捷多邦,专业PCB打样工厂,24小时加急出货

Model 1P503S

Hybrid Couplers 3 dB, 90°

They are

(315) 432-8909

(800) 544-2414

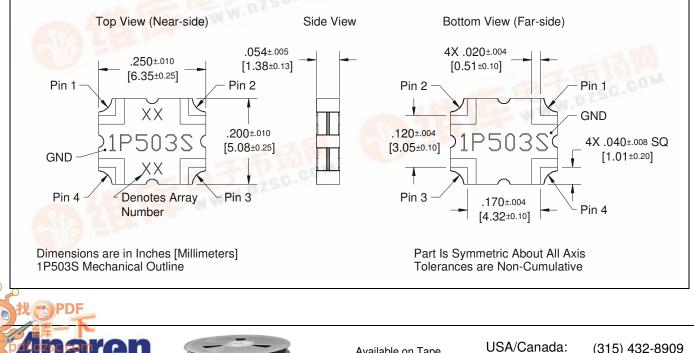
Toll Free:

Features:

- 1.7 2.0 GHz.
- **DCS and PCS**
- Low Loss
- **High Isolation**
- 90⁰ Quadrature
- Surface Mountable
- **Tape And Reel**
- Lead Free
- 100% Tested

ELECTRICAL SPECIFICATIONS**						
Frequency	Isolation*	Insertion Loss	VSWR			
GHz	dB Min	dB Max	Max:1			
1.7 – 1.8	18	0.25	1.28			
1.8 – 2.0	18	0.25	1.28			
Amplitude Balance	Phase Balance	Power	ΘJC	Operating Temp.		
dB Max	Degrees	Ave. CW Watts	^⁰ C/Watt	°C		
± 0.45	± 3	30	27.5	-55 to +85		
± 0.30	± 3	30	27.5	-55 to +85		

The 1P503S Pico Xinger is a low profile, miniature 3dB hybrid coupler in an easy to use surface mount package designed for DCS and PCS applications. The 1P503S is designed for balanced amplifiers, variable phase shifters and attenuators, LNAs, signal distribution and is an ideal solution for the ever-increasing demands of the wireless industry for smaller printed circuit boards and high performance. Parts have been subjected to


manufactured using materials with x and y thermal expansion coefficients

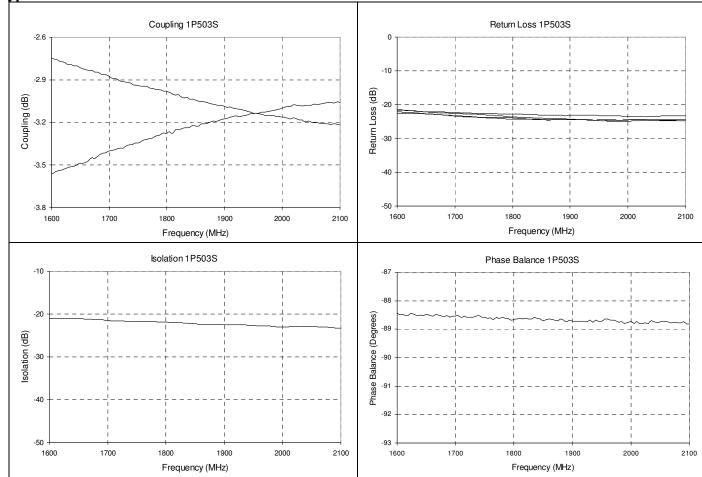
rigorous qualification testing and units are 100% tested.

compatible with common substrates.

*Specification based on performance of unit properly installed on microstrip printed circuit boards with 50 Ω nominal impedance. * See Anaren Application Note #AAN-231 for information on how to improve RF performance on your printed circuit board Specifications subject to change without notice.

Outline Drawing

Available on Tape


ind Reel For Pick and

Description

Typical Performance: 1.6 GHz. to 2.1 GHz.

AMPLITUDE BALANCE

3dB hybrids are a type of backward wave coupler. In the design of these couplers, the even mode impedance was chosen to 'critically couple' or slightly 'over couple' at mid band to maximize performance and bandwidth. The amplitude balance specification is defined as the difference (in dB) of the signals at the COUPLED port output and the DC port output, when compared to the average output level.

PHASE BALANCE

In theory, output ports of a backward wave hybrid coupler remain in perfect phase quadrature independent of frequency. In practice, factors associated with the manufacturing processes slightly degrade performance. The specification is typical two to three degrees maximum although in practice, phase balance is statistically better than specified ($<1^{\circ}$).

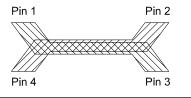
VSWR & ISOLATION

Similar to phase balance, the VSWR and isolation of a coupler are theoretically perfect; where the input and output ports are perfectly matched and no power is coupled to the isolated port. In practice, factors associated with the design and manufacturing processes limit VSWR and isolation. The significant limitations are associated with limitations of building perfect 50Ω transitions at the input and output ports of the device.

INSERTION LOSS

Coupler insertion loss is defined as the difference of the input power from the sum of the output power. In practice, loss is typically 0.20 dB. Specification limits are somewhat higher due to imperfect test conditions; as the couplers must be tested in fixtures, which negatively affect results.

USA/Canada: Toll Free: (315) 432-8909 (800) 544-2414

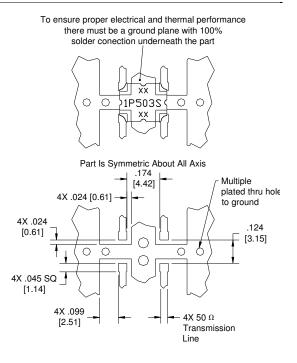

Available on Tape and Reel For Pick and Place

Model 1P503S

PIN CONFIGURATION

Hybrid Coupler Pin Configruation						
	Pin 1	Pin 2	Pin 3	Pin 4		
Configuration #1	Input	Isolated	-3dB, -90°	-3dB, 0°		
Configuration #2	Isolated	Input	-3dB, 0°	-3dB, -90°		
Configuration #3	-3dB, -90°	-3dB, 0°	Input	Isolated		
Configuration #4	-3dB, 0°	-3dB, -90°	Isolated	Input		

All of the standard surface mount 3dB hybrid couplers have pin orientations that are symmetrical. When a port is designated as the input, automatically the two output and isolated ports are defined. For example, if the input port for a device was selected to be Pin 1, Pin 2 is automatically the isolated port, Pin 4 is the 0 degree reference output port, and Pin 3 is the output port which "lags" behind the reference output port by 90 degrees. Similarly, if Pin 3 was to be selected as the input port, the adjacent port on the long side (Pin 4) is the isolated port, the adjacent port on the short side (Pin 2) is the 0 degree output port, and the opposite port (Pin 1) is the -90 degree output port. Below is a table of all possible orientations.


MOUNTING

In order for Xinger surface mount couplers to work optimally, there must be 50Ω transmission lines leading to and from all of the RF ports. Also, there must be a very good ground plane under the part to ensure proper electrical performance. If either of these two conditions are not satisfied, insertion loss, coupling, VSWR and isolation may not meet published specifications.

Overall ground is improved if a dense population of plated through holes connect the top and bottom ground layers of the PCB. This minimizes ground inductance and improves ground continuity. All of the Xinger hybrid and directional couplers are constructed from ceramic filled PTFE composites, which possess excellent electrical and mechanical stability having X and Y thermal coefficient of expansion (CTE) of 17 ppm/°C

When a surface mount hybrid coupler is mounted to a printed circuit board, the primary concerns are; insuring the RF pads of the device are in contact with the circuit trace of the PCB and insuring the ground plane of neither the component nor the PCB is in contact with the RF signal. As long as the geometry of the unit fits onto the layout of the circuit trace on the PCB, and the conditions of the previous paragraph are followed, the coupler's performance is ensured. An example of how the PCB footprint could look is shown below. In specific designs, the 50Ω lines need to be adjusted to the unique dielectric coefficients and thicknesses as well as varying pick and place equipment tolerances.

SUGGESTED FOOTPRINT

Dimensions are in Inches [Millimeters] 1P503S Mounting Footprint

Available on Tape

USA/Canada: Toll Free:

(315) 432-8909 (800) 544-2414