

Discrete POWER & Signal **Technologies**

2N5769

NPN Switching Transistor

This device is designed for high speed saturated switching applications at currents to 100 mA. Sourced from Process 21. See PN2369A for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	15	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	4.5	V
I _C	Collector Current - Continuous		mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range -55 to +150 °C		°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

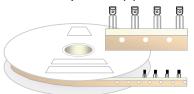
Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		2N5769	
P _D	Total Device Dissipation Derate above 25°C	350 2.8	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	°C/W

NPN Switching Transistor (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
	RACTERISTICS	_	T	,	
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_C = 10 \text{ mA}, I_B = 0$	15		V
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage	$I_C = 10 \mu\text{A}, I_E = 0$	40		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	4.5		V
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 10 \mu \text{A}, I_{\rm B} = 0$	40		V
I _{СВО}	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, I_E = 0$ $V_{CB} = 20 \text{ V}, I_E = 0, T_A = 125 ^{\circ}\text{C}$		0.4 30	μΑ μΑ
I _{CES}	Collector Cutoff Current	$V_{CE} = 20 \text{ V}, I_{B} = 0$		0.4	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 4.5 \text{ V}, I_{C} = 0$		1.0	μΑ
η _{FE}	DC Current Gain	$I_C = 10 \text{ mA}, V_{CE} = 0.35 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 0.35 \text{ V}$	40	120	
h _{FE}	DC Current Gain		40	120	
		$I_C = 10 \text{ mA}, V_{CE} = 0.35 \text{ V}$ $T_A = -55 ^{\circ}\text{C}$	20		
		$I_C = 30 \text{ mA}, V_{CE} = 0.40 \text{ V}$	30		
		$I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$	20		
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		0.2	V
		$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $T_A = 125 ^{\circ}\text{C}$		0.3	V
		$I_C = 30 \text{ mA}, I_B = 3.0 \text{ mA}$		0.25	V
		$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$		0.5	V
$V_{BE(sat)}$	Base-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$	0.7	0.85	V
		$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $T_A = 125 ^{\circ}\text{C}$	0.59	1.02	V
		$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$	0.00	1.02	ľ
		T _A = - 55 °C	0.59	1.02	V
		$I_C = 30 \text{ mA}, I_B = 3.0 \text{ mA}$		1.15	V V
		$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$		1.6	V
SMALL S	IGNAL CHARACTERISTICS				
C _{cb}	Collector-Base Capacitance	$V_{CB} = 5.0 \text{ V}, f = 1.0 \text{ MHz}$		4.0	pF
h _{fe}	Small-Signal Current Gain	$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	5.0		
SWITCHI	NG CHARACTERISTICS				
t _{on}	Turn-on Time	$I_{C} = 10 \text{ mA},$		12	ns
t _{off}	Turn-off Time	$I_{B1} = 3.0 \text{ mA}, I_{B2} = 1.5 \text{ mA}$		18	ns
		$I_C = I_{B1} = I_{B2} = 10 \text{ mA}$		13	


^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

TO-92 Tape and Reel Data FAIRCHILE SEMICONDUCTOR TM **TO-92 Packaging** Configuration: Figure 1.0 **TAPE and REEL OPTION** FSCINT Label sample See Fig 2.0 for various Reeling Styles **FSCINT** Label 5 Reels per Intermediate Box Customized F63TNR Label sample F63TNR LOT: CBVK741B019 QTY: 2000 FSID: PNZZZN Customized D/C1: D9842 QTY1: D/C2: QTY2: 375mm x 267mm x 375mm Intermediate Box TO-92 TNR/AMMO PACKING INFROMATION **AMMO PACK OPTION** See Fig 3.0 for 2 Ammo Packing Style Quantity EOL code Pack Options 2,000 D26Z 2.000 Ε D27Z М 2,000 D74Z 2.000 D75Z FSCINT $\begin{array}{ll} \mbox{Unit weight} & = 0.22 \mbox{ gm} \\ \mbox{Reel weight with components} & = 1.04 \mbox{ kg} \\ \mbox{Ammo weight with components} & = 1.02 \mbox{ kg} \\ \mbox{Max quantity per intermediate box} & = 10,000 \mbox{ units} \\ \end{array}$ Label 5 Ammo boxes per Intermediate Box 327mm x 158mm x 135mm Immediate Box Customized F63TNR Customized Label Label 333mm x 231mm x 183mm Intermediate Box (TO-92) BULK PACKING INFORMATION **BULK OPTION** See Bulk Packing LEADCLIP DIMENSION DESCRIPTION QUANTITY Information table TO-18 OPTION STD NO LEAD CLIP 2.0 K / BOX J18Z Anti-static TO-5 OPTION STD NO LEAD CLIP **Bubble Sheets** J05Z 1.5 K / BOX **FSCINT Label** NO EOI TO-92 STANDARD STRAIGHT FOR: PKG 92. NO LEADCLIP 2.0 K / BOX 94 (NON PROELECTRON SERIES), 96 TO-92 STANDARD STRAIGHT FOR: PKG 94 (PROELECTRON SERIES L34Z NO LEADCLIP 2.0 K / BOX 2000 units per 114mm x 102mm x 51mm BCXXX, BFXXX, BSRXXX), EO70 box for std option Immediate Box 5 EO70 boxes per intermediate Box 530mm x 130mm x 83mm Customized Intermediate box Label FSCINT Label 10,000 units maximum per intermediate box for std option

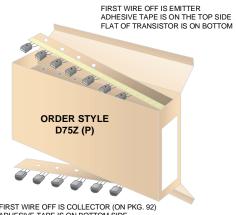
TO-92 Tape and Reel Data, continued

TO-92 Reeling Style Configuration: Figure 2.0

Machine Option "A" (H)

Style "A", D26Z, D70Z (s/h)

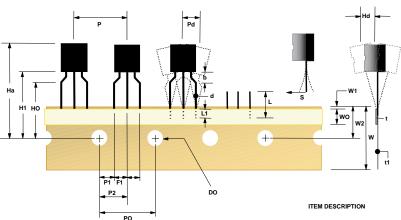
Machine Option "E" (J)



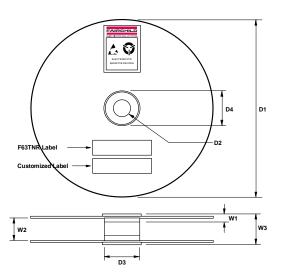
Style "E", D27Z, D71Z (s/h)

TO-92 Radial Ammo Packaging

Configuration: Figure 3.0



FIRST WIRE OFF IS COLLECTOR (ON PKG. 92) ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON TOP


TO-92 Tape and Reel Data, continued

TO-92 Tape and Reel Taping Dimension Configuration: Figure 4.0

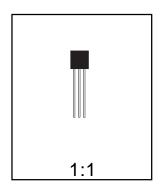
User Direction of Feed

TO-92 Reel Configuration: Figure 5.0

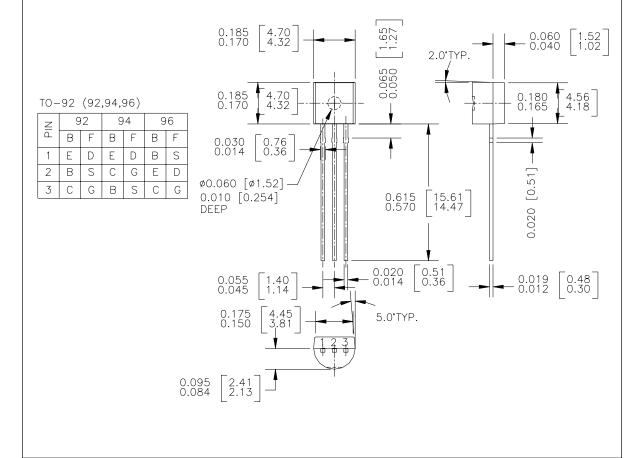
ITEM DESCRIPTION	SYMBOL	DIMENSION
Base of Package to Lead Bend	b	0.098 (max)
Component Height	На	0.928 (+/- 0.025)
Lead Clinch Height	НО	0.630 (+/- 0.020)
Component Base Height	H1	0.748 (+/- 0.020)
Component Alignment (side/side)	Pd	0.040 (max)
Component Alignment (front/back)	Hd	0.031 (max)
Component Pitch	P	0.500 (+/- 0.020)
Feed Hole Pitch	PO	0.500 (+/- 0.008)
Hole Center to First Lead	P1	0.150 (+0.009, -0.010)
Hole Center to Component Center	P2	0.247 (+/- 0.007)
Lead Spread	F1/F2	0.104 (+/- 0 .010)
Lead Thickness	d	0.018 (+0.002, -0.003)
Cut Lead Length	L	0.429 (max)
Taped Lead Length	L1	0.209 (+0.051, -0.052)
Taped Lead Thickness	t	0.032 (+/- 0.006)
Carrier Tape Thickness	t1	0.021 (+/- 0.006)
Carrier Tape Width	W	0.708 (+0.020, -0.019)
Hold - down Tape Width	WO	0.236 (+/- 0.012)
Hold - down Tape position	W1	0.035 (max)
Feed Hole Position	W2	0.360 (+/- 0.025)
Sprocket Hole Diameter	DO	0.157 (+0.008, -0.007)
Lead Spring Out	S	0.004 (max)

Note: All dimensions are in inches.

ITEM DESCRIPTION	SYSMBOL	MINIMUM	MAXIMUM
Reel Diameter	D1	13.975	14.025
Arbor Hole Diameter (Standard)	D2	1.160	1.200
(Small Hole)	D2	0.650	0.700
Core Diameter	D3	3.100	3.300
Hub Recess Inner Diameter	D4	2.700	3.100
Hub Recess Depth	W1	0.370	0.570
Flange to Flange Inner Width	W2	1.630	1.690
Hub to Hub Center Width	W3		2.090


Note: All dimensions are inches

TO-92 Package Dimensions


TO-92 (FS PKG Code 92, 94, 96)

Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 0.1977

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ PowerTrench® SyncFET™ FASTr™ QFET™ TinyLogic™ Bottomless™ GlobalOptoisolator™ QSTM UHC^{TM} CoolFET™ GTO™ QT Optoelectronics™ VCX^{TM} CROSSVOLT™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used berein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.