

MOS FIELD EFFECT TRANSISTOR

3SK135A

RF AMP. FOR UHF TV TUNER N-CHANNEL SILICON DUAL-GATE MOS FIELD-EFFECT TRANSISTOR 4PIN MINI MOLD

FEATURES

Suitable for use as RF amplifier in UHF TV tuner.

Low Crss : 0.02 pF TYP.
 High Gps : 18 dB TYP.
 Low NF : 2.7 dB TYP.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C)

Drain to Source Voltage	VDSX	20	V
Gate1 to Source Voltage	Vg1s*	±10	V
Gate2 to Source Voltage	Vg2s*	±10	V
Drain Current	lo	25	mΑ
Total Power Dissipation	Рт	200	mW
Channel Temperature	Tch	150	\mathbb{C}
Storage Temperature	Tstg	-65 to +150	\mathbb{C}
		*D: > 10 kg	

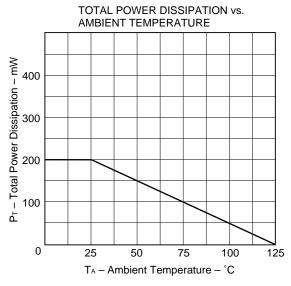
* $R_L \ge 10 \ k\Omega$

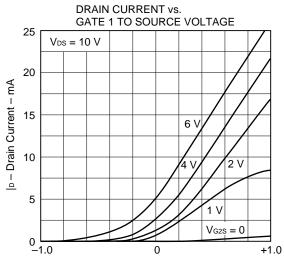
PACKAGE DIMENSIONS in millimeters 2.8^{+0.2} 1.5^{-0.2} 1.5^{-0.2} 1.5^{-0.2} 1.5^{-0.2} 1. Source 2. Drain 3. Gate 2 4. Gate 1

ELECTRICAL CHARACTERISTICS (TA = 25 °C)

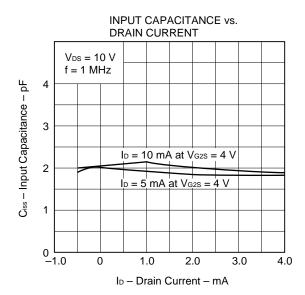
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Drain to Source Breakdown Voltage	BV _{DSX}	20			V	$V_{G1S} = V_{G2S} = -2 \text{ V}, \text{ ID} = 10 \mu \text{A}$
Drain Current	IDSS	0.01		6	mA	VDS = 5 V, VG2S = 4 V, VG1S = 0
Gate1 to Source Cutoff Voltage	V _{G1S(off)}			-2.0	V	$V_{DS} = 10 \text{ V}, V_{G2S} = 4 \text{ V}, I_{D} = 10 \mu A$
Gate2 to Source Cutoff Voltage	V _{G2S(off)}			-0.7	V	$V_{DS} = 10 \text{ V}, V_{G1S} = 4 \text{ V}, I_{D} = 10 \mu A$
Gate1 Reverse Current	I _{G1SS}			±20	nA	$V_{DS} = 0$, $V_{G1S} = \pm 8 \text{ V}$, $V_{G2S} = 0$
Gate2 Reverse Current	I _{G2} ss			±20	nA	$V_{DS} = 0$, $V_{G2S} = \pm 8$ V, $V_{G1S} = 0$
Forward Transter Admittance	yfs	14	18	, s4	ms	V _{DS} = 5 V, V _{G2S} = 4 V, I _D = 10 mA, f = 1 kHz
Input Capacitance	Ciss	1.5	Tool	2.5	pF	V _{DS} = 10 V, V _{G2S} = 4 V,
Output capacitance	Coss	0.5	1.0	1.5	pF	ID = 10 mA, f = 1 MHz
Reverse Transfer Capacitance	Crss	14	0.02	0.03	pF	
Power Gain	G _{ps} *	16	18		dB	VDS = 10 V, VG2S = 4 V, ID = 10 mA,
Noise Figure	NF*		2.7	4.5	dB	f = 900 MHz

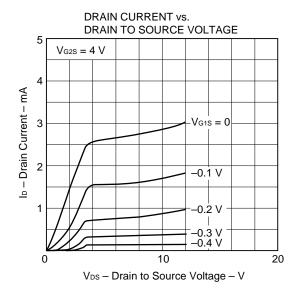
IDSS Classification

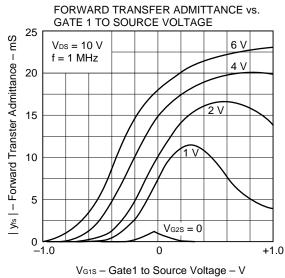

f.dzsc.com

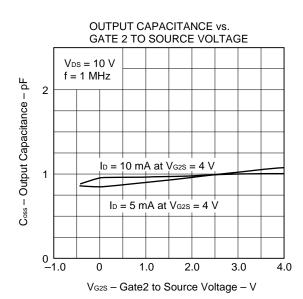

	Class	L/LS*	K/KS*
オ技 デ	Marking	U65	U66
€ 4 4 4 4	loss	0.01 to 2	1 to 6

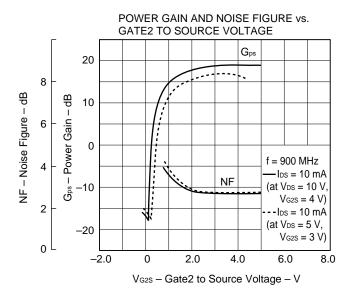
^{*} Old specification/New specification

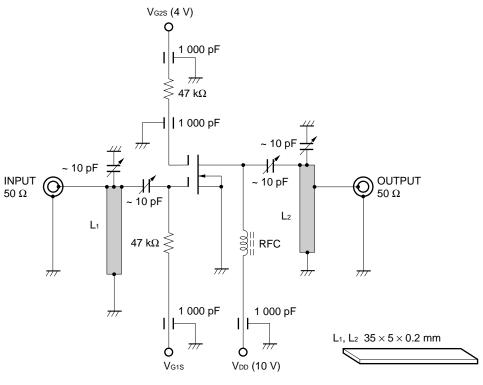

NEC


TYPICAL CHARACTERISTICS (TA = 25 °C)






V_{G1S} - Gate1 to Source Voltage - V



S-PARAMETER, Y-PARAMETER

S1, Y1 CONDITION	S1-MAG & A FREQ.		11		21	1	12		22
VDS = 10 V	50	1.023	-2	1.820	173	0.002	86	1.023	0
V _{G2} S = 4 V	100	0.989	-8	1.758	165	0.002	102	0.977	-4
$l_{DS} = 10 \text{ mA}$	200	0.966	-11	1.778	153	0.003	56	0.977	-7
	300	0.923	-22	1.758	139	0.003	167	0.966	-10
	400	0.871	-23	1.758	128	0.008	-153	0.933	-11 -15
	500	0.841	-33	1.718	113	0.017	-160	0.912	-15
	600 700	0.776 0.676	–34 –41	1.738 1.718	101 88	0.034 0.058	–166 –178	0.902 0.891	–15 –18
	800	0.631	-43	1.698	76	0.038	173	0.881	-10 -21
	900	0.575	-47	1.660	64	0.130	160	0.881	-20
	1000	0.537	-49	1.567	48	0.172	142	0.891	-34
	YI-MAG & AN	NGL							
	FREQ.		11		21	1	12		22
	50	0.405	125	17.780	-6	0.020	-93	0.234	-176
	100	1.382	85	17.940	-9	0.024	-72	0.715	71
	200	1.937	80	18.399	-18	0.027	-115	1.226	80
	300	3.962	77	19.044	-26 26	0.033	2	1.773	78
	400 500	4.327 6.197	69 71	20.003 20.688	–36 –45	0.086 0.205	43 42	2.069 2.801	68 67
	600	6.589	62	21.986	- - 58	0.203	35	2.754	60
	700	8.151	53	23.697	-69	0.803	25	2.973	58
	800	8.287	47	24.190	–81	1.269	16	2.985	59
	900	8.404	44	23.916	-94	1.878	2	2.079	65
	1000	8.085	46	22.726	-103	2.492	-9	4.327	90
S2, Y2	S2-MAG & A								
S2, Y2 CONDITION	S2-MAG & A FREQ.		11		21	1	12		22
•			11 –2	1.567	21	0.002	12 64	1.035	22 0
CONDITION	FREQ.			1.567 1.531				1.035 0.989	
CONDITION VDS = 10 V	FREQ.	1.023	-2 -8 -11		174	0.002 0.003 0.003	64		0
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300	1.023 0.989 0.966 0.933	-2 -8 -11 -22	1.531 1.549 1.531	174 166 153 140	0.002 0.003 0.003 0.003	64 118 49 177	0.989 0.977 0.977	0 -4 -7 -10
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400	1.023 0.989 0.966 0.933 0.891	-2 -8 -11 -22 -23	1.531 1.549 1.531 1.567	174 166 153 140 129	0.002 0.003 0.003 0.003 0.008	64 118 49 177 –148	0.989 0.977 0.977 0.944	0 -4 -7 -10 -11
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500	1.023 0.989 0.966 0.933 0.891 0.851	-2 -8 -11 -22 -23 -34	1.531 1.549 1.531 1.567 1.531	174 166 153 140 129 114	0.002 0.003 0.003 0.003 0.008 0.017	64 118 49 177 –148 –157	0.989 0.977 0.977 0.944 0.923	0 -4 -7 -10 -11 -15
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600	1.023 0.989 0.966 0.933 0.891 0.851 0.794	-2 -8 -11 -22 -23 -34 -35	1.531 1.549 1.531 1.567 1.531 1.567	174 166 153 140 129 114	0.002 0.003 0.003 0.003 0.008 0.017 0.035	64 118 49 177 –148 –157	0.989 0.977 0.977 0.944 0.923 0.912	0 -4 -7 -10 -11 -15 -16
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684	-2 -8 -11 -22 -23 -34 -35 -43	1.531 1.549 1.531 1.567 1.531 1.567 1.549	174 166 153 140 129 114 102 88	0.002 0.003 0.003 0.003 0.008 0.017 0.035 0.062	64 118 49 177 -148 -157 -161 -174	0.989 0.977 0.977 0.944 0.923 0.912 0.902	0 -4 -7 -10 -11 -15 -16 -19
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.624	-2 -8 -11 -22 -23 -34 -35 -43	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.549	174 166 153 140 129 114 102 88 76	0.002 0.003 0.003 0.003 0.008 0.017 0.035 0.062 0.095	64 118 49 177 -148 -157 -161 -174	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891	0 -4 -7 -10 -11 -15 -16 -19 -22
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684	-2 -8 -11 -22 -23 -34 -35 -43	1.531 1.549 1.531 1.567 1.531 1.567 1.549	174 166 153 140 129 114 102 88	0.002 0.003 0.003 0.003 0.008 0.017 0.035 0.062	64 118 49 177 -148 -157 -161 -174	0.989 0.977 0.977 0.944 0.923 0.912 0.902	0 -4 -7 -10 -11 -15 -16 -19
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.624 0.556	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.549 1.531	174 166 153 140 129 114 102 88 76 64	0.002 0.003 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143	64 118 49 177 -148 -157 -161 -174 176 163	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891	0 -4 -7 -10 -11 -15 -16 -19 -22
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900 1000	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.624 0.556 0.501	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.549 1.531	174 166 153 140 129 114 102 88 76 64	0.002 0.003 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143 0.191	64 118 49 177 -148 -157 -161 -174 176 163	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891	0 -4 -7 -10 -11 -15 -16 -19 -22
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900 1000	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.624 0.556 0.501	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.549 1.531	174 166 153 140 129 114 102 88 76 64 48	0.002 0.003 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143 0.191	64 118 49 177 -148 -157 -161 -174 176 163 144	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891	0 -4 -7 -10 -11 -15 -16 -19 -22 -22 -35
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900 1000 Y2-MAG & A FREQ.	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.624 0.556 0.501 NGL	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51 -52	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.549 1.531 1.462	174 166 153 140 129 114 102 88 76 64 48	0.002 0.003 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143 0.191	64 118 49 177 -148 -157 -161 -174 176 163 144	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891 0.891	0 -4 -7 -10 -11 -15 -16 -19 -22 -22 -35
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900 1000 Y2-MAG & A FREQ.	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.624 0.556 0.501 NGL	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51 -52	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.531 1.462	174 166 153 140 129 114 102 88 76 64 48	0.002 0.003 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143 0.191	64 118 49 177 -148 -157 -161 -174 176 163 144	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891 0.354 0.690 1.229	0 -4 -7 -10 -11 -15 -16 -19 -22 -22 -35
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900 1000 Y2-MAG & A FREQ. 50 100 200 300	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.556 0.501 NGL 0.411 1.385 1.940 3.946	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51 -52	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.531 1.462 15.215 15.540 16.026 16.402	174 166 153 140 129 114 102 88 76 64 48 21	0.002 0.003 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143 0.191	64 118 49 177 -148 -157 -161 -174 176 163 144	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891 0.354 0.690 1.229 1.759	0 -4 -7 -10 -11 -15 -16 -19 -22 -22 -35
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900 1000 Y2-MAG & A FREQ. 50 100 200 300 400	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.624 0.556 0.501 NGL 0.411 1.385 1.940 3.946 4.259	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51 -52 11 126 85 80 79 73	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.531 1.462 15.215 15.540 16.026 16.402 17.533	174 166 153 140 129 114 102 88 76 64 48 21 -5 -8 -18 -24 -35	0.002 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143 0.191 0.022 0.027 0.028 0.032 0.032	64 118 49 177 -148 -157 -161 -174 176 163 144 12 -115 -56 -122 13 48	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891 0.354 0.690 1.229 1.759 2.034	0 -4 -7 -10 -11 -15 -16 -19 -22 -22 -35 22 -178 80 80 82 71
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900 1000 Y2-MAG & A FREQ. 50 100 200 300 400 500	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.556 0.501 NGL 0.411 1.385 1.940 3.946 4.259 6.358	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51 -52 11 126 85 80 79 73 72	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.549 1.531 1.462 15.215 15.540 16.026 16.402 17.533 18.279	174 166 153 140 129 114 102 88 76 64 48 21 -5 -8 -18 -24 -35 -43	0.002 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143 0.191 1 0.022 0.027 0.028 0.032 0.087 0.207	64 118 49 177 -148 -157 -161 -174 176 163 144 12 -115 -56 -122 13 48 46	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891 0.354 0.690 1.229 1.759 2.034 2.770	0 -4 -7 -10 -11 -15 -16 -19 -22 -22 -35 22 -178 80 80 82 71 69
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900 1000 Y2-MAG & AI FREQ. 50 100 200 300 400 500 600	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.556 0.501 NGL 0.411 1.385 1.940 3.946 4.259 6.358 6.724	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51 -52 11 126 85 80 79 73 72 64	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.549 1.531 1.462 15.215 15.540 16.026 16.402 17.533 18.279 19.600	174 166 153 140 129 114 102 88 76 64 48 21 -5 -8 -18 -24 -35 -43 -56	0.002 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143 0.191 1 0.022 0.027 0.028 0.032 0.087 0.207 0.444	64 118 49 177 -148 -157 -161 -174 176 163 144 12 -115 -56 -122 13 48 46 41	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891 0.891 0.354 0.690 1.229 1.759 2.034 2.770 2.914	0 -4 -7 -10 -11 -15 -16 -19 -22 -22 -35 22 22 23 21 69 64
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900 1000 Y2-MAG & AI FREQ. 50 100 200 300 400 500 600 700	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.556 0.501 NGL 0.411 1.385 1.940 3.946 4.259 6.358 6.724 8.534	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51 -52 11 126 85 80 79 73 72 64 55	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.549 1.531 1.462 15.215 15.540 16.026 16.402 17.533 18.279 19.600 21.366	174 166 153 140 129 114 102 88 76 64 48 21 -5 -8 -18 -24 -35 -43 -56 -67	0.002 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143 0.191 1 0.022 0.027 0.028 0.032 0.087 0.207 0.444 0.851	64 118 49 177 -148 -157 -161 -174 176 163 144 12 -115 -56 -122 13 48 46 41 31	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891 0.891 0.354 0.690 1.229 1.759 2.034 2.770 2.914 3.157	0 -4 -7 -10 -11 -15 -16 -19 -22 -22 -35 22 -178 80 80 82 71 69 64 62
CONDITION $\begin{cases} V_{DS} = 10 \text{ V} \\ V_{G2S} = 4 \text{ V} \end{cases}$	50 100 200 300 400 500 600 700 800 900 1000 Y2-MAG & AI FREQ. 50 100 200 300 400 500 600	1.023 0.989 0.966 0.933 0.891 0.851 0.794 0.684 0.556 0.501 NGL 0.411 1.385 1.940 3.946 4.259 6.358 6.724	-2 -8 -11 -22 -23 -34 -35 -43 -46 -51 -52 11 126 85 80 79 73 72 64	1.531 1.549 1.531 1.567 1.531 1.567 1.549 1.549 1.531 1.462 15.215 15.540 16.026 16.402 17.533 18.279 19.600	174 166 153 140 129 114 102 88 76 64 48 21 -5 -8 -18 -24 -35 -43 -56	0.002 0.003 0.003 0.008 0.017 0.035 0.062 0.095 0.143 0.191 1 0.022 0.027 0.028 0.032 0.087 0.207 0.444	64 118 49 177 -148 -157 -161 -174 176 163 144 12 -115 -56 -122 13 48 46 41	0.989 0.977 0.977 0.944 0.923 0.912 0.902 0.891 0.891 0.891 0.354 0.690 1.229 1.759 2.034 2.770 2.914	0 -4 -7 -10 -11 -15 -16 -19 -22 -22 -35 22 22 23 21 69 64

900 MHz G_{ps} AND NF TEST CIRCUIT

 $V_{DS} = 10 \text{ V}, V_{G2S} = 4 \text{ V}, I_{D} = 10 \text{ mA}$

NEC 3SK135A

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11