

UNISONIC TECHNOLOGIES CO., LTD

12N70 Power MOSFET

12 Amps, 700 Volts N-CHANNEL MOSFET

DESCRIPTION

The UTC **12N70** are N-Channel enhancement mode power field effect transistors (MOSFET) which are produced using UTC's proprietary, planar stripe, DMOS technology.

These devices are suited for high efficiency switch mode power supply. To minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode the advanced technology has been especially tailored.

■ FEATURES

- * $R_{DS(ON)} = 0.7\Omega @V_{GS} = 10 V$
- * Ultra low gate charge (typical 42 nC)
- * Low reverse transfer capacitance (C_{RSS} = typical 25 pF)
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness

■ SYMBOL

TO-220F

*Pb-free plating product number:12N70L

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dacking	
Normal	Lead Free Plating	Package	1	2	3	Packing	
12N70-TA3-T	12N70L-TA3-T	TO-220	G	D	S	Tube	
12N70-TF3-T	12N70L-TF3-T	TO-220F	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

odf. www.unisonic.com.tw Copyright © 2008 Unisonic Technologies Co., Ltd

OW-R502-220 A

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	700	V
Gate-Source Voltage		V_{GSS}	±30	V
Avalanche Current (Note 1)		I_{AR}	12	Α
Continuous Drain Current		I_{D}	12	Α
Pulsed Drain Current (Note 1)		I_{DM}	48	Α
Avalanche Energy	Single Pulsed (Note 2)	E _{AS}	790	mJ
	Repetitive (Note 1)	E _{AR}	24	mJ
Peak Diode Recovery dv/dt (Note 3)		dv/dt	4.5	V/ns
Junction Temperature		T_J	+150	$^{\circ}\!\mathbb{C}$
Operating Temperature		T_OPR	-55 ~ + 150	$^{\circ}\!\mathbb{C}$
Storage Temperature		T_{STG}	-55 ~ + 150	$^{\circ}\!\mathbb{C}$

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_C =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$				V			
Drain-Source Leakage Current	I _{DSS}	V _{DS} = 600 V, V _{GS} = 0 V			10	μΑ			
Gate-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA			
Breakdown Voltage Temperature	∧BVnes/∧Tı	I _D = 250 μA, Referenced to 25°C		0.7		V/°C			
Coefficient	<u></u>	15 200 μπ, ποιοιοιίσσα το 20 σ		0.7		L'' C			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$			4.0	V			
Static Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 6.0A$		0.55	0.7	Ω			
DYNAMIC CHARACTERISTICS									
Input Capacitance	C _{ISS}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1MHz		1480	1900	pF			
Output Capacitance	Coss			200	270	pF			
Reverse Transfer Capacitance	C _{RSS}			25	35	pF			
SWITCHING CHARACTERISTICS									
Turn-On Delay Time	t _{D(ON)}	V_{DD} = 300V, I_{D} = 12A, R_{G} = 25 Ω (Note 4, 5)		30	70	ns			
Turn-On Rise Time	t _R			115	240	ns			
Turn-Off Delay Time	t _{D(OFF)}			95	200	ns			
Turn-Off Fall Time	t₅			85	180	ns			
Total Gate Charge	Q_{G}	V _{DS} = 480V,I _D = 12A, V _{GS} = 10 V (Note 4, 5)		42	54	nC			
Gate-Source Charge	Q _{GS}			8.6		nC			
Gate-Drain Charge	Q_{GD}			21		nC			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} = 0 V, I _S = 12A			1.4	V			
Maximum Continuous Drain-Source Diode					40				
Forward Current	Is				12	Α			
Maximum Pulsed Drain-Source Diode	la				48				
Forward Current	I _{SM}				40	Α			
Reverse Recovery Time	t_RR	$V_{GS} = 0 V, I_S = 12A,$		380		ns			
Reverse Recovery Charge	Q_RR	dI _F /dt = 100 A/μs (Note 4)		3.5		μC			

Notes:1. Repetitive Rating: Pulse width limited by maximum junction temperature

- 2. L = 10mH, I_{AS} = 12A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 3. $I_{SD} \le 12A$, di/dt $\le 200A/s$, $V_{DD} \le BV_{DSS}$ Starting $T_J = 25$ °C
- 4. Pulse Test : Pulse width ≤300µs, Duty cycle ≤ 2%
- 5. Essentially independent of operating temperature.

■ TEST CIRCUITS AND WAVEFORMS

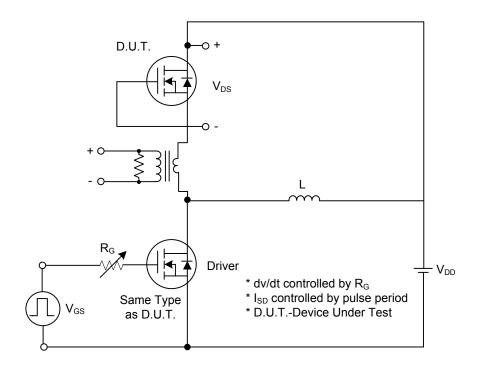


Fig. 1A Peak Diode Recovery dv/dt Test Circuit

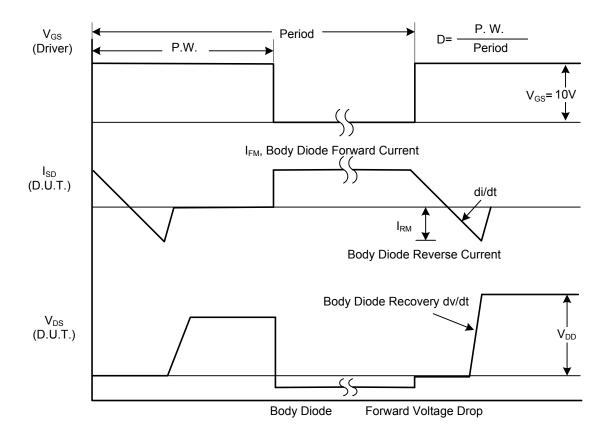
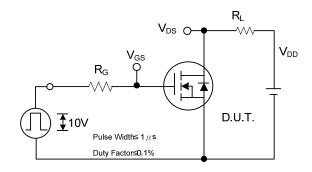



Fig. 1B Peak Diode Recovery dv/dt Waveforms

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

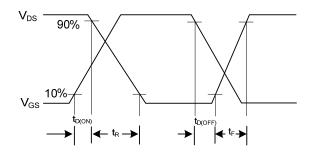
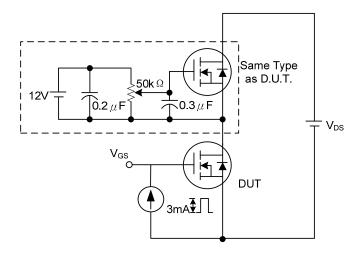



Fig. 2A Switching Test Circuit

Fig. 2B Switching Waveforms

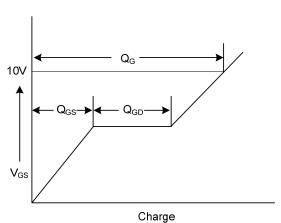
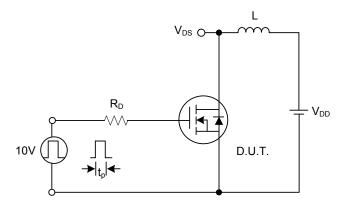
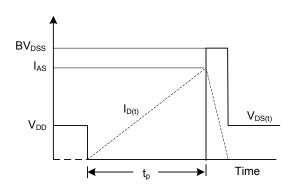
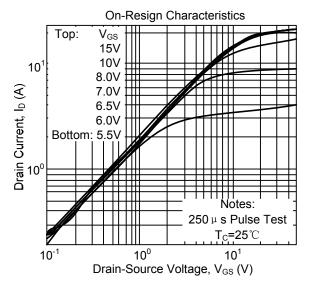
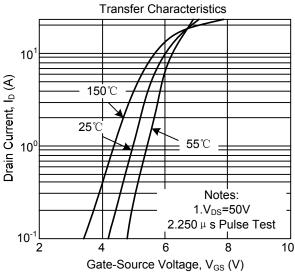
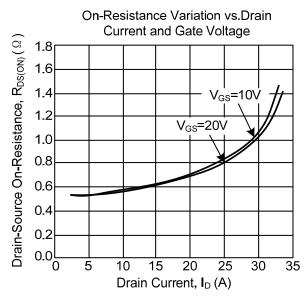
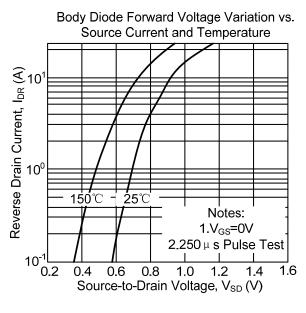



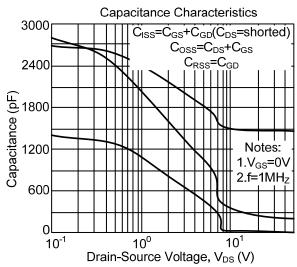
Fig. 3A Gate Charge Test Circuit

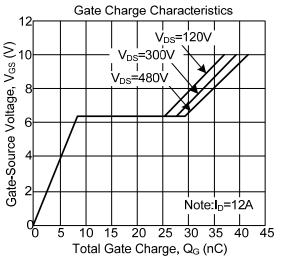
Fig. 3B Gate Charge Waveform

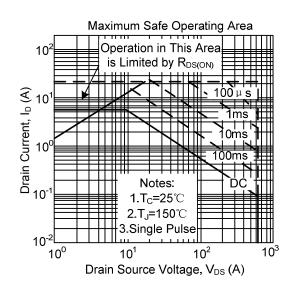




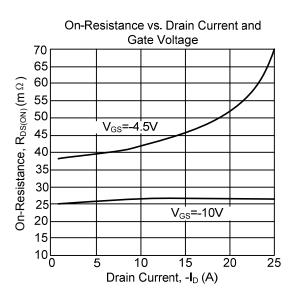

Fig. 4A Unclamped Inductive Switching Test Circuit

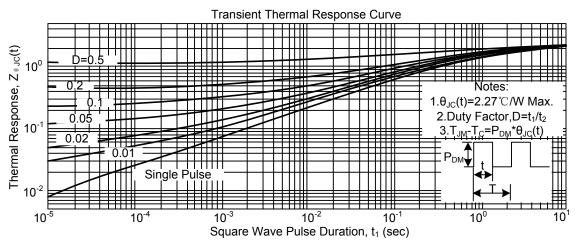

Fig. 4B Unclamped Inductive Switching Waveforms


■ TYPICAL CHARACTERISTICS









■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.