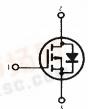
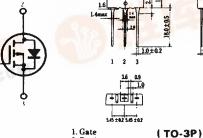
捷多邦,专业PCB打样工厂


HITACHI/(OPTOELECTRONICS) PPE D


SILICON P-CHANNEL MOS FET

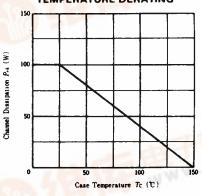
HIGH SPEED POWER SWITCHING, HIGH FREQUENCY POWER AMPLIFIER

■ FEATURES

- Low On-Resistance.
- High Speed Switching.
- High Cutoff Frequency.
- No Secondary Breakdown.
- Suitable for Switching Regulator, DC-DC Converter, Motor Control, and Ultrasonic Power Oscillators.

1. Gate 2. Drain (Flange)

3. Source


(Dimensions in mm)

B ABSOLUTE MAXIMUM RATINGS (T_a =25 °C)

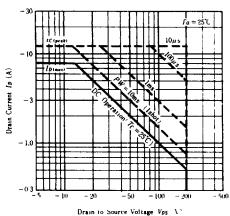
Item	Symbol	Rating	Unit	
Drain-Source Voltage	VDSS	-200	V	
Gate-Source Voltage	Voss	±20	V	
Drain Current	I_D	-8	A	
Drain Peak Current	I Diprak)	-12	Α	
Body-Drain Diode Reverse D <mark>ra</mark> in Current	IDR	-8	A	
Channel Dissipation	Pch*	100	w	
Channel Temperature	T.h	150	°C	
Storage Temperature	T _{vig}	-55~+150	°C	

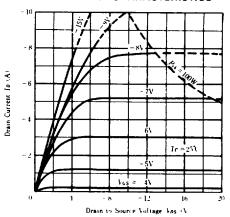
[•]Value at T = 25 °C

POWER VS. TEMPERATURE DERATING

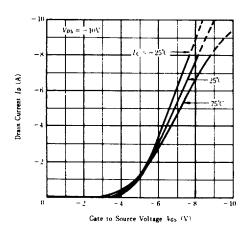
■ ELECTRICAL CHARACTERISTICS (T_a=25 °C)

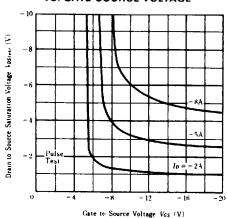
Item	Symbol	Test Condition	min.	typ.	max.	Unit
Drain-Source Breakdown Voltage	V(BR)DSS	$I_D=-10$ mA. $V_{LS}=0$	-200	_		V
Gate-Source Leak Current	Icss	$V_{os}=\pm 20$ V, $V_{DS}=0$	-	_	±1	μА
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = -160 \text{V}, \ V_{CS} = 0$		_	-1	m A
Gate-Source Cutoff Voltage	Vusin	$I_D=-1$ mA, $V_{DS}=-10$ V	-2.0	_	-5.0	v
Static Dr <mark>ain-Source</mark> On State Resistance	R _{DS(on)}	$I_{o}=-4$ A. $V_{os}=-15$ V*	-	0.6	0.8	Ω
Drain-Source Saturation Voltage	V _{DS(on)}	$I_D = -4 \text{ A. } V_{GS} = -15 \text{ V}^*$	_	-2.4	-3.2	V
Forward Transfer Admittance	19/4	$I_{\rho} = -4A$, $V_{\rho s} = -10V^*$	1.0	1.8	-	S
Input Capacitance	Crss	$V_{DS} = -10 \text{V}, V_{OS} = 0, f = 1 \text{MHz}$	-	1000	-	pF
Output Capacitance	Coss			400	_	рF
Reverse Transfer Capacitance	Crss		-	70	_	рF
Turn-on Delay Time	taloni		_	15	_	ns
Rise Time	t,	$I_0 = -2A$, $V_{0S} = -15V$ $R_L = 15\Omega$		35		ns
Turn-off Delay Time	Laton		_	100	_	ns
Fall Time	ty		_	60		ns
Body-Drain Diode Forward Voltage	V _{DF}	$I_{F}=-4A$, $V_{GS}=0$	-	-0.9	_	V
Body-Drain Diode Reverse Recovery Time	t,,	$I_F = -4A$. $V_{GS} = 0$ $di_F/dt = 50A/\mu s$	_	300	_	ns

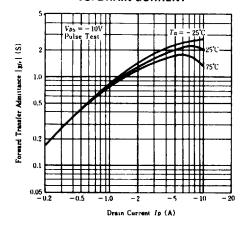

^{*}Pulse Test

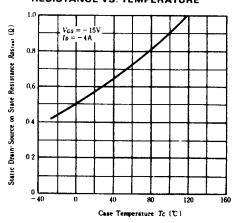

HITACHI/(OPTOELECTRONICS)

----2SJ114

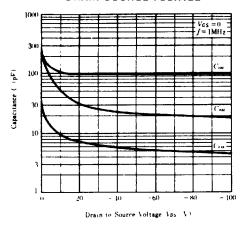



TYPICAL OUTPUT CHARACTERISTICS

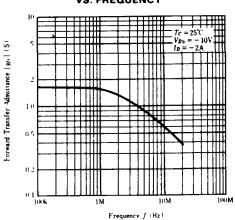

TYPICAL TRANSFER CHARACTERISTICS


DRAIN-SOURCE SATURATION VOLTAGE VS. GATE-SOURCE VOLTAGE

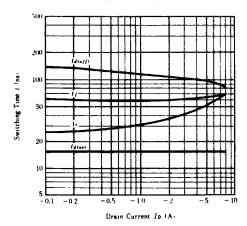
FORWARD TRANSFER ADMITTANCE VS. DRAIN CURRENT

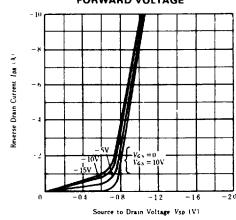


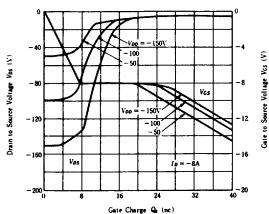
STATIC DRAIN-SOURCE ON STATE RESISTANCE VS. TEMPERATURE

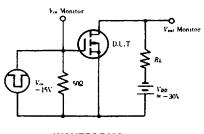


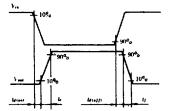
HITACHI/(OPTOELECTRONICS)


TYPICAL CAPACITANCE VS. DRAIN-SOURCE VOLTAGE


FORWARD TRANSFER ADMITTANCE VS. FREQUENCY


SWITCHING CHARACTERISTICS


MAXIMUM BODY-DRAIN DIODE FORWARD VOLTAGE


DYNAMIC INPUT CHARACTERISTICS

SWITCHING TIME TEST CIRCUIT

WAVEFORMS

