

捷多邦,专业PCB打样工厂,24小时加急出货

Innovations

Customer Satisfaction

MODEL

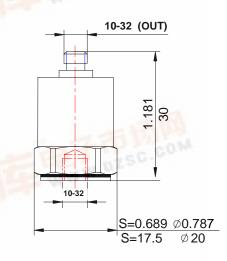
2012A

INTEGRAL ELECTRONICS (IEPE) PIEZOELECTRIC ACCELEROMETER

Quality

actual size

W.D

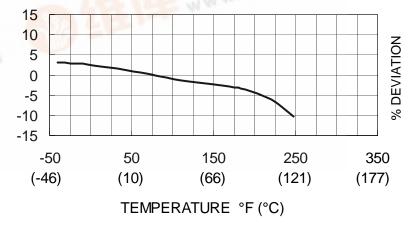

- Measurement Range to 100 g
- **Ground Isolation**
- W.DZSC.COM Low Impedance Output
- **Top Connector**
- **Stud Mounted**

Description

The VIP Sensors Model 2012A is a stud mounted piezoelectric accelerometer designed for general vibration measurement on structures and objects. It offers a measurement range to 100 g with a sensitivity of 50 mV/g. The accelerometer transmits its low impedance voltage output through the same cable that supplies the constant current power.

The Model 2012A design is sealed against external contamination. Signal return is isolated from the outer case of the unit. The accelerometer features a 10-32 top connector that is used with coaxial cable for error-free operation.

VIP Sensors Signal Conditioner Models 5005, 5100 and 5102 are recommended for use with this low impedance accelerometer. WWW.DZSC



in (mm)

20 15 dB DEVIATION 10 5 0 -5 10000 100000 10 100 1000 1 FREQUENCY IN Hz

Typical Amplitude Response

Typical Temperature Response

Quality

Innovations

INTEGRAL ELECTRONICS (IEPE) PIEZOELECTRIC ACCELEROMETER

MODEL 2012A

SPECIFICATIONS

The following performance specifications conform to ISA-RP-37.2 (1964) and are typical values, referenced at +75°F (+24°C) and 100 Hz, unless otherwise noted. Calibration data, traceable to National Institute of Standards and Technology (NIST), is supplied.

UNITS		
DYNAMIC CHARACTERISTICSRangeVoltage Sensitivity, typicalTransverse SensitivityFrequency ResponseResonance FrequencyAmplitude Response $\pm 5 \%$ $\pm 1 dB$ Temperature ResponseAmplitude Linearity	g (m/s ²) mV/g (mV/m/s ²) % Hz Hz Hz Hz %	100 (980.7) 50 (5.10) ≤ 5 See Typical Amplitude Response 15,000 1 - 3,500 0.3 - 4,000 See Typical Temperature Response < 1
ELECTRICAL CHARACTERISTICS Output Polarity Power Source Voltage (Constant Current) Supply Current Bias Voltage Full Scale Output Voltage (peak) Output Impedance Noise Grounding	VDC mA V Vp Ω mg (mm/s²)	Acceleration directed from base into the transducer defined as positive +12 to +28 2 to 10 7 ± 1 ≤ 5 < 100 < 0.8 (< 7.8) Signal return isolated from case
ENVIRONMENTAL CHARACTERIS Temperature Range Humidity Shock Limit Base Strain Magnetic Field Sensitivity Thermal Transient Sensitivity	TICS g pk (m/s ² pk) equiv. g /μstrain equiv. g rms /gauss (/T) equiv. g /°C	-4°F to 248°F (-20°C to +120°C) Epoxy sealed 1,000 (9807) 0.0002 2E-5 (2) 0.008
PHYSICAL CHARACTERISTICS Weight Case Material Mounting Piezoelectric Material Structure Output Connector	oz (grams)	0.9 (26) Stainless Steel 10-32, torque 2 N-m (18 lbf-in) PZT-5 Annular Shear 10-32 receptacle, top mounting
ACCESSORIES Included: 9005L10 Coaxial Cable 10-32/BNC, 10ft 9504-8 10-32/10-32 Mounting Stud Calibration Sheet	(3.3 m) 9006L1 9505-1	

NOTES

1. Short duration shock pulses, such as those generated by metal-to-metal impacts, may excite transducer resonance and cause linearity errors.