

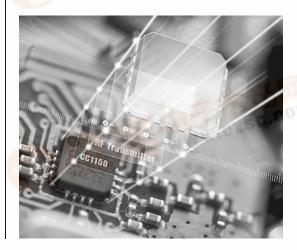
CC1150 Single Chip Low Cost Low Power RF-Transmitter

Applications

- Ultra low power UHF wireless transmitters
- 315/433/868 and 915MHz ISM/SRD band systems
- AMR ñ Automatic Meter Reading
- Consumer Electronics
- RKE ñ Remote Keyless Entry

- Low power telemetry
- Home and building automation
- Wireless alarm and security systems
- Industrial monitoring and control

Product Description


The **CC1150** is a low cost true single chip UHF transmitter designed for very low power wireless applications. The circuit is mainly intended for the ISM (Industrial, Scientific and Medical) and SRD (Short Range Device) frequency bands at 315, 433, 868 and 915MHz, but can easily be programmed for operation at other frequencies in the 300-348MHz, 400-464MHz and 800-928MHz bands.

The RF transmitter is integrated with a highly configurable baseband modulator. The modulator supports various modulation formats and has a configurable data rate up to 500kbps. Performance can be increased by enabling a Forward Error Correction option, which is integrated in the modulator.

The *CC1150* provides extensive hardware support for packet handling, data buffering and burst transmissions.

The main operating parameters and the 64byte transmit FIFO of **CC1150** can be controlled via an SPI interface. In a typical system, the **CC1150** will be used together with a microcontroller and a few additional passive components.

CC1150 is based on Chipconis SmartRF®04 technology in 0.18µm CMOS.

Key Features

- Small size (QLP 4x4mm package, 16 pins)
- True single chip UHF RF transmitter
- Frequency bands: 300-348MHz, 400-464MHz and 800-928MHz
- Programmable data rate up to 500kbps
- Low current consumption
- Programmable output power up to +10dBm for all supported frequencies
- Very few external components: Totally onchip frequency synthesizer, no external filters needed
- Programmable baseband modulator
- Ideal for multi-channel operation
- Configurable packet handling hardware

- Suitable for frequency hopping systems due to a fast settling frequency synthesizer
- Optional Forward Error Correction with interleaving
- 64-byte TX data FIFO
- Suited for systems compliant with EN 300 220 and FCC CFR Part 15
- Many powerful digital features allow a high-performance RF system to be made using an inexpensive microcontroller
- Efficient SPI interface: All registers can be programmed with one iburstî transfer
- Integrated analog temperature sensor
- Lead-free igreenî package

Features (continued from front page)

- Flexible support for packet oriented systems: On chip support for sync word insertion, flexible packet length and automatic CRC handling.
- OOK and flexible ASK shaping supported
- 2-FSK, GFSK and MSK supported.
- · Optional automatic whitening of data
- Support for asynchronous transparent transmit mode for backwards compatibility with existing radio communication protocols

1 Abbreviations

Abbreviations used in this data sheet are described below.

2-FSK	Binary Frequency Shift Keying	OOK	On-Off-Keying
ADC	Analog to Digital Converter	PA	Power Amplifier
AFC	Automatic Frequency Offset Compensation	PCB	Printed Circuit Board
AGC	Automatic Gain Control	PD	Power Down
AMR	Automatic Meter Reading	PER	Packet Error Rate
ASK	Amplitude Shift Keying	PLL	Phase Locked Loop
BER	Bit Error Rate	PQI	Preamble Quality Indicator
CCA	Clear Channel Assessment	RCOSC	RC Oscillator
CRC	Cyclic Redundancy Check	RF	Radio Frequency
EIRP	Equivalent Isotropic Radiated Power	RSSI	Received Signal Strength Indicator
ESR	Equivalent Series Resistance	RX	Receive, Receive Mode
FEC	Forward Error Correction	SAW	Surface Aqustic Wave
FIFO	First-In-First-Out	SNR	Signal to Noise Ratio
FSK	Frequency Shift Keying	SPI	Serial Peripheral Interface
GFSK	Gaussian shaped Frequency Shift Keying	TBD	To Be Defined
LNA	Low Noise Amplifier	TX	Transmit, Transmit Mode
LO	Local Oscillator	VCO	Voltage Controlled Oscillator
LQI	Link Quality Indicator	XOSC	Crystal Oscillator
MCU	Microcontroller Unit	XTAL	Crystal
MSK	Minimum Shift Keying		

Table Of Contents

1	ABBREVIATIONS	2
2	ABSOLUTE MAXIMUM RATINGS	4
3	OPERATING CONDITIONS	
4	ELECTRICAL SPECIFICATIONS	
5	GENERAL CHARACTERISTICS.	
6	RF TRANSMIT SECTION	
7	CRYSTAL OSCILLATOR	
8	FREQUENCY SYNTHESIZER CHARACTERISTICS	
9		
· _	ANALOG TEMPERATURE SENSOR	
10	DC CHARACTERISTICS	
11	Power On Reset	
12	PIN CONFIGURATION	
13	CIRCUIT DESCRIPTION	
14	APPLICATION CIRCUIT	
15	CONFIGURATION OVERVIEW	
16	CONFIGURATION SOFTWARE	
17	4-WIRE SERIAL CONFIGURATION AND DATA INTERFACE	
17.1	CHIP STATUS BYTE	
17.2	REGISTER ACCESS	14
17.3	COMMAND STROBES	14
17.4	FIFO Access	14
17.5	PATABLE Access	14
18	MICROCONTROLLER INTERFACE AND PIN CONFIGURATION	16
18.1	CONFIGURATION INTERFACE	16
18.2	GENERAL CONTROL AND STATUS PINS	16
19	DATA RATE PROGRAMMING	17
20	PACKET HANDLING HARDWARE SUPPORT	
20.1	DATA WHITENING	
20.2	PACKET FORMAT	
20.3	PACKET HANDLING IN TRANSMIT MODE	
21	MODULATION FORMATS	
21.1	FREQUENCY SHIFT KEYING	
21.2	MINIMUM SHIFT KEYING	
21.3	AMPLITUDE MODULATION	
21.5	FORWARD ERROR CORRECTION WITH INTERLEAVING	
22.1	FORWARD ERROR CORRECTION (FEC)	
22.1	Interleaving	
23.2	RADIO CONTROL	
23 23.1	POWER ON START-UP SEQUENCE	
23.1 23.2	CRYSTAL CONTROL	
	VOLTAGE REGULATOR CONTROL	
23.3		
23.4		
23.5	TIMING	
24	DATA FIFO	
25	FREQUENCY PROGRAMMING	
26	VCO	
26.1	VCO AND PLL SELF-CALIBRATION	
27	VOLTAGE REGULATORS	
28	OUTPUT POWER PROGRAMMING	
29	CRYSTAL OSCILLATOR	
30	ANTENNA INTERFACE	
31	GENERAL PURPOSE / TEST OUTPUT CONTROL PINS	
32	ASYNCHRONOUS AND SYNCHRONOUS SERIAL OPERATION	.30
32.1	ASYNCHRONOUS OPERATION	
32.2	SYNCHRONOUS SERIAL OPERATION	.30

CONFIGURATION REGISTERS	30
CONFIGURATION REGISTER DETAILS	34
STATUS REGISTER DETAILS	
PACKAGE DESCRIPTION (QLP 16)	45
RECOMMENDED PCB LAYOUT FOR PACKAGE (QLP 16)	46
PACKAGE THERMAL PROPERTIES	46
SOLDERING INFORMATION	47
TRAY SPECIFICATION	47
CARRIER TAPE AND REEL SPECIFICATION	47
ORDERING INFORMATION	47
GENERAL INFORMATION	
PRODUCT STATUS DEFINITIONS	48
DISCLAIMER	48
Trademarks	
LIFE SUPPORT POLICY	48
Address Information	49
	CONFIGURATION REGISTER DETAILS STATUS REGISTER DETAILS PACKAGE DESCRIPTION (QLP 16) RECOMMENDED PCB LAYOUT FOR PACKAGE (QLP 16) PACKAGE THERMAL PROPERTIES SOLDERING INFORMATION TRAY SPECIFICATION CARRIER TAPE AND REEL SPECIFICATION. ORDERING INFORMATION GENERAL INFORMATION DOCUMENT HISTORY PRODUCT STATUS DEFINITIONS. DISCLAIMER TRADEMARKS LIFE SUPPORT POLICY

2 Absolute Maximum Ratings

Under no circumstances must the absolute maximum ratings given in Table 1 be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

Parameter	Min	Max	Units	Condition
Supply voltage	ñ0.3	3.6	V	All supply pins must have the same voltage
Voltage on any digital pin	ñ0.3	VDD+0.3, max 3.6	V	
Voltage on the pins RF_P, RF_N and DCOUPL	ñ0.3	2.0	V	
Input RF level		10	dBm	
Storage temperature range	ñ50	150	°C	
Solder reflow temperature		265	°C	According to IPC/JEDEC J-STD-020C

Table 1: Absolute Maximum Ratings

3 Operating Conditions

The operating conditions for *CC1150* are listed Table 2 in below.

Parameter	Min	Max	Unit	Condition
Operating temperature	-40	85	°C	
Operating supply voltage	1.8	3.6	٧	All supply pins must have the same voltage

Table 2: Operating Conditions

4 Electrical Specifications

Tc = 25°C, VDD = 3.0V if nothing else stated. Measured on Chipconis CC1150EM reference design.

Parameter	Min	Тур	Max	Unit	Condition
Current consumption		200		nA	Voltage regulator to digital part off, register values retained (SLEEP state)
		180		μА	Voltage regulator to digital part on, all other modules in power down (XOFF state)
		1.4		mA	Only voltage regulator to digital part and crystal oscillator running (IDLE state)
		8.0		mA	Only the frequency synthesizer running (after going from IDLE until reaching RX or TX states, and frequency calibration states)
Current consumption,		26.3		mA	Transmit mode, +10dBm output power
315MHz		17.6			Transmit mode, 5dBm output power
		14.5			Transmit mode, 0dBm output power
		11.2			Transmit mode, ñ10dBm output power
Current consumption,		26.4		mA	Transmit mode, +10dBm output power
433MHz		18.0			Transmit mode, 5dBm output power
		14.9			Transmit mode, 0dBm output power
		13.4			Transmit mode, ñ10dBm output power
Current consumption,		28.7		mA	Transmit mode, +10dBm output power
868/915MHz		18.8			Transmit mode, 5dBm output power
		15.9			Transmit mode, 0dBm output power
		13.7			Transmit mode, ñ10dBm output power

Table 3: Electrical Specifications

5 General Characteristics

Parameter	Min	Тур	Max	Unit	Condition/Note
Frequency range	300		348	MHz	
	400		464	MHz	
	800		928	MHz	
Data rate	1.2		500	kbps	Modulation formats supported: (Shaped) MSK (also known as differential offset QPSK) up to 500kbps 2-FSK up to 500kbps
					GFSK and OOK/ASK (up to 250kbps) Optional Manchester encoding (halves the data rate).

Table 4: General Characteristics

6 RF Transmit Section

Tc = 25°C, VDD = 3.0V, +10dBm if nothing else stated. Measured on Chipconis CC1150EM reference design.

Parameter	Min	Тур	Max	Unit	Condition/Note
Differential load impedance		TBD		Ω	Follow CC1150EM reference design
Output power, highest setting		10		dBm	Output power is programmable, and full range is available across all frequency bands.
					Delivered to a 50Ω single-ended load via Chipcon reference RF matching network.
Output power, lowest setting		ñ30		dBm	Output power is programmable, and full range is available across all frequency bands.
					Delivered to a 50Ω single-ended load via Chipcon reference RF matching network.
Spurious emissions			ñ36	dBm	25MHz ñ 1GHz
and harmonics, 433/868MHz			ñ54	dBm	47-74, 87.5-118, 174-230, 470-862MHz
·			ñ47	dBm	1800MHz-1900MHz (restricted band in Europe), when the operating frequency is below 900MHz (2 nd harmonic can not fall within this band when used in Europe)
			ñ30	dBm	Otherwise above 1GHz
Spurious emissions,			-49.2	dBm EIRP	<200μV/m at 3m below 960MHz.
315/915MHz			-41.2	dBm EIRP	<500μV/m at 3m above 960MHz.
Harmonics 315MHz			-20	dBc	$2^{\rm nd},3^{\rm rd}$ and $4^{\rm th}$ harmonic when the output power is maximum 6mV/m at 3m. (-19.6dBm EIRP)
			-41.2	dBm	5 th harmonic
Harmonics			-20	dBc	2 nd harmonic
915MHz			-41.2	dBm	3 rd , 4 th and 5 th harmonic

Table 5: RF Transmit Parameters

7 Crystal Oscillator

 $Tc = 25^{\circ}C$ @ VDD = 3.0 V if nothing else is stated.

Parameter	Min	Тур	Max	Unit	Condition/Note
Crystal frequency	26	26	27	MHz	
Tolerance		±40		ppm	This is the total tolerance including a) initial tolerance, b) aging and c) temperature dependence. The acceptable crystal tolerance depends on RF frequency and channel spacing / bandwidth.
ESR			100	Ω	
Start-up time		300		μs	Measured on Chipconís CC1150EM reference design. This parameter is to a large degree crystal dependent.

Table 6: Crystal Oscillator Parameters

Frequency Synthesizer Characteristics

Tc = 25°C @ VDD = 3.0 V if nothing else is stated. Measured on Chipconís CC1100EM reference design.

Parameter	Min	Тур	Max	Unit	Condition/Note
Programmed frequency resolution	397	F _{XOSC} / 2 ¹⁶	412	Hz	26MHz-27MHz crystal. The resolution (in Hz) is equal for all frequency bands.
Synthesizer frequency tolerance		±40		ppm	Given by crystal used. Required accuracy (including temperature and aging) depends on frequency band and channel bandwidth / spacing.
PLL turn-on / hop time			80	μs	Time from leaving the IDLE state until arriving in the FSTXON or TX state, when not performing calibration. Crystal oscillator running.
PLL calibration time		18739		XOSC cycles	Calibration can be initiated manually, or automatically before entering or after leaving RX/TX.
	0.69	0.72	0.72	ms	Min/typ/max time is for 27/26/26MHz crystal frequency.

Table 7: Frequency Synthesizer Parameters

Analog temperature sensor

The characteristics of the analog temperature sensor are listed in Table 8 below. Note that it is necessary to write 0xBF to the PTEST register to use the analog temperature sensor in the IDLE state.

The values in the table are simulated results and will be updated in later versions of the data sheet. Minimum / maximum values are valid over entire supply voltage range. Typical values are for 3.0V supply voltage.

Parameter	Min	Тур	Max	Unit	Condition/Note
Output voltage at ñ40°C	0.638	0.648	0.706	V	
Output voltage at 0°C	0.733	0.743	0.793	V	
Output voltage at +40°C	0.828	0.840	0.891	V	
Output voltage at +80°C	0.924	0.939	0.992	V	
Temperature coefficient	2.35	2.45	2.46	mV/°C	Fitted from ñ20°C to +80°C
Absolute error in calculated temperature	ñ14	ñ8	+14	°C	From ñ20°C to +80°C when assuming best fit for absolute accuracy: 0.763V at 0°C and 2.44mV / °C
Error in calculated temperature, calibrated	ñ2		+2	°C	From ñ20°C to +80°C when using 2.44mV / °C, after 1-point calibration at room temperature
Settling time after enabling		TBD		μs	
Current consumption increase when enabled		0.3		mA	

Table 8: Analog Temperature Sensor Parameters

10 DC Characteristics

The DC Characteristics of *CC1150* are listed in Table 9 below.

Tc = 25°C if nothing else stated.

Digital Inputs/Outputs	Min	Max	Unit	Condition
Logic "0" input voltage	0	0.7	٧	
Logic "1" input voltage	VDD-0.7	VDD	V	
Logic "0" output voltage	0	0.5	٧	For up to 4mA output current
Logic "1" output voltage	VDD-0.3	VDD	V	For up to 4mA output current
Logic "0" input current	N/A	ñ1	μА	Input equals 0V
Logic "1" input current	N/A	1	μА	Input equals VDD

Table 9: DC Characteristics

11 Power On Reset

When the power supply complies with the requirements in Table 10 below, proper Power-On-Reset functionality is guaranteed. Otherwise, the chip should be assumed to have unknown state until transmitting an SRES strobe over the SPI interface. It is recommended to transmit an SRES strobe after turning power on in any case. See section 23.1 on page 22 for a description of the recommended start up sequence after turning power on.

Parameter	Min	Тур	Max	Unit	Condition/Note	
Power-up ramp-up time.			5	ms	From 0V until reaching 1.8V	
Power off time	1			ms	Minimum time between power-on and power-off.	

Table 10: Power-on Reset Requirements

12 Pin Configuration

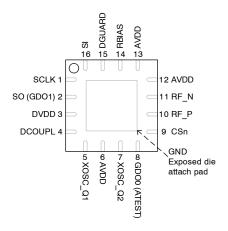


Figure 1: Pinout top view

Note: The exposed die attach pad **must** be connected to a solid ground plane as this is the main ground connection for the chip.

Pin#	Pin name	Pin type	Description
1	SCLK	Digital Input	Serial configuration interface, clock input
2	SO (GDO1)	Digital Output	Serial configuration interface, data output.
			Optional general output pin when CSn is high
3	DVDD	Power (Digital)	1.8V-3.6V digital power supply for digital I/Oís and for the digital core voltage regulator
4	DCOUPL	Power (Digital)	1.6V-2.0V digital power supply output for decoupling.
			NOTE: This pin is intended for use with the <i>CC1150</i> only. It can not be used to provide supply voltage to other devices.
5	XOSC_Q1	Analog I/O	Crystal oscillator pin 1, or external clock input
6	AVDD	Power (Analog)	1.8V-3.6V analog power supply connection
7	XOSC_Q2	Analog I/O	Crystal oscillator pin 2
8	GDO0	Digital I/O	Digital output pin for general use:
	(ATEST)		Test signals FIFO status signals Clock output, down-divided from XOSC Serial input TX data Also used as analog test I/O for prototype/production testing
9	CSn	Digital Input	Serial configuration interface, chip select
10	RF_P	RF I/O	Positive RF output signal from PA
11	RF_N	RF I/O	Negative RF output signal from PA
12	AVDD	Power (Analog)	1.8V-3.6V analog power supply connection
13	AVDD	Power (Analog)	1.8V-3.6V analog power supply connection
14	RBIAS	Analog I/O	External bias resistor for reference current
15	DGUARD	Power (Digital)	Power supply connection for digital noise isolation
16	SI	Digital Input	Serial configuration interface, data input

Table 11: Pinout overview

13 Circuit Description

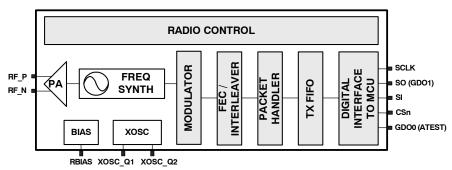


Figure 2: **CC1150** Simplified Block Diagram

A simplified block diagram of *CC1150* is shown in Figure 2.

The **CC1150** transmitter is based on direct synthesis of the RF frequency. The frequency

synthesizer includes a completely on-chip LC VCO.

A crystal is to be connected to XOSC_Q1 and XOSC_Q2. The crystal oscillator generates the

reference frequency for the synthesizer, as well as clocks for the digital part.

A 4-wire SPI serial interface is used for configuration and data buffer access.

The digital baseband includes support for channel configuration, packet handling and data buffering.

14 Application Circuit

Only a few external components are required for using the **CC1150**. The recommended application circuit is shown in Figure 3. The external components are described in Table 12, and typical values are given in Table 13.

Bias resistor

The bias resistor R141 is used to set an accurate bias current.

Balun and RF matching

C101, C111, L101 and L111 form a balun that converts the differential RF port on *CC1150* to a single-ended RF signal (C104 is also needed for DC blocking). Together with an appropriate LC network, the balun components also transform the impedance to match a 50Ω antenna (or cable). Component values for the RF balun and LC network are easily found using the SmartRF® Studio software. Suggested values for 315MHz, 433MHz and 868/915MHz are listed in Table 13.

Crystal

The crystal oscillator uses an external crystal with two loading capacitors (C51 and C71). See section 29 on page 27 for details.

Additional filtering

Additional external components (e.g. an RF SAW filter) may be used in order to improve the performance in specific applications.

Power supply decoupling

The power supply must be properly decoupled close to the supply pins. Note that decoupling capacitors are not shown in the application circuit. The placement and the size of the decoupling capacitors are very important to achieve the optimum performance. Chipcon provides a reference design that should be followed closely.

Component	Description
C41	100nF decoupling capacitor for on-chip voltage regulator to digital part
C51/C71	Crystal loading capacitors, see section 29 on page 27 for details
C101/C111	RF balun/matching capacitors
C102/C103	RF LC filter/matching capacitors
C104	RF balun DC blocking capacitor
C105	RF LC filter DC blocking capacitor (only needed if there is a DC path in the antenna)
L101/L111	RF balun/matching inductors (inexpensive multi-layer type)
L102/L103	RF LC filter/matching inductor (inexpensive multi-layer type)
R141	56kΩ resistor for internal bias current reference
XTAL	26MHz-27MHz crystal, see section 29 on page 27 for details

Table 12: Overview of external components (excluding supply decoupling capacitors)

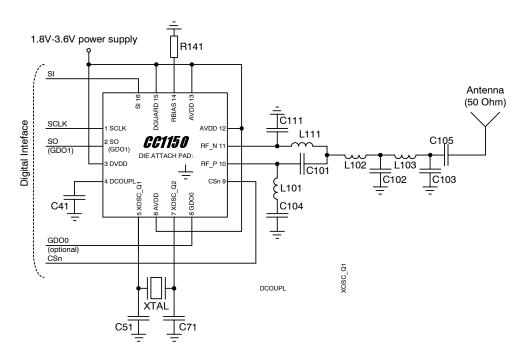


Figure 3: Typical application and evaluation circuit (power supply decoupling not shown)

Component	Value at 315MHz	Value at 433MHz	Value at 868/915MHz			
C41		100nF±10%, 0402 X5R				
C51		27pF±5%, 0402 NP0				
C71		27pF±5%, 0402 NP0				
C101	6.8pF±0.5pF, 0402 NP0	3.9pF±0.25pF, 0402 NP0	2.2pF±0.25pF, 0402 NP0			
C102	12pF±5%, 0402 NP0	8.2pF±0.5pF, 0402 NP0	3.9pF±0.25pF, 0402 NP0			
C103	6.8pF±0.5pF, 0402 NP0	5.6pF±0.5pF, 0402 NP0	3.3pF±0.25pF, 0402 NP0			
C104	220pF±5%, 0402 NP0	220pF±5%, 0402 NP0	100pF±5%, 0402 NP0			
C105	220pF±5%, 0402 NP0	220pF±5%, 0402 NP0	100pF±5%, 0402 NP0			
C111	6.8pF±0.5pF, 0402 NP0	3.9pF±0.25pF, 0402 NP0	2.2pF±0.25pF, 0402 NP0			
L101	33nH±5%, 0402 monolithic	27nH±5%, 0402 monolithic	12nH±5%, 0402 monolithic			
L102	18nH±5%, 0402 monolithic	22nH±5%, 0402 monolithic	5.6nH±0.3nH, 0402 monolithic			
L103	33nH±5%, 0402 monolithic	27nH±5%, 0402 monolithic	12nH±5%, 0402 monolithic			
L111	33nH±5%, 0402 monolithic	27nH±5%, 0402 monolithic	12nH±5%, 0402 monolithic			
R141	56kΩ±1%, 0402					
XTAL		26.0MHz surface mount crysta	al			

Table 13: Bill Of Materials for the application circuit (subject to changes)

15 Configuration Overview

CC1150 can be configured to achieve optimum performance for many different applications. Configuration is done using the SPI interface.

The following key parameters can be programmed:

Power-down / power-up mode

- Crystal oscillator power-up / power ñ down
- Transmit mode
- RF channel selection
- Data rate
- Modulation format
- RF output power
- Data buffering with 64-byte transmit FIFO
- Packet radio hardware support
- Forward Error Correction with interleaving
- Data Whitening

Details of each configuration register can be found in section 33, starting on page 30.

Figure 4 shows a simplified state diagram that explains the main *CC1150* states, together with typical usage and current consumption. For detailed information on controlling the *CC1150* state machine, and a complete state diagram, see section 23, starting on page 21.

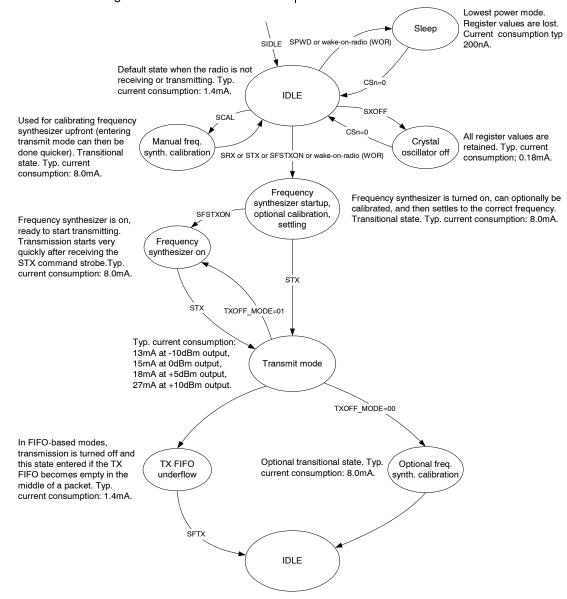


Figure 4: Simplified state diagram, with typical usage and current consumption

16 Configuration Software

CC1150 can be configured using the SmartRF® Studio software, available for download from http://www.chipcon.com. The SmartRF® Studio software is highly recommended for obtaining

optimum register settings, and for evaluating performance and functionality. A screenshot of the SmartRF® Studio user interface for *CC1150* is shown in Figure 5.

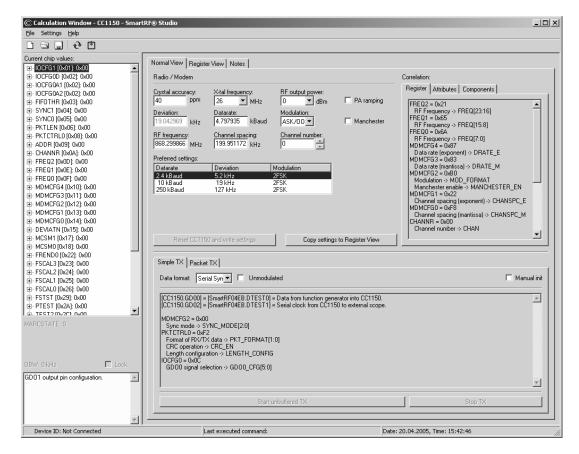


Figure 5: SmartRF® Studio user interface

17 4-wire Serial Configuration and Data Interface

CC1150 is configured via a simple 4-wire SPI-compatible interface (SI, SO, SCLK and CSn) where **CC1150** is the slave. This interface is also used to read and write buffered data. All address and data transfer on the SPI interface is done most significant bit first.

All transactions on the SPI interface start with a header byte containing a read/write bit, a burst access bit and a 6-bit address.

During address and data transfer, the \mathtt{CSn} pin (Chip Select, active low) must be kept low. If \mathtt{CSn} goes high during the access, the transfer will be cancelled.

When CSn goes low, the MCU must wait until the *CC1150* SO pin goes low before starting to transfer the header byte. This indicates that the voltage regulator has stabilized and the crystal is running. Unless the chip was in the SLEEP or XOFF states, the SO pin will always go low immediately after taking CSn low.

17.1 Chip Status Byte

When the header byte is sent on the SPI interface, the chip status byte is sent by the **CC1150** on the SO pin. The status byte contains key status signals, useful for the MCU. The first bit, s7, is the CHIP_RDYn signal; this

signal must go low before the first positive edge of SCLK. The CHIP_RDYn signal indicates that the crystal is running and the regulated digital supply voltage is stable.

Bit 6, 5 and 4 comprises the STATE value. This value reflects the state of the chip. When idle the XOSC and power to the digital core is on, but all other modules are in power down. The frequency and channel configuration should only be updated when the chip is in this state. The TX state will be active when the chip is in transmit mode.

The last four bits (3:0) in the status byte contains <code>FIFO_BYTES_AVAILABLE</code>. This field contains the number of bytes free for writing into the TX FIFO. When <code>FIFO_BYTES_AVAILABLE=15</code>, 15 or more bytes are free.

17.2 Register Access

The configuration registers on the **CC1150** are located on SPI addresses from 0×00 to $0 \times 2F$. Table 24 on page 32 lists all configuration registers. The detailed description of each register is found in Section 33.1, starting on page 34. All configuration registers can be both written and read. The read/write bit controls if the register should be written or read. When writing to registers, the status byte is sent on the SO pin each time a data byte to be written is transmitted on the SI pin.

Registers with consecutive addresses can be accessed in an efficient way by setting the burst bit in the address header. The address sets the start address in an internal address counter. This counter is incremented by one each new byte (every 8 clock pulses). The burst access is either a read or a write access and must be terminated by setting CSn high.

For register addresses in the range 0x30-0x3D, the ibursti bit is used to select between status registers and command strobes (see below). The status registers can only be read. Burst read is not available for status registers, so they must be read one at a time.

17.3 Command Strobes

Command Strobes may be viewed as single byte instructions to **CC1150**. By addressing a Command Strobe register, internal sequences will be started. These commands are used to disable the crystal oscillator, enable transmit

mode, flush the TX FIFO etc. The nine command strobes are listed in Table 23 on page 31.

The command strobe registers are accessed in the same way as for a register write operation, but no data is transferred. That is, only the R/W bit (set to 0), burst access (set to 0) and the six address bits (in the range 0x30 through 0x3D) are written. A command strobe may be followed by any other SPI access without pulling CSn high. The command strobes are executed immediately, with the exception of the SPWD and the SXOFF strobes that are executed when CSn goes high.

17.4 FIFO Access

The 64-byte TX FIFO is accessed through the 0x3F addresses. When the read/write bit is zero, the TX FIFO is accessed. The TX FIFO is write-only.

The burst bit is used to determine if FIFO access is single byte or a burst access. The single byte access method expects address with burst bit set to zero and one data byte. After the data byte a new address is expected; hence, CSn can remain low. The burst access method expects one address byte and then consecutive data bytes until terminating the access by setting CSn high.

The following header bytes access the FIFO:

- 0x3F: Single byte access to TX FIFO
- 0x7F: Burst access to TX FIFO

When writing to the TX FIFO, the status byte (see Section 17.1) is output for each new data byte on SO, as shown in Figure 6. This status byte can be used to detect TX FIFO underflow while writing data to the TX FIFO. Note that the status byte contains the number of bytes free *before* writing the byte in progress to the TX FIFO. When the last byte that fits in the TX FIFO is transmitted to the SI pin, the status byte received concurrently on the SO pin will indicate that one byte is free in the TX FIFO.

The transmit FIFO may be flushed by issuing a SFTX command strobe. The FIFO is cleared when going to the SLEEP state.

17.5 PATABLE Access

The 0x3E address is used to access the PATABLE, which is used for selecting PA power control settings. The SPI expects up to

eight data bytes after receiving the address. By programming the PATABLE, controlled PA power ramp-up and ramp-down can be achieved, as well as ASK modulation shaping for reduced bandwidth. See section 28 on page 25 for output power programming details.

The PATABLE is an 8-byte table that defines the PA control settings to use for each of the eight PA power values (selected by the 3-bit value FRENDO.PA POWER). The table is written to and read from the lowest setting (0) to the highest (7), one byte at a time. An index counter is used to control the access to the table. This counter is incremented each time a byte is read or written to the table, and set to the lowest index when CSn is high. When the

highest value is reached the counter restarts at zero.

The access to the PATABLE is either single byte or burst access depending on the burst bit. When using burst access the index counter will count up; when reaching 7 the counter will restart at 0. The read/write bit controls whether the access is a write access (R/W=0) or a read access (R/W=1).

If one byte is written to the PATABLE and this value is to be read out then CSn must be set high before the read access in order to set the index counter back to zero.

Note that the content of the PATABLE is lost when entering the SLEEP state.

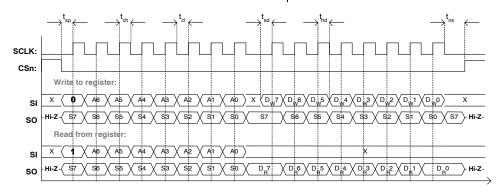


Figure 6: Configuration registers write and read operations

Parameter	Description	Min	Max
F _{SCLK}	SCLK frequency	0	10MHz
t _{sp,pd}	CSn low to positive edge on SCLK, in power-down mode	TBDμs	-
t _{sp}	CSn low to positive edge on SCLK, in active mode	TBDns	-
t _{ch}	Clock high	50ns	=
t _{cl}	Clock low	50ns	=
t _{rise}	Clock rise time	-	TBDns
t _{fall}	Clock rise time	-	TBDns
t _{sd}	Setup data to positive edge on SCLK	TBDns	=
t _{hd}	Hold data after positive edge on SCLK	TBDns	=
t _{ns}	Negative edge on SCLK to CSn high.	TBDns	-

Table 14: SPI interface timing requirements

Bits	Name	Description				
7	CHIP_RDYn	Stays high until power and crystal have stabilized. Should always be low when using the SPI interface.				
6:4	STATE[2:0]	Indicates the current main state machine mode				
		Value	State	Description		
		000	Idle	IDLE state (Also reported for some transitional states instead of SETTLING or CALIBRATE, due to a small error)		
		001	Not used (RX)	Not used, included for software compatibility with CC1100 transceiver		
		010	TX	Transmit mode		
		011	FSTXON	Fast TX ready		
		100	CALIBRATE	Frequency synthesizer calibration is running		
		101	SETTLING	PLL is settling		
		110	Not used (RXFIFO_OVERFLOW)	Not used, included for software compatibility with CC1100 transceiver		
			TXFIFO_UNDERFLOW	TX FIFO has underflowed. Acknowledge with SFTX		
3:0	FIFO_BYTES_AVAILABLE[3:0]	The number of free bytes in the TX FIFO. If FIFO_BYTES_AVAILABLE=15, it indicates that 15 or more bytes are available/free.				

Table 15: Status byte summary

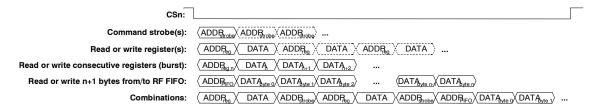


Figure 7: Register access types

18 Microcontroller Interface and Pin Configuration

In a typical system, **CC1150** will interface to a microcontroller. This microcontroller must be able to:

- Program *CC1150* into different modes,
- Write buffered data
- Read back status information via the 4-wire SPI-bus configuration interface (SI, SO, SCLK and CSn).

18.1 Configuration Interface

The microcontroller uses four I/O pins for the SPI configuration interface (SI, SO, SCLK and

CSn). The SPI is described in Section 0 on page 12.

18.2 General Control and Status Pins

The **CC1150** has one dedicated configurable pin and one shared pin that can output internal status information useful for control software. These pins can be used to generate interrupts on the MCU. See Section 31 page 27 for more details of the signals that can be programmed. The dedicated pin is called GDO0. The shared pin is the SO pin in the SPI interface. The default setting for GDO1/SO is 3-state output. By selecting any other of the programming

options the ${\tt GDO1/SO}$ pin will become a generic pin. When ${\tt CSn}$ is low, the pin will always function as a normal SO pin.

In the synchronous and asynchronous serial modes, the GDO0 pin is used as a serial TX data input pin while in transmit mode.

The GDO0 pin can also be used for an on-chip analog temperature sensor. By measuring the voltage on the GDO0 pin with an external ADC, the temperature can be calculated.

19 Data Rate Programming

The data rate used when transmitting is programmed by the MDMCFG3.DRATE_M and the MDMCFG4.DRATE_E configuration registers. The data rate is given by the formula below. As the formula shows, the programmed data rate depends on the crystal frequency.

$$R_{\scriptscriptstyle DATA} = \frac{\left(256 + DRATE_M\right) \cdot 2^{\scriptscriptstyle DRATE_E}}{2^{\scriptscriptstyle 28}} \cdot f_{\scriptscriptstyle XOSC}$$

The following approach can be used to find suitable values for a given data rate:

20 Packet Handling Hardware Support

The **CC1150** has built-in hardware support for packet oriented radio protocols.

In transmit mode, the packet handler will add the following elements to the packet stored in the TX FIFO:

- A programmable number of preamble bytes.
- A two byte Synchronization Word. Can be duplicated to give a 4-byte sync word.
- Optionally whiten the data with a PN9 sequence.
- Optionally Interleave and Forward Error Code the data.
- Optionally compute and add a CRC checksum over the data field.

The recommended setting is 4-byte preamble and 2-byte sync word.

20.1 Data whitening

From a radio perspective, the ideal over the air data are random and DC free. This results in the smoothest power distribution over the occupied bandwidth. This also gives the regulation loops in the receiver uniform operation conditions (no data dependencies).

Specifications for the temperature sensor are found in section 9 on page 7.

The temperature sensor output is usually only available when the frequency synthesizer is enabled (e.g. the MANCAL, FSTXON and TX states). It is necessary to write 0xBF to the PTEST register to use the analog temperature sensor in the IDLE state. Before leaving the IDLE state, the PTEST register should be restored to its default value (0x7F).

$$DRATE_E = \left[\log_2\left(\frac{R_{DATA} \cdot 2^{20}}{f_{XOSC}}\right)\right]$$

$$DRATE_M = \frac{R_{DATA} \cdot 2^{28}}{f_{XOSC} \cdot 2^{DRATE_E}} - 256$$

If ${\tt DRATE_M}$ is rounded to the nearest integer and becomes 256, increment ${\tt DRATE_E}$ and use ${\tt DRATE_M=0}$.

Real world data often contain long sequences of zeros and ones. Performance can then be improved by whitening the data before transmitting, and de-whitening in the receiver. With *CC1150*, in combination with a *CC1100* at the receiver end, this can be done automatically by setting WHITE_DATA=1 in the PKTCTRLO register. All data, except the preamble and the sync word, are then XOR-ed with a 9-bit pseudo-random (PN9) sequence before being transmitted. At the receiver end, the data are XOR-ed with the same pseudorandom sequence. This way, the whitening is reversed, and the original data appear in the receiver.

Setting PKTCTRL0.WHITE_DATA=1 is recommended for all uses, except when over-the-air compatibility with other systems is needed.

20.2 Packet format

The format of the data packet can be configured and consists of the following items:

- Preamble
- Synchronization word
- Length byte or constant programmable packet length

- Optional Address byte
- Payload
- Optional 2 byte CRC

The preamble pattern is an alternating sequence of ones and zeros (01010101Ö). The minimum length of the preamble is programmable. When enabling TX, the modulator will start transmitting the preamble. When the programmed number of preamble bytes has been transmitted, the modulator will send the sync word and then data from the TX FIFO if data is available. If the TX FIFO is empty, the modulator will continue to send preamble bytes until the first byte is written to the TX FIFO. The modulator will then send the sync word and then the data bytes.

The number of preamble bytes is programmed with the MDMCFG1.NUM PREAMBLE value.

The synchronization word is a two-byte value set in the SYNC1 and SYNC0 registers. The sync word provides byte synchronization of the incoming packet. A one-byte synch word can be emulated by setting the SYNC1 value to the preamble pattern. It is also possible to emulate a 32 bit sync word by using MDMCFG2.SYNC_MODE=3 or 7. The sync word will then be repeated twice.

CC1150 supports both constant packet length protocols and variable length protocols. Variable or fixed packet length mode can be used for packet up to 255 bytes. For longer packets, infinite packet length mode must be used.

Fixed packet length mode is selected by setting PKTCTRL0.LENGTH_CONFIG=0. The desired packet length is set by the PKTLEN register. The packet length is defined as the payload data, excluding the length byte and the optional automatic CRC. In variable length mode, PKTCTRL0.LENGTH CONFIG=1, the

packet length is configured by the first byte after the sync word.

With PKTCTRLO.LENGTH_CONFIG=2, the packet length is set to infinite and transmission and reception will continue until turned off manually. The infinite mode can be turned off while a packet is being transmitted or received. As described in the next section, this can be used to support packet formats with different length configuration than natively supported by **CC1150**.

Note that the minimum packet length supported (excluding the optional length byte and CRC) is one byte of payload data.

20.2.1 Arbitrary length field configuration

By utilizing the infinite packet length option, arbitrary packet length is available. At the start of the packet, the infinite mode must be active. When less than 256 bytes remains of the packet, the MCU sets the PKTLEN register to mod(length, 256), disables infinite packet length and activates fixed length packets. When the internal byte counter reaches the PKTLEN value, the packet transmission ends. Automatic CRC appending can be used (by setting PKTCTRLO.CRC EN to 1).

When for example a 454-byte packet is to be transmitted, the MCU does the following:

- Set PKTCTRL0.LENGTH CONFIG=2 (10).
- Pre-program the PKTLEN register to mod(454,256)=198.
- Transmit at least 198 bytes, for example by filling the 64-byte TX FIFO four times (256 bytes transmitted).
- Set PKTCTRLO.LENGTH_CONFIG=0 (00).
- The transmission ends when the packet counter reaches 198. A total of 256+198=454 bytes are transmitted.

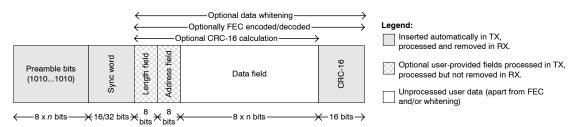


Figure 8: Packet Format

SWRS037

20.3 Packet Handling in Transmit Mode

The payload that is to be transmitted must be written into the TX FIFO. The first byte written must be the length byte when variable packet length is enabled. The length byte has a value equal to the payload of the packet (including the optional address byte). If fixed packet length is enabled, then the first byte written to the TX FIFO is interpreted as the destination address, if this feature is enabled in the device that receives the packet.

The modulator will first send the programmed number of preamble bytes. If data is available in the TX FIFO, the modulator will send the

21 Modulation Formats

CC1150 supports amplitude, frequency and phase shift modulation formats. The desired modulation format is set in the MDMCFG2.MOD FORMAT register.

Optionally, the data stream can be Manchester coded by the modulator. This option is enabled by setting MDMCFG2.MANCHESTER_EN=1. Manchester encoding is not supported at the same time as using the FEC/Interleaver option. Manchester coding can be used with the 2-ary modulation formats (2-FSK, GFSK, ASK/OOK and MSK).

21.1 Frequency Shift Keying

2-FSK can optionally be shaped by a Gaussian filter with BT=1, producing a GFSK modulated signal.

The frequency deviation is programmed with the DEVIATION_M and DEVIATION_E values in the DEVIATN register. The value has an exponent/mantissa form, and the resultant deviation is given by:

$$f_{dev} = \frac{f_{xosc}}{2^{17}} \cdot (8 + DEVIATION _M) \cdot 2^{DEVIATION _E}$$

The symbol encoding is shown in Table 16.

Format	Symbol	Coding
2-FSK/GFSK	ĕĐί	ñ Deviation
	ëlí	+ Deviation

Table 16: Symbol encoding for 2-FSK/GFSK modulation

two-byte (optionally 4-byte) sync word and then the payload in the TX FIFO. If CRC is enabled, the checksum is calculated over all the data pulled from the TX FIFO and the result is sent as two extra bytes at the end of the payload data.

If whitening is enabled, the length byte, payload data and the two CRC bytes will be whitened. This is done before the optional FEC/Interleaver stage. Whitening is enabled by setting PKTCTRLO.WHITE DATA=1.

If FEC/Interleaving is enabled, the length byte, payload data and the two CRC bytes will be scrambled by the interleaver, and FEC encoded before being modulated.

21.2 Minimum Shift Keying

When using MSK¹, the complete transmission (preamble, sync word and payload) will be MSK modulated.

Phase shifts are performed with a constant transition time. This means that the rate of change for the 180-degree transition is twice that of the 90-degree transition.

The fraction of a symbol period used to change the phase can be modified with the DEVIATN.DEVIATION_M setting. This is equivalent to changing the shaping of the symbol. Setting DEVIATN.DEVIATION_M=7 will generate a standard shaped MSK signal.

21.3 Amplitude Modulation

CC1150 supports two different forms of amplitude modulation: On-Off Keying (OOK) and Amplitude Shift Keying (ASK). OOK modulation simply turns on or off the PA to modulate 1 and 0 respectively. When using ASK the modulation depth (the difference between 1 and 0) can be programmed, and the power ramping will be shaped. This will produce a more bandwidth constrained output spectrum.

Preliminary Data Sheet (rev. 1.0.) SWRS037

¹ Identical to offset QPSK with half-sine shaping (data coding may differ)

22 Forward Error Correction with Interleaving

22.1 Forward Error Correction (FEC)

CC1150 has built in support for Forward Error Correction (FEC) that can be used with **CC1100** at the receiver end. To enable this option, set MDMCFG1.FEC_EN to 1. FEC is employed on the data field and CRC word in order to reduce the gross bit error rate when operating near the sensitivity limit. Redundancy is added to the transmitted data in such a way that the receiver can restore the original data in the presence of some bit errors.

The use of FEC allows correct reception at a lower SNR, thus extending communication range. Alternatively, for a given SNR, using FEC decreases the bit error rate (BER). As the packet error rate (PER) is related to BER by:

$$PER = 1 - (1 - BER)^{packet_length}$$

a lower BER can be used to allow significantly longer packets, or a higher percentage of packets of a given length, to be transmitted successfully. Finally, in realistic ISM radio environments, transient and time-varying phenomena will produce occasional errors even in otherwise good reception conditions. FEC will mask such errors and, combined with interleaving of the coded data, even correct relatively long periods of faulty reception (burst errors).

The FEC scheme adopted for $\it{cc1150}$ is convolutional coding, in which \it{n} bits are generated based on \it{k} input bits and the \it{m} most recent input bits, forming a code stream able to withstand a certain number of bit errors between each coding state (the \it{m} -bit window).

The convolutional coder is a rate 1/2 code with a constraint length of m=4. The coder codes one input bit and produces two output bits; hence, the effective data rate is halved.

22.2 Interleaving

Data received through real radio channels will often experience burst errors due to interference and time-varying signal strengths. In order to increase the robustness to errors spanning multiple bits, interleaving is used when FEC is enabled. After de-interleaving, a continuous span of errors in the received stream will become single errors spread apart.

CC1150 employs matrix interleaving, which is illustrated in Figure 9. The on-chip interleaving and de-interleaving buffers are 4 x 4 matrices. In the transmitter, the data bits are written into the rows of the matrix, whereas the bit sequence to be transmitted is read from the columns of the matrix and fed to the rate Ω convolutional coder. Conversely, in a **CC1100** receiver, the received symbols are written into the columns of the matrix, whereas the data passed onto the convolutional decoder is read from the rows of the matrix.

When FEC and interleaving is used, the amount of data transmitted over the air must be a multiple of the size of the interleaver buffer (two bytes). In addition, at least one extra byte is required for trellis termination. The packet control hardware therefore automatically inserts one or two extra bytes at the end of the packet, so that the total length of the data to be interleaved is an even number. Note that these extra bytes are invisible to the user, as they are removed before the received packet enters the RX FIFO in a **CC1100**.

Due to the implementation of the FEC and interleaver, the data to be interleaved must be at least two bytes. One byte long fixed length packets without CRC is therefore not supported when FEC/interleaving is enabled.

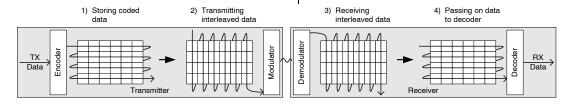


Figure 9: General principle of matrix interleaving

23 Radio Control

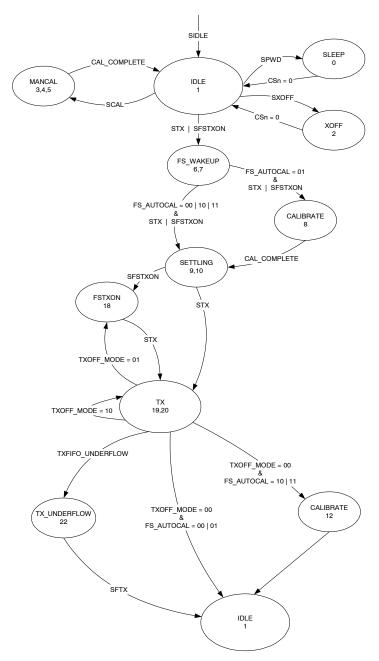


Figure 10: Complete Radio Control State Diagram

CC1150 has a built-in state machine that is used to switch between different operation states (modes). The change of state is done either by using command strobes or by internal events such as TX FIFO underflow.

A simplified state diagram, together with typical usage and current consumption, is shown in Figure 4 on page 12. The complete radio control state diagram is shown in Figure 10. The numbers refer to the state number readable in the MARCSTATE status register. This functionality is primarily for test purposes.

23.1 Power on start-up sequence

When the power supply is turned on, the system must be reset. One of the following two sequences must be followed: Automatic power-on reset or manual reset.

A power-on reset circuit is included in the **CC1150**. The minimum requirements stated in Section 11 must be followed for the power-on reset to function properly. The internal power-up sequence is completed when CHIP_RDYn goes low. CHIP_RDYn is observed on the SO pin after CSn is pulled low. See Section 17.1 for more details on CHIP_RDYn.

The other global reset possibility on **CC1150** is the SRES command strobe. By issuing this strobe, all internal registers and states are set to the default, idle state. The power-up sequence is as follows (see Figure 11):

- Set SCLK=1 and SI=0.
- Strobe CSn low / high.
- Hold CSn high for at least 40μs.
- Pull CSn low and wait for SO to go low (CHIP RDYn).
- Issue the SRES strobe.
- When SO goes low again, reset is complete and the chip is in the IDLE state.

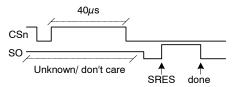


Figure 11: Power-up with SRES

It is recommended to always send a SRES command strobe on the SPI interface after power-on even though power-on reset is used.

23.2 Crystal Control

The crystal oscillator is automatically turned on when CSn goes low. It will be turned off if the SXOFF or SPWD command strobes are issued; the state machine then goes to XOFF or SLEEP respectively. This can be done from any state. The XOSC will be turned off when CSn is released (goes high). The XOSC will be automatically turned on again when CSn goes low. The state machine will then go to the IDLE state. The SO pin on the SPI interface

must be zero before the SPI interface is ready to be used; as described in Section 0 on page 13.

Crystal oscillator start-up time depends on crystal ESR and load capacitances. The electrical specification for the crystal oscillator can be found in section 7 on page 6.

23.3 Voltage Regulator Control

The voltage regulator to the digital core is controlled by the radio controller. When the chip enters the SLEEP state, which is the state with the lowest current consumption, this regulator is disabled. This occurs after CSn is released when a SPWD command strobe has been sent on the SPI interface. The chip is now in the SLEEP state. Setting CSn low again will turn on the regulator and crystal oscillator and make the chip enter the IDLE state.

On the **CC1150**, all register values (with the exception of the MCSMO.PO_TIMEOUT field) are lost in the SLEEP state. After the chip gets back to the IDLE state, the registers will have default (reset) contents and must be reprogrammed over the SPI interface.

23.4 Active Mode

The active transmit mode is activated by the MCU by using the STX command strobe.

The frequency synthesizer must be calibrated regularly. *CC1150* has one manual calibration option (using the SCAL strobe), and three automatic calibration options, controlled by the MCSMO.FS AUTOCAL setting:

- Calibrate when going from IDLE to TX (or FSTXON)
- Calibrate when going from TX to IDLE
- Calibrate every fourth time when going from TX to IDLE

The calibration takes a constant number of XOSC cycles (see Table 17 for timing details).

When TX is active, the chip will remain in the TX state until the current packet has been successfully transmitted. Then the state will change as indicated by the MCSM1.TXOFF_MODE setting. The possible destinations are:

IDLE

- FSTXON: Frequency synthesizer on and ready at the TX frequency. Activate TX with STX.
- TX: Start sending preambles

The SIDLE command strobe can always be used to force the radio controller to go to the IDLE state.

23.5 Timing

The radio controller controls most timing in **CC1150**, such as synthesizer calibration and PLL lock. Timing from IDLE to TX is constant, dependent on the auto calibration setting. The calibration time is constant 18739 clock

24 Data FIFO

The **CC1150** contains a 64 byte FIFO for data to be transmitted. The SPI interface is used for writing to the TX FIFO. Section 17.4 contains details on the SPI FIFO access. The FIFO controller will detect underflow in the TX FIFO.

When writing to the TX FIFO it is the responsibility of the MCU to avoid TX FIFO overflow. This will not be detected by the **CC1150**.

The chip status byte that is available on the SO pin while transferring the SPI address contains the fill grade of the TX FIFO. Section 17.1 on page 13 contains more details on this.

The number of bytes in the TX FIFO can also be read from the TXBYTES.NUM_TXBYTES status register.

The 4-bit FIFOTHR.FIFO_THR setting is used to program the FIFO threshold point. Table 18 lists the 16 FIFO_THR settings and the corresponding thresholds for the TX FIFO.

A flag will assert when the number of bytes in the FIFO is equal to or higher than the programmed threshold. The flag is used to generate the FIFO status signals that can be viewed on the GDO pins (see Section 31 on page 27).

Figure 13 shows the number of bytes in the TX FIFO when the threshold flag toggles, in the case of FIFO_THR=13. Figure 12 shows the flag as the FIFO is filled above the threshold, and then drained below.

periods. Table 17 shows timing in crystal clock cycles for key state transitions.

Power on time and XOSC start-up times are variable, but within the limits stated in Table 6.

Description	XOSC periods	26MHz crystal
Idle to TX/FSTXON, no calibration	2298	88.4µs
Idle to TX/FSTXON, with calibration	~21037	809µs
TX to IDLE, no calibration	2	0.1µs
TX to IDLE, including calibration	~18739	721 µs
Manual calibration	~18739	721 µs

Table 17: State transition timing

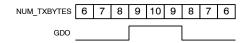


Figure 12: FIFO_THR=13 vs. number of bytes in FIFO

FIFO_THR	Bytes in TX FIFO
0 (0000)	61
1 (0001)	57
2 (0010)	53
3 (0011)	49
4 (0100)	45
5 (0101)	41
6 (0110)	37
7 (0111)	33
8 (1000)	29
9 (1001)	25
10 (1010)	21
11 (1011)	17
12 (1100)	13
13 (1101)	9
14 (1110)	5
15 (1111)	1

Table 18: FIFO_THR settings and the corresponding FIFO thresholds

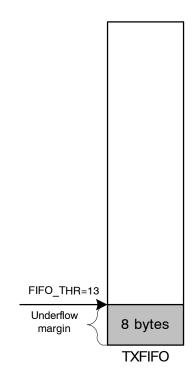


Figure 13: Example of FIFO at threshold

25 Frequency Programming

The frequency programming in **CC1150** is designed to minimize the programming needed in a channel-oriented system.

To set up a system with channel numbers, the desired channel spacing is programmed with the MDMCFG0.CHANSPC_M and MDMCFG1.CHANSPC_E registers. The channel spacing registers are mantissa and exponent respectively.

The base or start frequency is set by the 24 bit frequency word located in the FREQ2, FREQ1 and FREQ0 registers. This word will typically be set to the centre of the lowest channel frequency that is to be used.

The desired channel number is programmed with the 8-bit channel number register, CHANNR.CHAN, which is multiplied by the channel offset. The resultant carrier frequency is given by:

$$f_{carrier} = \frac{f_{XOSC}}{2^{16}} \cdot \left(FREQ + CHAN \cdot \left(256 + CHANSPC _M \cdot 2^{CHANSPC} _E^{-2} \right) \right)$$

If any frequency programming register is altered when the frequency synthesizer is running, the synthesizer may give an undesired response. Hence, the frequency programming should only be updated when the radio is in the IDLE state.

26 VCO

The VCO is completely integrated on-chip.

26.1 VCO and PLL Self-Calibration

The VCO characteristics will vary with temperature and supply voltage changes, as well as the desired operating frequency. In order to ensure reliable operation, *CC1150* includes frequency synthesizer self-calibration circuitry. This calibration should be done regularly, and must be performed after turning on power and before using a new frequency (or channel). The number of XOSC cycles for completing the PLL calibration is given in Table 17 on page 27.

The calibration can be initiated automatically or manually. The synthesizer can be automatically calibrated each time the synthesizer is turned on, or each time the synthesizer is turned off. This is configured

with the MCSMO.FS_AUTOCAL register setting. In manual mode, the calibration is initiated when the SCAL command strobe is activated in the IDLE mode. The default setting is to calibrate each time the frequency synthesizer is turned on.

The calibration values are not maintained in sleep mode. Therefore, the **CC1150** must be recalibrated after reprogramming the configuration registers when the chip has been in the SLEEP state.

27 Voltage Regulators

regulators, which generate the supply voltage regulators, which generate the supply voltage needed by low-voltage modules. These voltage regulators are invisible to the user, and can be viewed as integral parts of the various modules. The user must however make sure that the absolute maximum ratings and required pin voltages in Table 1 and Table 11 are not exceeded. The voltage regulator for the digital core requires one external decoupling capacitor.

Setting the ${\tt CSn}$ pin low turns on the voltage regulator to the digital core and starts the

crystal oscillator. The SO pin on the SPI interface must go low before using the serial interface (setup time is TBD).

On initial power up, the MCU must set CSn low and issue the reset command strobe SRES.

If the chip is programmed to enter power-down mode, (SPWD strobe issued), the power will be turned off after CSn goes high. The power and crystal oscillator will be turned on again when CSn goes low.

The voltage regulator output should only be used for driving the **CC1150**.

28 Output Power Programming

The RF output power level from the device has two levels of programmability, as illustrated in Figure 14. Firstly, the special PATABLE register can hold up to eight user selected output power settings. Secondly, the 3-bit FRENDO.PA_POWER value selects the PATABLE entry to use. This two-level functionality provides flexible PA power ramp up and ramp down at the start and end of transmission, as well as ASK modulation shaping. In each case, all the PA power settings in the PATABLE from index 0 up to the FRENDO.PA POWER value are used.

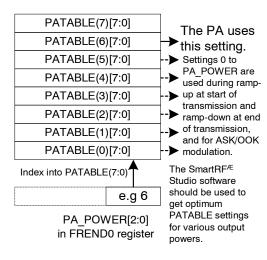


Figure 14: PA POWER and PATABLE

The power ramping at the start and at the end of a packet can be turned off by setting FRENDO.PA POWER to zero and then

programming the desired output power to index zero in the PATABLE.

Table 19 contains recommended PATABLE settings for various output levels and frequency bands. See section 17.5 on page 14 for PATABLE programming details.

Table 20 contains output power and current consumption for default PATABLE setting (0xC6).

With ASK modulation, the eight power settings are used for shaping. The modulator contains a counter that counts up when transmitting a one and down when transmitting a zero. The counter counts at a rate equal to 8 times the symbol rate. The counter saturates at FRENDO.PA_POWER and 0 respectively. This counter value is used as an index for a lookup in the power table. Thus, in order to utilize the whole table, FRENDO.PA_POWER should be 7 when ASK is active. The shaping of the ASK signal is dependent on the configuration of the PATABLE.

	315MHz		433MHz		868MHz		915MHz	
Output power [dBm]	Setting	Current consumption, typ. [mA]						
-30	0x12	10.3	0x03	10.9	0x01	11.5	0x10	11.4
-20	0x0E	10.7	0x0D	11.4	0x0B	12.1	0x09	11.8
-10	0x6E	11.2	0x34	13.4	0x25	13.8	0x33	13.6
-5	0x68	12.3	0x68	12.9	0x68	13.7	0x68	13.4
0	0x60	14.5	0x60	14.9	0x60	16.2	0x50	15.7
5	0x85	17.6	0x85	18.0	0x86	19.1	0x85	18.5
7	0xCC	21.4	0xCA	22.4	0xCC	24.4	0xC8	24.5
10	0xC3	26.3	0xC2	26.4	0xC3	28.6	0xC0	28.9

Table 19: Optimum PATABLE settings for various output power levels and frequency bands

	;	315MHz	433MHz			B68MHz	ý	915MHz
Default power setting	Output power [dBm]	Current consumption, typ. [mA]						
0xC6	9.2	24.3	8.4	24.2	8.9	26.9	7.7	25.3

Table 20: Output power and current consumption for default PATABLE setting

29 Crystal Oscillator

A crystal in the frequency range 26MHz-27MHz must be connected between the XOSC_Q1 and XOSC_Q2 pins. The oscillator is designed for parallel mode operation of the crystal. In addition, loading capacitors (C51 and C71) for the crystal are required. The loading capacitor values depend on the total load capacitance, C_L , specified for the crystal. The total load capacitance seen between the crystal terminals should equal C_L for the crystal to oscillate at the specified frequency.

$$C_{L} = \frac{1}{\frac{1}{C_{51}} + \frac{1}{C_{71}}} + C_{parasitic}$$

The parasitic capacitance is constituted by pin input capacitance and PCB stray capacitance. Total parasitic capacitance is typically 2.5pF.

The crystal oscillator circuit is shown in Figure 15. Typical component values for different values of C_L are given in Table 21.

The crystal oscillator is amplitude regulated. This means that a high current is used to start up the oscillations. When the amplitude builds up, the current is reduced to what is necessary to maintain approximately 0.4Vpp signal swing. This ensures a fast start-up, and keeps the drive level to a minimum. The ESR of the crystal should be within the specification in order to ensure a reliable start-up (see section 7 on page 6).

The initial tolerance, temperature drift, aging and load pulling should be carefully specified in order to meet the required frequency accuracy in a certain application. By specifying the *total* expected frequency accuracy in SmartRF Studio together with data rate and frequency deviation, the software calculates the total bandwidth and compares this to the chosen receiver channel filter bandwidth. The software reports any contradictions, and a more accurate crystal is recommended if required.

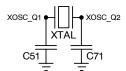


Figure 15: Crystal oscillator circuit

Component	C _L = 10pF	C _L =13pF	C _L =16pF
C51	15pF	22pF	27pF
C71	15pF	22pF	27pF

Table 21: Crystal oscillator component values

30 Antenna Interface

The balanced RF output of **CC1150** is designed for a simple, low-cost matching and balun network on the printed circuit board. A few passive external components ensure proper matching.

Although **CC1150** has a balanced RF output, the chip can be connected to a single-ended antenna with few external low cost capacitors and inductors.

31 General Purpose / Test Output Control Pins

The two digital output pins GDO0 and GDO1 are general control pins. Their functions are programmed by IOCFG0.GDO0_CFG and IOCFG1.GDO1_CFG respectively. Table 22 shows the different signals that can be

monitored on the GDO pins. These signals can be used as an interrupt to the MCU. GDO1 is the same pin as the SO pin on the SPI interface, thus the output programmed on this pin will only be valid when CSn is high. The

CC1150

default value for GDO1 is 3-stated, which is useful when the SPI interface is shared with other devices.

The default value for GDO0 is a 125kHz-146kHz clock output (XOSC frequency divided by 192). Since the XOSC is turned on at power-on-reset, this can be used to clock the MCU in systems with only one crystal. When the MCU is up and running, it can change the

clock frequency by writing to IOCFG0.GDO0_CFG. This will not produce any clock glitches.

An on-chip analog temperature sensor is enabled by writing the value 128 (0x80h) to the IOCFG0.GDO0_CFG register. The voltage on the GDO0 pin is then proportional to temperature. See section 9 on page 7 for temperature sensor specifications.

GDO0 CFC	G[5:0] Description
0 (0x00)	Reserved n defined on the transceiver version.
1 (0x01)	Reserved if defined on the transceiver version.
2 (0x02)	Asserts when the TX FIFO is filled above TXFIFO_THR. De-asserts when the TX FIFO is below TXFIFO_THR.
3 (0x03)	Asserts when TX FIFO is full. De-asserts when the TX FIFO is drained below TXFIFO THR.
4 (0x04)	Reserved ñ defined on the transceiver version.
5 (0x05)	Asserts when the TX FIFO has underflowed. De-asserts when the FIFO is flushed.
6 (0x06)	Asserts when sync word has been sent, and de-asserts at the end of the packet. The pin will also de-assert if the TX FIFO underflows.
7 (0x07)	Reserved ñ defined on the transceiver version.
8 (0x08)	Reserved ñ defined on the transceiver version.
9 (0x09)	Reserved ñ defined on the transceiver version.
10 (0x0A)	Lock detector output
11 (0x0B)	Serial Clock. Synchronous to the data in synchronous serial mode. Data is set up on the falling edge and is read on the rising edge of SERIAL_CLK.
12 (0x0C)	Reserved ñ defined on the transceiver version.
13 (0x0D)	Reserved ñ defined on the transceiver version.
14 (0x0E)	Reserved ñ defined on the transceiver version.
15 (0x0F)	Reserved ñ defined on the transceiver version. Reserved ñ used for test.
16 (0x10) 17 (0x11)	Reserved in used for test. Reserved in used for test.
17 (0x11) 18 (0x12)	Reserved in used for test. Reserved in used for test.
19 (0x12)	Reserved in used for test.
20 (0x14)	Reserved in used for test.
21 (0x15)	Reserved ñ used for test.
22 (0x16)	Reserved ñ defined on the transceiver version.
23 (0x17)	Reserved ñ defined on the transceiver version.
24 (0x18)	Reserved ñ used for test.
25 (0x19)	Reserved ñ used for test.
26 (0x1A)	Reserved ñ used for test.
27 (0x1B)	PA_PD. PA is enabled when 1, in power-down when 0. Can be used to control external PA or RX/TX switch.
28 (0x1C) 29 (0x1D)	Reserved ñ defined on the transceiver version. Reserved ñ defined on the transceiver version.
30 (0x1E)	Reserved in used for test.
31 (0x1F)	Reserved if used for test.
32 (0x20)	Reserved n used for test.
33 (0x21)	Reserved ñ used for test.
34 (0x22)	Reserved ñ used for test.
35 (0x23)	Reserved ñ used for test.
36 (0x24)	Reserved ñ used for test.
37 (0x25)	Reserved ñ used for test.
38 (0x26)	Reserved ñ used for test.
39 (0x27)	Reserved ñ used for test.
40 (0x28) 41 (0x29)	Reserved ñ used for test. CHIP RDY
42 (0x2A)	Reserved ñ used for test.
43 (0x2B)	XOSC STABLE
44 (0x2C)	Reserved in used for test.
45 (0x2D)	GDO0_Z_EN_N. When this output is 0, GDO0 is configured as input (for serial TX data).
46 (0x2E)	High impedance (3-state)
47 (0x2F)	HW to 0 (HW1 achieved with _INV signal)
48 (0x30)	CLK XOSC/1
49 (0x31)	CLK_XOSC/1.5
50 (0x32)	CLK_XOSC/2
51 (0x33) 52 (0x34)	CLK_XOSC/3 CLK_XOSC/4
52 (0x34) 53 (0x35)	CLK XOSC/6
54 (0x36)	CLK_XOSC/8
55 (0x37)	CLK XOSC/12
56 (0x38)	CLK XOSC/16
57 (0x39)	CLK XOSC/24
58 (0x3A)	CLK XOSC/32
59 (0x3B)	CLK_XOSC/48
60 (0x3C)	CLK XOSC/64
61 (0x3D)	CLK_XOSC/96
62 (0x3E)	CLK_XOSC/128
63 (0x3F)	CLK_XOSC/192

Table 22: GDO signal selection

32 Asynchronous and Synchronous Serial Operation

Several features and modes of operation have been included in the *CC1150* to provide backward compatibility with previous Chipcon products and other existing RF communication systems. For new systems, it is recommended to use the built-in packet handling features, as they can give more robust communication, significantly offload the microcontroller and simplify software development.

32.1 Asynchronous operation

For backward compatibility with systems already using the asynchronous data transfer from other Chipcon products, asynchronous transfer is also included in *CC1150*. When asynchronous transfer is enabled, several of the support mechanisms for the MCU that are included in *CC1150* will be disabled, such as packet handling hardware, buffering in the FIFO and so on. The asynchronous transfer mode does not allow the use of the data whitener, interleaver and FEC.

Only 2-FSK, GFSK and ASK/OOK are supported for asynchronous transfer.

Setting PKTCTRL0.PKT_FORMAT to 3 enables asynchronous transparent (serial) mode.

In TX, the GDO0 pin is used for data input (TX data).

33 Configuration Registers

The configuration of **CC1150** is done by programming 8-bit registers. The configuration data based on selected system parameters are most easily found by using the SmartRF[®] Studio software. Complete descriptions of the registers are given in the following tables. After chip reset, all the registers have default values as shown in the tables.

There are nine Command Strobe Registers, listed in Table 23. Accessing these registers will initiate the change of an internal state or mode. There are 30 normal 8-bit Configuration Registers, listed in Table 24. Many of these registers are for test purposes only, and need not be written for normal operation of **CC1150**.

There are also six Status registers, which are listed in Table 25. These registers, which are

The MCU must control start and stop of transmit with the STX and SIDLE strobes.

The **CC1150** modulator samples the level of the asynchronous input 8 times faster than the programmed data rate. The timing requirement for the asynchronous stream is that the error in the bit period must be less than one eighth of the programmed data rate.

32.2 Synchronous serial operation

In the Synchronous serial operation mode, data is transferred on a two wire serial interface. The *CC1150* provides a clock that is used to set up new data on the data input line. Data input (TX data) is the GDO0 pin. This pin will automatically be configured as an input when TX is active.

Preamble and sync word insertion may or may not be active, dependent on the sync mode set by the MDMCFG3.SYNC_MODE. If preamble and sync word is disabled, all other packet handler features and FEC should also be disabled. The MCU must then handle preamble and sync word insertion in software. If preamble and sync word insertion is left on, all packet handling features and FEC can be used. The *CC1150* will insert the preamble and sync word and the MCU will only provide the data payload. This is equivalent to the recommended FIFO operation mode.

read-only, contain information about the status of **CC1150**.

The TX FIFO is accessed through one 8-bit register. Only write operations are allowed to the TX FIFO.

During the address transfer and while writing to a register or the TX FIFO, a status byte is returned. This status byte is described in Table 15 on page 16.

Table 26 summarizes the SPI address space. Registers that are only defined on the **CC1100** transceiver are also listed. **CC1100** and **CC1150** are register compatible, but registers and fields only implemented in the transceiver always contain zero on **CC1150**.

The address to use is given by adding the base address to the left and the burst and

read/write bits on the top. Note that the burst bit has different meaning for base addresses

above and below 0x2F.

Address	Strobe Name	Description
0x30	SRES	Reset chip.
0x31	SFSTXON	Enable and calibrate frequency synthesizer (if MCSM0 . FS_AUTOCAL=1).
0x32	SXOFF	Turn off crystal oscillator.
0x33	SCAL	Calibrate frequency synthesizer and turn it off (enables quick start). SCAL can be strobed from IDLE mode without setting manual calibration mode (MCSM0 . FS_AUTOCAL=0)
0x35	STX	Enable TX. Perform calibration first if MCSM0 . FS_AUTOCAL=1.
0x36	SIDLE	Exit TX and turn off frequency synthesizer.
0x39	SPWD	Enter power down mode when CSn goes high.
0x3B	SFTX	Flush the TX FIFO buffer.
0x3D	SNOP	No operation. May be used to pad strobe commands to two bytes for simpler software.

Table 23: Command Strobes

Address	Register	Description	Details on page number
0x01	IOCFG1	GDO1 output pin configuration	34
0x02	IOCFG0	GDO0 output pin configuration	34
0x03	FIFOTHR	FIFO threshold	34
0x04	SYNC1	Sync word, high byte	35
0x05	SYNC0	Sync word, low byte	35
0x06	PKTLEN	Packet length	35
0x08	PKTCTRL0	Packet automation control	35
0x09	ADDR	Device address	36
0x0A	CHANNR	Channel number	36
0x0D	FREQ2	Frequency control word, high byte	36
0x0E	FREQ1	Frequency control word, middle byte	36
0x0F	FREQ0	Frequency control word, low byte	37
0x10	MDMCFG4	Modulator configuration	37
0x11	MDMCFG3	Modulator configuration	37
0x12	MDMCFG2	Modulator configuration	38
0x13	MDMCFG1	Modulator configuration	39
0x14	MDMCFG0	Modulator configuration	39
0x15	DEVIATN	Modulator deviation setting	39
0x17	MCSM1	Main Radio Control State Machine configuration	40
0x18	MCSM0	Main Radio Control State Machine configuration	40
0x22	FREND0	Front end TX configuration	41
0x23	FSCAL3	Frequency synthesizer calibration	41
0x24	FSCAL2	Frequency synthesizer calibration	41
0x25	FSCAL1	Frequency synthesizer calibration	42
0x26	FSCAL0	Frequency synthesizer calibration	42
0x29	FSTEST	Frequency synthesizer calibration control	42
0x2A	PTEST	Production test	42
0x2C	TEST2	Various test settings	42
0x2D	TEST1	Various test settings	42
0x2E	TEST0	Various test settings	43

Table 24: Configuration Registers Overview

Address	Register	Description	Details on page number
0x30 (0xF0)	PARTNUM	Part number for CC1150	43
0x31 (0xF1)	VERSION	Current version number	43
0x35 (0xF5)	MARCSTATE	Control state machine state	44
0x38 (0xF8)	PKTSTATUS	Current GDOx status and packet status	44
0x39 (0xF9)	VCO_VC_DAC	Current setting from PLL calibration module	44
0x3A (0xFA)	TXBYTES	Underflow and number of bytes in the TX FIFO	45

Table 25: Status Registers Overview

	Write Read								
	Single byte	Burst	Single byte	Burst					
	+0x00	+0x40	+0x80	+0xC0					
0x00 0x01			FG2 FG1						
0x02	IOCFG1 IOCFG0								
0x03			THR						
0x04		SYI							
0x05		SYN							
0x06 0x07		PKT PKTC							
0x08		PKTC							
0x09		AD							
0x0A		CHA							
0x0B 0x0C		FSC ⁻ FSC ⁻							
0x0D		FRE							
0x0E		FRE			<u>o</u>				
0x0F		FRE			qis				
0x10		MDM/ MDM/			soc				
0x11 0x12		MDM			SS				
0x12		MDM			SC				
0x14			CFG0		it ac				
0x15			IATN		R/W configuration registers, burst access possible				
0x16 0x17		MC:	SM2 SM1		o,				
0x17 0x18			SM0		ters				
0x19		FOC	CFG		egis				
0x1A		BSC			- E				
0x1B 0x1C		AGCC AGCC			atio				
0x1C		AGCC			gura				
0x1E		WOR			ulić				
0x1F		WOR			00 /				
0x20 0x21		WOR FRE			- €				
0x21			ND0		ш				
0x23			AL3						
0x24		FSC							
0x25		FSC FSC							
0x26 0x27		RCC							
0x28		RCC							
0x29			EST						
0x2A 0x2B		PTE	EST TEST						
0x2B			ST2						
0x2D		TES							
0x2E		TES	ST0						
0x2F 0x30	SRES		SRES	PARTNUM					
0x30	SFSTXON		SFSTXON	VERSION	ω				
0x32	SXOFF		SXOFF	FREQEST	tera				
0x33	SCAL		SCAL	LQI	egis ajist				
0x34 0x35	SRX STX		SRX STX	MARCSTATE	s re reç				
0x35	SIDLE		SIDLE	WORTIME1	atu				
0x37	SAFC		SAFC	WORTIME0	Strobes, Status registers and multi byte registers				
0x38	SWOR		SWOR	PKTSTATUS	Des				
0x39 0x3A	SPWD SFRX		SPWD SFRX	VCO_VC_DAC TXBYTES	Strobes, and mul				
0x3A 0x3B	SFTX		SFTX	RXBYTES					
0x3C	SWORRST		SWORRST	10.001.00	nand only)				
0x3D	SNOP		SNOP		Command (read only)				
0x3E	PATABLE	PATABLE	PATABLE	PATABLE	S Š				
0x3F	TX FIFO	TX FIFO	RX FIFO	RX FIFO	L				

Table 26: SPI Address Space (greyed text: for reference only; not implemented on **CC1150**)

33.1 Configuration Register Details

0x01: IOCFG1 ñ GDO1 output pin configuration

Bit	Field Name	Reset	R/W	Description
7	GDO_DS	0	R/W	Set high (1) or low (0) output drive strength on the GDO pins.
6	GDO1_INV	0	R/W	Invert output, i.e. select active low / high
5:0	GDO1_CFG[5:0]	46 (0x2E)	R/W	Default is tri-state (See Table 22 on page 29)

0x02: IOCFG0 ñ GDO0 output pin configuration (for customer data sheet)

Bit	Field Name	Reset	R/W	Description
7	TEMP_SENSOR_ENABLE	0	R/W	Enable analog temperature sensor. Write 0 in all other register bits when using temperature sensor.
6	GDO0_INV	0	R/W	Invert output, i.e. select active low / high
5:0	GDO0_CFG[5:0]	63 (0x3F)	R/W	Default is CLK_XOSC/192 (See Table 22 on page 29). Should be set to 3-state for lowest power down current.

0x03: FIFOTHR ñ FIFO threshold

Bit	Field Name	Reset	R/W	Description		
7:4	Reserved	0 (0000)	R/W	Write 0 (0000) for compatibility with possible future extensions.		
3:0	FIFO_THR[3:0]	7 (0111)	R/W	Set the threshold for the TX FIFO. The threshold is exceeded when the number of bytes in the FIFO is equal to or higher than the threshold value.		
				Setting	Bytes in TX FIFO	
				0 (0000)	61	
				1 (0001)	57	
				2 (0010)	53	
				3 (0011)	49	
				4 (0100)	45	
				5 (0101)	41	
				6 (0110)	37	
				7 (0111)	33	
				8 (1000)	29	
				9 (1001)	25	
				10 (1010)	21	
				11 (1011)	17	
				12 (1100)	13	
				13 (1101)	9	
				14 (1110)	5	
				15 (1111)	1	

0x04: SYNC1 ñ Sync word, high byte

Bit	Field Name	Reset	R/W	Description
7:0	SYNC[15:8]	211 (0xD3)	R/W	8 MSB of 16-bit sync word

0x05: SYNC0 ñ Sync word, low byte

Bit	Field Name	Reset	R/W	Description
7:0	SYNC[7:0]	145 (0x91)	R/W	8 LSB of 16-bit sync word

0x06: PKTLEN ñ Packet length

Bit	Field Name	Reset	R/W	Description
7:0	PACKET_LENGTH	255 (0xFF)	R/W	Indicates the packet length when fixed length packets are enabled.

0x08: PKTCTRL0 ñ Packet automation control

Bit	Field Name	Reset	R/W	Description	on	
7	Reserved		R0			
6	WHITE_DATA	1	R/W	Turn data v	whitening on / off	
				0: Whitening off 1: Whitening on		
5:4	PKT_FORMAT[1:0]	0 (00)	R/W	Format of I	RX and TX data	
				Setting	Packet format	
				0 (00)	Normal mode, use TX FIFO	
				1 (01)	Serial Synchronous mode, used for backwards compatibility	
				2 (10)	Random TX mode; sends random data using PN9 generator. Used for test/debug.	
				3 (11)	Asynchronous transparent mode. Data in on GDO0 and Data out on either of the GDO pins	
3	CC2400_EN	0	R/W	Enable CC CC2400.	2400 support. Use same CRC implementation as	
2	CRC_EN	1	R/W	1: CRC cal	culation enabled	
				0: CRC dis	abled	
1:0	LENGTH_CONFIG[1:0]	1 (01)	R/W	Configure t	the packet length	
				Setting	Packet length configuration	
				0 (00)	Fixed length packets, length configured in PKTLEN register	
				1 (01)	Variable length packets, packet length configured by the first byte after sync word	
				2 (10)	Enable infinite length packets	
				3 (11)	Reserved	

0x09: ADDR ñ Device address

Bit	Field Name	Reset	R/W	Description	
7:0	DEVICE_ADDR[7:0]	0 (0x00)	R/W	Address used for packet filtration. Optional broadcast addresses are 0 (0x00) and 255 (0xFF).	

0x0A: CHANNR ñ Channel number

Bit	Field Name	Reset	R/W	Description
7:0	CHAN[7:0]	0 (0x00)	R/W	The 8-bit unsigned channel number, which is multiplied by the channel spacing setting and added to the base frequency.

0x0D: FREQ2 ñ Frequency control word, high byte

Bit	Field Name	Reset	R/W	Description			
7:6	FREQ[23:22]	0 (00)	R	FREQ[23:22] is always 0 (the FREQ2 register is less than 36 with 26MHz or higher crystal)			
5:0	FREQ[21:16]	30 (0x1E)	R/W	FREQ[23:0] is the base frequency for the frequency synthesiser in increments of $F_{XOSC}/2^{16}$. $f_{carrier} = \frac{f_{XOSC}}{2^{16}} \cdot FREQ \left[23:0 \right]$			
				The default frequency word gives a base frequency of 800MHz, assuming a 26.0MHz crystal. With the default channel spacing settings, the following FREQ2 values and channel numbers can be used:			
				FREQ2	Base frequency	Frequency range (CHAN numbers)	
				10 (0x0A)	280MHz	300.2MHz-331MHz (101-255)	
				11 (0x0B)	306MHz	306MHz-347.8MHz (0-209)	
				14 (0x0E)	384MHz	400.2MHz-435MHz (81-255)	
				15 (0x0F)	410MHz	410MHz-461MHz (0-255)	
				16 (0x10)	436MHz	436MHz-463.8MHz (0-139)	
				17 (0x11)	462MHz	462MHz-463.8MHz (0-9)	
				30 (0x1E)	800MHz	800.2MHz-851MHz (1-255)	
				31 (0x1F)	826MHz	826MHz-877MHz (0-255)	
				32 (0x20)	852MHz	852MHz-903MHz (0-255)	
				33 (0x21)	878MHz	878MHz-927.8MHz (0-249)	
				34 (0x22)	904MHz	904MHz-927.8MHz (0-119)	

0x0E: FREQ1 ñ Frequency control word, middle byte

Bit	Field Name	Reset	R/W	Description
7:0	FREQ[15:8]	196 (0xC4)	R/W	Ref. FREQ2 register

0x0F: FREQ0 ñ Frequency control word, low byte

Bit	Field Name	Reset	R/W	Description
7:0	FREQ[7:0]	236 (0xEC)	R/W	Ref. FREQ2 register

0x10: MDMCFG4 ñ Modulator configuration

Bit	Field Name	Reset	R/W Description	
7:4	Reserved		R0	Defined on the transceiver version
3:0	DRATE_E[3:0]	12 (1100)	R/W	The exponent of the user specified symbol rate

0x11: MDMCFG3 ñ Modulator configuration

Bit	Field Name	Reset	R/W	Description
7:0	DRATE_M[7:0]	34 (0x22)	R/W	The mantissa of the user specified symbol rate. The symbol rate is configured using an unsigned, floating-point number with 9-bit mantissa and 4-bit exponent. The 9 th bit is a hidden \ddot{a} í. The resulting data rate is: $(256 + DRATE M) \cdot 2^{DRATE} = \frac{E}{2}$
				$R_{DATA} = \frac{\left(256 + DRATE_M\right) \cdot 2^{DRATE_E}}{2^{28}} \cdot f_{XOSC}$
				The default values give a data rate of 115.051kbps (closest setting to 115.2kbps), assuming a 26.0MHz crystal.

0x12: MDMCFG2 ñ Modulator configuration

Bit	Field Name	Reset	R/W	Description	on	
7	Reserved		R0	Defined on	the transceiver version.	
6:4	MOD_FORMAT[2:0]	0 (000)	R/W	The modul	ation format of the radio signal	
				Setting	Modulation format	
				0 (000)	2-FSK	
				1 (001)	GFSK	
				2 (010)	-	
				3 (011)	ASK/OOK	
				4 (100)	-	
				5 (101)	-	
				6 (110)	-	
				7 (111)	MSK	
3	MANCHESTER_EN	0	R/W	Enables Manchester encoding/decoding.		
2:0	SYNC_MODE[2:0]	2 (010)	R/W	Combined	sync-word qualifier mode.	
				The values 0 (000) and 4 (100) disables sync word transmission. The values 1 (001), 2 (001), 5 (101) and 6 (110) enables 16-bit sync word transmission. The values 3 (011) and 7 (111) enables repeated sync word transmission. The table below lists the meaning of each mode (for compatibility with the <i>CC1100</i> transceiver):		
				Setting	Sync-word qualifier mode	
				0 (000)	No preamble/sync word	
				1 (001)	15/16 sync word bits detected	
				2 (010)	16/16 sync word bits detected	
				3 (011)	30/32 sync word bits detected	
				4 (100)	No preamble/sync, carrier-sense above threshold	
				5 (101)	15/16 + carrier-sense above threshold	
				6 (110)	16/16 + carrier-sense above threshold	
				7 (111)	30/32 + carrier-sense above threshold	

0x13: MDMCFG1 ñ Modulator configuration

Bit	Field Name	Reset	R/W	Description
7	FEC_EN	0	R/W	Enable Forward Error Correction (FEC) with interleaving for packet payload
6:4	NUM_PREAMBLE[2:0]	2 (010)	R/W	Sets the minimum number of preamble bytes to be transmitted
				Setting Number of preamble bytes
				0 (000) 2
				1 (001) 3
				2 (010) 4
				3 (011) 6
				4 (100) 8
				5 (101) 12
				6 (110) 16
				7 (111) 24
3:2	Reserved		R0	
1:0	CHANSPC_E[1:0]	2 (10)	R/W	2 bit exponent of channel spacing

0x14: MDMCFG0 ñ Modulator configuration

Bit	Field Name	Reset	R/W	Description
7:0	CHANSPC_M[7:0]	248 (0xF8)	R/W	8-bit mantissa of channel spacing (initial 1 assumed). The channel spacing is multiplied by the channel number CHAN and added to the base frequency. It is unsigned and has the format: $\Delta f_{\textit{CHANNEL}} = \frac{f_{\textit{XOSC}}}{2^{18}} \cdot \left(256 + CHANSPC_M\right) \cdot 2^{\textit{CHANSPC}_E} \cdot CHAN$ The default values give 199.951kHz channel spacing (the closest setting to 200kHz), assuming 26.0MHz crystal frequency.

0x15: DEVIATN ñ Modulator deviation setting

Bit	Field Name	Reset	R/W	Description
7	Reserved		R0	
6:4	DEVIATION_E[2:0]	4 (100)	R/W	Deviation exponent
3	Reserved		R0	
2:0	DEVIATION_M[2:0]	7 (111)	R/W	When MSK modulation is enabled:
				Sets fraction of symbol period used for phase change.
				When 2-FSK/GFSK modulation is enabled:
				Deviation mantissa, interpreted as a 4-bit value with MSB implicit 1. The resulting frequency deviation is given by:
				$f_{dev} = \frac{f_{xosc}}{2^{17}} \cdot (8 + DEVIATION _M) \cdot 2^{DEVIATION _E}$
				The default values give ±47.607kHz deviation, assuming 26.0MHz crystal frequency.

0x17: MCSM1 ñ Main Radio Control State Machine configuration

Bit	Field Name	Reset	R/W	Description		
7:6	Reserved		R0			
5:2	Reserved		R0	Defined on	the transceiver version	
1:0	TXOFF_MODE[1:0]	0 (00)	R/W	Select what (TX)	t should happen when a packet has been sent	
				Setting	Next state after finishing packet transmission	
				0 (00)	IDLE	
				1 (01)	FSTXON	
				2 (10)	Stay in TX (start sending preamble)	
				3 (11)	Do not use, not implemented on £61150 (Go to RX)	

0x18: MCSM0 ñ Main Radio Control State Machine configuration

Bit	Field Name	Reset	R/W	Description	Description				
7:6	Reserved		R0						
5:4	FS_AUTOCAL[1:0]	0 (00)	R/W	Automatica	ally calibrate whe	en going to RX or TX, or back to	IDLE		
				Setting	When to perfor	m automatic calibration			
				0 (00)	Never (manual	y calibrate using SCAL strobe	•)		
				1 (01)	When going fro	om IDLE to RX or TX (or FSTX)	ON)		
				2 (10)	When going fro	m RX or TX back to IDLE			
				3 (11)	Every 4 th time v	when going from RX or TX to ID	DLE		
						n-radio (WOR) applications, usi uce current consumption.	ng setting		
3:2	PO_TIMEOUT	1 (01)	R/W	R/W Programs the number of times the six-bit ripple counter must e before CHP_RDY_N goes low. Values other than 0 (00) are museful when the XOSC is left on during power-down.					
				Setting	Expire count	Timeout after XOSC start			
				0 (00)	1	Approx. 2.3µs ñ 2.7µs			
				1 (01)	16	Approx. 37µs ñ 43µs			
				2 (10)	64	Approx. 146µs ñ 171µs			
				3 (11)	256	Approx. 585 µs ñ 683 µs			
				Exact time	out depends on	crystal frequency.			
				preserved for quicker	n order to reduce start up time from the SLEEP state, this field is reserved in powerdown (SLEEP state). Setting 0 (00) can be used or quicker start up, unless a crystal with very low ESR is used in ombination with C41 decoupling capacitor >100nF.				
1:0	Reserved		R0	Defined or	n the transceiver	version			

0x22: FREND0 ñ Front end TX configuration

Bit	Field Name	Reset	R/W	Description
7:6	Reserved		R0	
5:4	LODIV_BUF_CURRENT_TX[1:0]	1 (01)	R/W	Adjusts current TX LO buffer (input to PA). The value to use in register field is given by the SmartRF® Studio software.
3	Reserved		R0	
2:0	PA_POWER[2:0]	0 (000)	R/W	Selects PA power setting. This value is an index to the PATABLE, which can be programmed with up to 8 different PA settings. In ASK mode, this selects the PATABLE index to use when transmitting a ði. PATABLE index zero is used in ASK when transmitting a ði. The PATABLE settings from index ði to the PA_POWER value are used for ASK TX shaping, and for power ramp-up/ramp-down at the start/end of transmission in all TX modulation formats.

0x23: FSCAL3 ñ Frequency synthesizer calibration

Bit	Field Name	Reset	R/W	Description
7:0	FSCAL3[7:0]	169 (0xA9)	R/W	Frequency synthesizer calibration configuration and result register. The value to write in this register before calibration is given by the SmartRF® Studio software. Fast frequency hopping without calibration for each hop can be done by calibrating upfront for each frequency and saving the resulting FSCAL3, FSCAL2 and FSCAL1 register values. Between each frequency hop, calibration can be replaced by writing the FSCAL3, FSCAL2 and FSCAL1 register values corresponding to the next RF frequency.

0x24: FSCAL2 ñ Frequency synthesizer calibration

Bit	Field Name	Reset	R/W	Description
7:6	Reserved		R0	
5:0	FSCAL2[5:0]	10 (0x0A)	R/W	Frequency synthesizer calibration result register. Fast frequency hopping without calibration for each hop can be done by calibrating upfront for each frequency and saving the resulting FSCAL3, FSCAL2 and FSCAL1 register values. Between each frequency hop, calibration can be replaced by writing the FSCAL3, FSCAL2 and FSCAL1 register values corresponding to the next RF frequency.

0x25: FSCAL1 ñ Frequency synthesizer calibration

Bit	Field Name	Reset	R/W	Description
7:6	Reserved		R0	
5:0	FSCAL1[5:0]	32 (0x20)	R/W	Frequency synthesizer calibration result register. Fast frequency hopping without calibration for each hop can be done by calibrating upfront for each frequency and saving the resulting FSCAL3, FSCAL2 and FSCAL1 register values. Between each frequency hop, calibration can be replaced by writing the FSCAL3, FSCAL2 and FSCAL1 register values corresponding to the next RF frequency.

0x26: FSCAL0 ñ Frequency synthesizer calibration

Bit	Field Name	Reset	R/W	Description
7	Reserved		R0	
6:5	Reserved		R0	Defined on the transceiver version
4:0	FSCAL0[4:0]	13 (0x0D)	R/W	Frequency synthesizer calibration control. The value to use in register field is given by the SmartRF® Studio software.

0x29: FSTEST ñ Frequency synthesizer calibration control

Bit	Field Name	Reset	R/W	Description
7:0	FSTEST[7:0]	87 (0x57)	R/W	For test only. Do not write to this register.

0x2A: PTEST ñ Production test

Bit	Field Name	Reset	R/W	Description
7:0	PTEST[7:0]	127 (0x7F)	R/W	Writing 0xBF to this register makes the on-chip temperature sensor available in the IDLE state. The default 0x7F value should then be written back before leaving the IDLE state. Other use of this register is for test only.

0x2C: TEST2 ñ Various test settings

Bi	t Field Name	Reset	R/W	Description
7:0	TEST2[7:0]	136 (0x88)	R/W	For test only. Do not write to this register.

0x2D: TEST1 ñ Various test settings

Bit	Field Name	Reset	R/W	Description
7:0	TEST1[7:0]	49 (0x21)	R/W	For test only. Do not write to this register.

0x2E: TEST0 ñ Various test settings

В	Bit	Field Name	Reset	R/W	Description
7	0:`	TEST0[7:0]	11 (0x0B)	R/W	For test only. Do not write to this register.

33.2 Status register details

0x30 (0xF0): PARTNUM ñ Chip ID

Bit	Field Name	Reset	R/W	Description
7:0	PARTNUM[7:0]	0 (0x02)	R	Chip part number

0x31 (0xF1): VERSION ñ Chip ID

Bit	Field Name	Reset	R/W	Description
7:0	VERSION[7:0]	2 (0x10)	R	Chip version number.

0x35 (0xF5): MARCSTATE ñ Main Radio Control State Machine state

Bit	Field Name	Reset	R/W	Description		
7:5	Reserved		R0			
4:0	MARC_STATE[4:0]		R	Main Radio C	Control FSM State	
				Value	State name	State (Figure 10, page 21)
				0 (0x00)	SLEEP	SLEEP
				1 (0x01)	IDLE	IDLE
				2 (0x02)	XOFF	XOFF
				3 (0x03)	VCOON_MC	MANCAL
				4 (0x04)	REGON_MC	MANCAL
				5 (0x05)	MANCAL	MANCAL
				6 (0x06)	VCOON	FS_WAKEUP
				7 (0x07)	REGON	FS_WAKEUP
				8 (0x08)	STARTCAL	CALIBRATE
				9 (0x09)	BWBOOST	SETTLING
				10 (0x0A)	FS_LOCK	SETTLING
				11 (0x0B)	IFADCON	SETTLING
				12 (0x0C)	ENDCAL	CALIBRATE
				13 (0x0D)	RX	RX
				14 (0x0E)	RX_END	RX
				15 (0x0F)	RX_RST	RX
				16 (0x10)	TXRX_SWITCH	TXRX_SETTLING
				17 (0x11)	RX_OVERFLOW	RX_OVERFLOW
				18 (0x12)	FSTXON	FSTXON
				19 (0x13)	TX	TX
				20 (0x14)	TX_END	TX
				21 (0x15)	RXTX_SWITCH	RXTX_SETTLING
				22 (0x16)	TX_UNDERFLOW	TX_UNDERFLOW

0x38 (0xF8): PKTSTATUS ñ Current GDOx status

Bit	Field Name	Reset	R/W	Description
7:2	Reserved		R0	Defined on the transceiver version
1	GDO1		R	Current value on GDO1 pin
0	GDO0		R	Current value on GDO0 pin

0x39 (0xF9): VCO_VC_DAC ñ Current setting from PLL calibration module

Bit	Field Name	Reset	R/W	Description
7:0	VCO_VC_DAC[7:0]		R	Status register for test only.

0x3A (0xFA): TXBYTES ñ Underflow and number of bytes

Bit	Field Name	Reset	R/W	Description
7	TXFIFO_UNDERFLOW		R	
6:0	NUM_TXBYTES		R	Number of bytes in TX FIFO

34 Package Description (QLP 16)

All dimensions are in millimetres, angles in degrees. NOTE: The *CC1150* is available in RoHS lead-free package only.

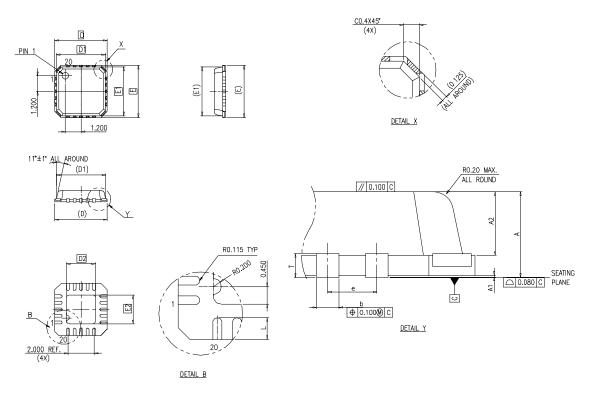


Figure 16: Package dimensions drawing (the actual package has 16 pins)

Package type		Α	A1	A2	D	D1	D2	E	E1	E2	L	Т	b	е
	Min	0.75	0.005	0.55	3.90	3.65		3.90	3.65		0.45	0.190	0.23	
QLP 16 (4x4)	Тур.	0.85	0.025	0.65	4.00	3.75	2.30	4.00	3.75	2.30	0.55		0.28	0.65
	Max	0.95	0.045	0.75	4.10	3.85		4.10	3.85		0.65	0.245	0.35	

Table 27: Package dimensions

34.1 Recommended PCB layout for package (QLP 16)

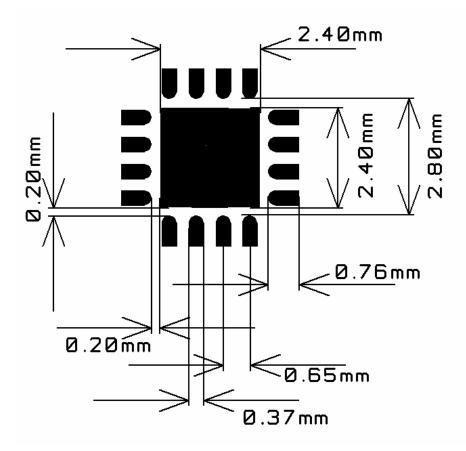


Figure 17: Recommended PCB layout for QLP 16 package

Note: The figure is an illustration only and not to scale. There are 14 mil diameter via holes distributed symmetrically in the ground pad under the package. See also the CC1150EM reference design.

34.2 Package thermal properties

Thermal resistance	
Air velocity [m/s]	0
Rth,j-a [K/W]	TBD

Table 28: Thermal properties of QLP 16 package

34.3 Soldering information

The recommendations for lead-free reflow in IPC/JEDEC J-STD-020C should be followed.

34.4 Tray specification

CC1150 can be delivered in standard QLP 4x4mm shipping trays.

Tray Specification						
Package	Tray Width	Tray Height	Tray Length	Units per Tray		
QLP 16	125.9mm	7.62mm	322.6mm	490		

Table 29: Tray specification

34.5 Carrier tape and reel specification

Carrier tape and reel is in accordance with EIA Specification 481.

Tape and Reel Specification						
Package	Tape Width	Component Pitch	Hole Pitch	Reel Diameter	Units per Reel	
QLP 16	TBD	TBD	TBD	TBD	TBD	

Table 30: Carrier tape and reel specification

35 Ordering Information

Ordering part number Description		Minimum Order Quantity (MOQ)
1168	CC1150 - RTY1 QLP16 RoHS Pb-free 490/tray	490 (tray)
1185	661150 - RTR1 QLP16 RoHS Pb-free 2500/T&R	2500 (tape and reel)
1198	CC1150 SK Sample kit 5pcs.	1
1172	CC1100_CC1150 DK-433MHz Development Kit	1
1173	CC1100_CC1150 DK-868MHz Development Kit	1

Table 31: Ordering Information

36 General Information

36.1 Document History

Revision	Date	Description/Changes
1.0	2005-04-20	First preliminary data sheet release

Table 32: Document history

36.2 Product Status Definitions

Data Sheet Identification	Product Status	Definition
Advance Information	Planned or Under Development	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	Engineering Samples and First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. Chipcon reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
No Identification Noted	Full Production	This data sheet contains the final specifications. Chipcon reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Obsolete	Not In Production	This data sheet contains specifications on a product that has been discontinued by Chipcon. The data sheet is printed for reference information only.

Table 33: Product Status Definitions

36.3 Disclaimer

Chipcon AS believes the information contained herein is correct and accurate at the time of this printing. However, Chipcon AS reserves the right to make changes to this product without notice. Chipcon AS does not assume any responsibility for the use of the described product; neither does it convey any license under its patent rights, or the rights of others. The latest updates are available at the Chipcon website or by contacting Chipcon directly.

As far as possible, major changes of product specifications and functionality, will be stated in product specific Errata Notes published at the Chipcon website. Customers are encouraged to sign up to the Developers Newsletter for the most recent updates on products and support tools.

When a product is discontinued this will be done according to Chipconís procedure for obsolete products as described in Chipconís Quality Manual. This includes informing about last-time-buy options. The Quality Manual can be downloaded from Chipconís website.

Compliance with regulations is dependent on complete system performance. It is the customerís responsibility to ensure that the system complies with regulations.

36.4 Trademarks

SmartRF® is a registered trademark of Chipcon AS. SmartRF® is Chipcon's RF technology platform with RF library cells, modules and design expertise. Based on SmartRF® technology Chipcon develops standard component RF circuits as well as full custom ASICs based on customer requirements and this technology.

All other trademarks, registered trademarks and product names are the sole property of their respective owners.

36.5 Life Support Policy

This Chipcon product is not designed for use in life support appliances, devices, or other systems where malfunction can reasonably be expected to result in significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Chipcon AS customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Chipcon AS for any damages resulting from any improper use or sale.

37 Address Information

Web site: http://www.chipcon.com E-mail: wireless@chipcon.com Technical Support Email: support@chipcon.com **Technical Support Hotline:** +47 22 95 85 45

Headquarters:

Chipcon AS GaustadallÈen 21 NO-0349 Oslo **NORWAY** Tel: +47 22 95 85 44

Fax: +47 22 95 85 46 E-mail: wireless@chipcon.com

US Offices:

Chipcon Inc., Western US Sales Office 19925 Stevens Creek Blvd. Cupertino, CA 95014-2358 USA Tel: +1 408 973 7845

Fax: +1 408 973 7257 Email: USsales@chipcon.com

Sales Office Germany:

Chipcon AS Riedberghof 3 D-74379 Ingersheim **GERMANY**

Tel: +49 7142 9156815 Fax: +49 7142 9156818

Email: Germanysales@chipcon.com

Sales Office Asia:

Chipcon AS Unit 503, 5/F Silvercord Tower 2, 30 Canton Road Tsimshatsui, Hong Kong Tel: +852 3519 6226 Fax: +852 3519 6520 Email: Asiasales@chipcon.com

Sales Office Japan:

Chipcon AS #403, Bureau Shinagawa 4-1-6, Konan, Minato-Ku Tokyo, Zip 108-0075 Japan Tel: +81 3 5783 1082

Fax: +81 3 5783 1083

Email: Japansales@chipcon.com

Chipcon Inc., Eastern US Sales Office 35 Pinehurst Avenue

Nashua, New Hampshire, 03062

USA

Tel: +1 603 888 1326 Fax: +1 603 888 4239

Email: eastUSsales@chipcon.com

Sales Office Korea & South-East Asia:

Chipcon AS 37F, Asem Tower 159-1 Samsung-dong, Kangnam-ku Seoul 135-798 Korea Tel: +82 2 6001 3888 Fax: +82 2 6001 3711

Email: Korea_SEAsiasales@chipcon.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265