

2010

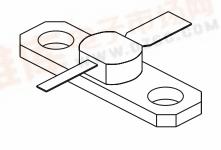
10 Watt - 28 Volts, Class C Microwave 2000 MHz

GENERAL DESCRIPTION

The 2010 is a COMMON BASE transistor capable of providing 10 Watts Class C, RF output power at 2000 MHz. Gold metalization and diffused ballasting are used to provide high reliability and supreme ruggedness. The transistor uses a fully hermetic High Temperature Solder Sealed package.

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation @ 25°C 30 Watts


Maximum Voltage and Current

BVces Collector to Emitter Voltage 50 Volts
BVebo Emitter to Base Voltage 3.5 Volts
Ic Collector Current 2.0 A

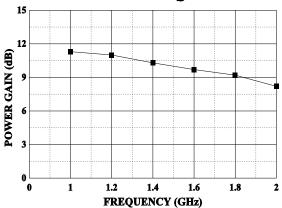
Maximum Temperatures

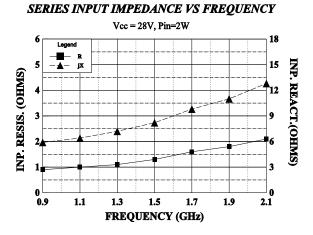
Storage Temperature $-65 \text{ to} + 200^{\circ}\text{C}$ Operating Junction Temperature $+200^{\circ}\text{C}$

CASE OUTLINE 55BT-1, Style

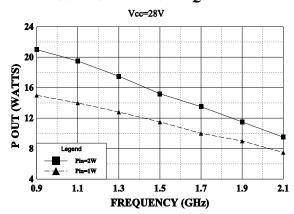
ELECTRICAL CHARACTERISTICS @ 25 °C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Pout Pin Pg	Power Out Power Input Power Gain Collector Efficiency Load Mismatch Tolerance	F = 2 GHz Vcb = 28 Volts Po= 10 Watts As Above F = 2 GHz, Po = 10 W	10 7.0	8.0 40	20:1	Watt Watt dB %

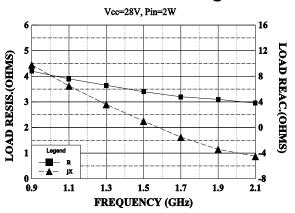

						- rc01/h
BVces	Collector to Emitter Breakdown	Ic = 20 mA	50			Volts
BVcbo	Collector to Base Breakdown	Ic = 4 mA	45	Total V	Dr.	Volts
BVebo	Emitter to Base Breakdown	Ie = 4 mA	3.5	M.A.		Volts
Icbo	Collector to Base Current	Vcb = 28 Volts			4.0	mA
$\mathbf{h}_{ ext{FE}}$	Current Gain	Vce = 5 V, Ic = 400 mA	20			
Cob	Output Capacitance	F = 1 MHz, Vcb = 28 V				pF
θјс	Thermal Resistance	Com			6.0	°Ĉ/W


Issue August 1996

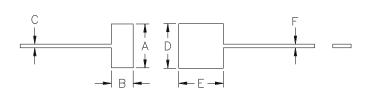
2010



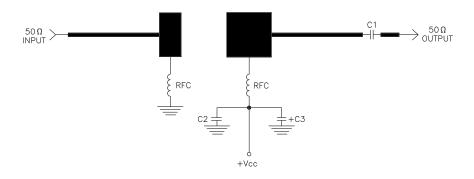
POWER GAIN VS FREQUENCY



POWER OUTPUT VS FREQUENCY



SERIES LOAD IMPEDANCE VS FREQUENCY


August 1996

DIM	INCHES
Α	.480
В	.240
С	.040
D	.490
Е	.490
F	040

2000 MHz TEST AMPLIFIER Vcc = 28V

NOTE 1. Under the normal operating conditions as specified, junction temperature to be 200° maximum as measured by I.R. scan of the chip.

Thermal Resistance = 6° C/W Junction to Case.

= Microstrip on 0.020" Teflon Fiberglass, Er=2.55 C1,C2 = 47 pf chip cap C3 = $10\mu \text{fd}$ @ 35 VOLTS

CAGE DWG NO. 2010 REV A