

Quality

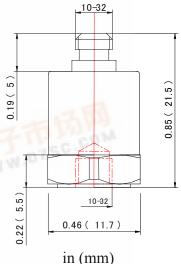
Innovations

Customer Satisfaction

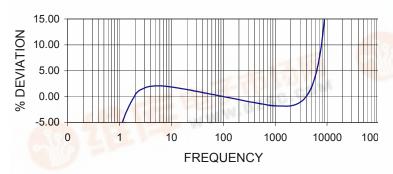
INTEGRAL ELECTRONICS (IEPE) PIEZOELECTRIC ACCELEROMETER

MODEL 2016A

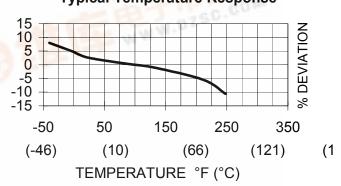
- Outstanding Dynamic Range
- Wide Bandwidth
- Low Impedance Output
- Top Connector
- Stud Mounted



The VIP Sensors Model 2016A is a stud mounted piezoelectric accelerometer designed for general vibration measurement on structures and objects. It features a high signal-to-noise ratio, a high output sensitivity, and a wide bandwidth. The accelerometer transmits its low impedance voltage output through the same cable that supplies the constant current power.


The Model 2016A design is sealed against external contamination. Signal ground is connected to the outer case of the unit. When used with an isolated mounting stud, the accelerometer is electrically isolated from ground. The accelerometer features a 10-32 top connector that is used with coaxial cable for error-free operation.

VIP Sensors Signal Conditioner Models 5005, 5100 and 5102 are recommended for use with this low impedance accelerometer.



Typical Amplitude Response

Typical Temperature Response

INTEGRAL ELECTRONICS (IEPE) PIEZOELECTRIC ACCELEROMETER

MODEL 2016A

SPECIFICATIONS

The following performance specifications conform to ISA-RP-37.2 (1964) and are typical values, referenced at +75°F (+24°C) and 100 Hz, unless otherwise noted. Calibration data, traceable to National Institute of Standards and Technology (NIST), is supplied.

UNI	TS
-----	----

DYNAMIC CHARACTERISTICS Range	g	(m/s ²)	50 (490.3)	
Voltage Sensitivity, typical	mV/g	(mV/m/s ²)	100 (10.02)	
Transverse Sensitivity		%	≤ 5	
Frequency Response			See Typical Amplitude Response	
Resonance Frequency		Hz	15,000	
Amplitude Response				
<u>+</u> 5 %		Hz	2 – 6,000	
<u>+</u> 1 dB		Hz	0.5 - 8,000	
Temperature Response			See Typical Temperature Response	
Amplitude Linearity		%	< 1	

ELECTRICAL CHARACTERISTICS

Output Polarity Acceleration directed from base into the

transducer defined as positive

Power Source Voltage **VDC** +12 to +28 (Constant Current) Supply Current 2 to 10 mΑ Bias Voltage 7 <u>+</u>1 V Full Scale Output Voltage (peak) Vp ≤ 5 Output Impedance < 100 Ω $mg (mm/s^2)$ < 5 (< 49.0) Noise

Grounding Signal ground connected to case

ENVIRONMENTAL CHARACTERISTICS

-4°F to 248°F (-20°C to +120°C) Temperature Range

Humidity Epoxy sealed 1,000 (9807) Shock Limit g pk $(m/s^2 pk)$ Base Strain equiv. g /µstrain 0.0006 Magnetic Field Sensitivity equiv. g rms /gauss 1E-4 (10)

(/T) Thermal Transient Sensitivity equiv. g /°C 0.12

PHYSICAL CHARACTERISTICS

Weight oz (grams) 0.35 (10) Stainless Steel Case Material

10-32, torque 2 N-m (18 lbf-in) Mounting

Piezoelectric Material PZT-5

Structure Center Compression

Output Connector 10-32 receptacle, top mounting

ACCESSORIES

Included: Optional: 9005L10 Coaxial Cable 10-32/BNC, 10ft (3.3 m) 9006L10

Coaxial Cable 10-32/10-32, 10 ft (3.3 m) 9504-8 10-32/10-32 Mounting Stud 9505-8 10-32/10-32 Isolated Mounting Stud 9505-11 10-32/Adhesive Mounting Plate

Calibration Sheet

NOTES

1. Short duration shock pulses, such as those generated by metal-to-metal impacts, may excite transducer resonance and cause linearity errors.