Lead*	500 Units/Box
1N5400G	Axial Lead*	500 Units/Box
1N5400RL	Axial Lead*	1200/Tape & Reel
1N5400RLG	Axial Lead*	1200/Tape & Reel
1N5401	Axial Lead*	500 Units/Box
1N5401G	Axial Lead*	500 Units/Box
1N5401RL	Axial Lead*	1200/Tape & Reel
1N5401RLG	Axial Lead*	1200/Tape & Reel
1N5402	Axial Lead*	500 Units/Box
1N5402G	Axial Lead*	500 Units/Box
1N5402RL	Axial Lead*	1200/Tape & Reel
1N5402RLG	Axial Lead*	1200/Tape & Reel
1N5404	Axial Lead*	500 Units/Box
1N5404G	Axial Lead*	500 Units/Box
1N5404RL	Axial Lead*	1200/Tape & Reel
1N5404RLG	Axial Lead*	1200/Tape & Reel
1N5406	Axial Lead*	500 Units/Box
1N5406G	Axial Lead*	500 Units/Box
1N5406RL	Axial Lead*	1200/Tape & Reel
1N5406RLG	Axial Lead*	1200/Tape & Reel
1N5407	Axial Lead*	500 Units/Box
1N5407G	Axial Lead*	500 Units/Box
1N5407RL	Axial Lead*	1200/Tape & Reel
1N5407RLG	Axial Lead*	1200/Tape & Reel
1N5408	Axial Lead*	500 Units/Box
1N5408G	Axial Lead*	500 Units/Box
1N5408RL	Axial Lead*	1200/Tape & Reel
1N5408RLG	Axial Lead*	1200/Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*This package is inherently Pb-Free.

1N5400 thru 1N5408

PACKAGE DIMENSIONS

AXIAL LEAD CASE 267-05 ISSUE G

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.287	0.374	7.30	9.50
B	0.189	0.209	4.80	5.30
D	0.047	0.051	1.20	1.30
K	1.000	---	25.40	---

STYLE 1:
PIN 1. CATHODE (POLARITY BAND)
2. ANODE

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative