

2N7002DW

DUAL N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

Features

- Dual N-Channel MOSFET
- Low On-Resistance
- Low Gate Threshold Voltage
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- Ultra-Small Surface Mount Package
- Lead Free/RoHS Compliant (Note 2)
- Qualified to AEC-Q101 Standards for High Reliability

SOT-363							
Dim	Min	Max					
Α	0.10	0.30					
В	1.15	1.35					
С	2.00	2.20					
D	0.65 N	Nominal					
F	0.30	0.40					
Н	1.80	2.20					
J	1123	0.10					
K	0.90	1.00					
720.	0.25	0.40					
M	0.10	0.25					
	0°	8°					
All Dimensions in mm							

Mechanical Data

- Case: SOT-363
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- Terminal Connections: See Diagram
- Marking (See Page 2): K72
- Ordering & Date Code Information: See Page 2
- Weight: 0.006 grams (approx.)

Maximum Ratings @ TA = 25°C unless otherwise specified

Characteristic	Symbol	2N7002DW	Units					
Drain-Source Voltage	V _{DSS}	60	V					
Drain-Gate Voltage R _{GS} 1.0M	V_{DGR}	60	V					
Gate-Source Voltage (Note 1) Continuous Pulsec		±20 ±40	V					
Drain Current (Note 1) Continuous @ 100°C Pulsec	l _D	115 73 800	mA					
Total Power Dissipation Derating above T _A = 25°C (Note 1)	Pd	200 1.60	mW mW/°C					
Thermal Resistance, Junction to Ambient	R JA	625	°C/W					
Operating and Storage Temperature Range	T _j , T _{STG}	-55 to +150	°C					

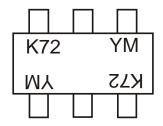
Notes

- 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- 2. No purposefully added lead.

Electrical Characteristics

@ $T_A = 25$ °C unless otherwise specified

Characteristic			Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 3)							
Drain-Source Breakdown Voltage		BV _{DSS}	60	70		V	$V_{GS} = 0V, I_{D} = 10\mu A$
Zero Gate Voltage Drain Current	@ T _C = 25°C @ T _C = 125°C	I _{DSS}			1.0 500	μA	V _{DS} = 60V, V _{GS} = 0V
Gate-Body Leakage		I _{GSS}			±10	nA	$V_{GS} = \pm 20V$, $V_{DS} = 0V$
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage		V _{GS(th)}	1.0		2.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
Static Drain-Source On-Resistance	@ T _j = 25°C @ T _j = 125°C	R _{DS} (ON)		3.2 4.4	7.5 13.5		$V_{GS} = 5.0V, I_D = 0.05A$
	@ T _j = 125°C						$V_{GS} = 10V, I_D = 0.5A$
On-State Drain Current		I _{D(ON)}	0.5	1.0		Α	$V_{GS} = 10V, V_{DS} = 7.5V$
Forward Transconductance		g _{FS}	80			mS	$V_{DS} = 10V, I_D = 0.2A$
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{iss}		22	50	pF	
Output Capacitance Reverse Transfer Capacitance		Coss		11	25	pF	$V_{DS} = 25V, V_{GS} = 0V$ f = 1.0MHz
		Crss		2.0	5.0	pF	- 1.61711.12
SWITCHING CHARACTERISTICS	SWITCHING CHARACTERISTICS						
Turn-On Delay Time		t _{D(ON)}		7.0	20	ns	$V_{DD} = 30V, I_D = 0.2A,$
Turn-Off Delay Time		t _{D(OFF)}		11	20	ns	$R_L = 150$, $V_{GEN} = 10V$, $R_{GEN} = 25$

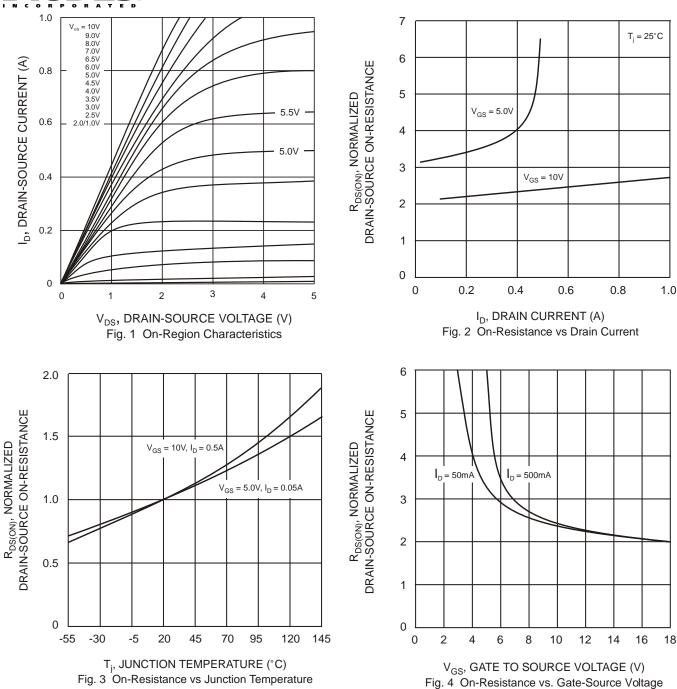

Ordering Information (Note 4)

Device	Packaging	Shipping
2N7002DW-7-F	SOT-363	3000/Tape & Reel

Notes:

- 3. Short duration test pulse used to minimize self-heating effect.
- ${\it 4.} \ \ {\it For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.}$

Marking Information



K72= Product Type Marking Code YM = Date Code Marking Y = Year ex: N = 2002 M = Month ex: 9 = September

Date Code Key

Year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Code	J	K	L	М	N	Р	R	S	Т	U	V	W
Month	Jan	Feb	March	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code		_	_		_	_		_	_	_	I	_

IMPORTANT NOTICE

Diodes, Inc. and its subsidiaries reserve the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. Diodes, Inc. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

The products located on our website at www.diodes.com are not recommended for use in life support systems where a failure or malfunction of the component may directly threaten life or cause injury without the express written approval of Diodes Incorporated.