捷多邦,专业PCB打样工厂,24小时加急出货

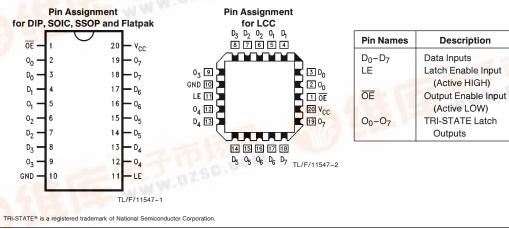
September 1995

National Semiconductor

54ABT/74ABT373 Octal Transparent Latch with TRI-STATE® Outputs

General Description

The 'ABT373 consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH the bus output is in the high impedance state.


Features

- TRI-STATE outputs for bus interfacing
- Output sink capability of 64 mA, source capability of 32 mA

- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF
- loads
 Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down
- Nondestructive hot insertion capability
- Standard Military Drawing (SMD) 5962-9321801
- Package Commercial Military Package Description Number 20-Lead (0.300" Wide) Molded Small Outline, JEDEC 74ABT373CSC (Note 1) M20B 74ABT373CSJ (Note 1) M20D 20-Lead (0.300" Wide) Molded Small Outline, EIAJ 74ABT373CPC N20B 20-Lead (0.300" Wide) Molded Dual-In-Line 54ABT373J/883 J20A 20-Lead Ceramic Dual-In-Line MSA20 20-Lead Molded Shrink Small Outline, EIAJ Type II 74ABT373CMSA (Note 1) W20A 54ABT373W/883 20-Lead Cerpack 54ABT373E/883 E20A 20-Lead Ceramic Leadless Chip Carrier, Type C 74ABT373CMTC (Notes 1, 2) MTC20 20-Lead Molded Thin Shrink Small Outline, JEDEC

Note 1: Devices also available in 13" reel. Use suffix = SCX, SJX, MSAX, and MTCX. Note 2: Contact factory for package availability.

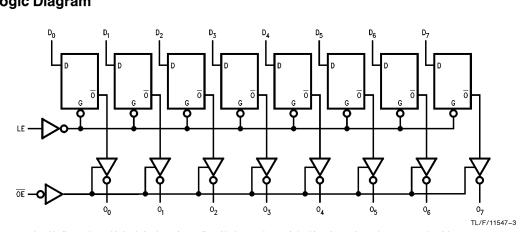
Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/11547

RRD-B30M115/Printed in U. S. A.

54ABT/74ABT373 Octal Transparent Latch with TRI-STATE Outputs

Functional Description


Truth Table Γ

The 'ABT373 contains eight D-type	atches with
TRI-STATE output buffers. When the Latc	n Enable (LE) in-
put is HIGH, data on the Dn inputs enters the	e latches. In this
condition the latches are transparent, i.e., a	a latch output will
change state each time its D input change	ges. When LE is
LOW, the latches store the information that	t was present on
the D inputs a setup time preceding the HI	GH-to-LOW tran-
sition of LE. The TRI-STATE buffers are of	controlled by the
Output Enable (\overline{OE}) input. When \overline{OE} is LOV	
in the bi-state mode. When OE is HIGH t	ne buffers are in
the high impedance mode but this does r	not interfere with
entering new data into the latches.	

	Inputs	Output	
LE	ŌĒ	Dn	On
н	L	н	н
н	L	L	L
L	L	Х	O _n (no change)
Х	н	Х	Z

Logic Diagram

 $\begin{array}{l} H = HIGH \mbox{ Voltage Level} \\ L = LOW \mbox{ Voltage Level} \\ X = Immaterial \\ Z = High \mbox{ Impedance State} \end{array}$

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias Ceramic Plastic	−55°C to +175°C −55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output in the Disabled or	
Power-Off State	-0.5V to +5.5V
in the HIGH State	- 0.5V to V _{CC}
Current Applied to Output in LOW State (Max)	twice the rated I_{OI} (mA)

DC Latchup Source Current: (Across Comm Operating Range)	OE Pin Other Pins	−150 mA −500 mA
Over Voltage Latchup (I/O)		10V
Note 1: Absolute maximum ratings are values be damaged or have its useful life impaired these conditions is not implied.		

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	-55°C to +125°C
Commercial	-40°C to +85°C
Supply Voltage	
Military	+4.5V to +5.5V
Commercial	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V / \Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns

DC Electrical Characteristics

			ABT373						
Symbol	Parar	neter	Min	Тур	Max	Units	V _{CC}	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal	
V _{CD}	Input Clamp Diode Vo	Itage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54ABT/74ABT 54ABT 74ABT	2.5 2.0 2.0			v	Min	$I_{OH} = -3 \text{ mA}$ $I_{OH} = -24 \text{ mA}$ $I_{OH} = -32 \text{ mA}$	
V _{OL}	Output LOW Voltage	54ABT 74ABT			0.55 0.55	v	Min	$I_{OL} = 48 \text{ mA}$ $I_{OL} = 64 \text{ mA}$	
IIH	Input HIGH Current				5 5	μA	Max	$V_{IN} = 2.7V$ (Note 2) $V_{IN} = V_{CC}$	
I _{BVI}	Input HIGH Current Bi	eakdown Test			7	μΑ	Max	$V_{IN} = 7.0V$	
IIL	Input LOW Current				-5 -5	μΑ	Max	$V_{IN} = 0.5V$ (Note 2) $V_{IN} = 0.0V$	
V _{ID}	Input Leakage Test		4.75			v	0.0	$I_{ID} = 1.9 \mu A$ All Other Pins Grounded	
I _{OZH}	Output Leakage Curre	ent			50	μΑ	0-5.5V	$V_{OUT} = 2.7V; \overline{OE} = 2.0V$	
I _{OZL}	Output Leakage Curre	ent			-50	μΑ	0-5.5V	$V_{OUT} = 0.5V; \overline{OE} = 2.0V$	
I _{OS}	Output Short-Circuit C	urrent	-100		-275	mA	Max	$V_{OUT} = 0.0V$	
ICEX	Output High Leakage	Current			50	μΑ	Max	$V_{OUT} = V_{CC}$	
I _{ZZ}	Bus Drainage Test				100	μΑ	0.0	V _{OUT} = 5.5V; All Others GND	
ICCH	Power Supply Current				50	μΑ	Max	All Outputs HIGH	
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW	
I _{CCZ}	Power Supply Current				50	μA	Max	$\overline{OE} = V_{CC}$ All Others at V _{CC} or GND	
ICCT	Additional I _{CC} /Input	Outputs Enabled Outputs TRI-STATE Outputs TRI-STATE			2.5 2.5 2.5	mA mA mA	Мах	$\begin{array}{l} V_{I}=V_{CC}-2.1V\\ \text{Enable Input }V_{I}=V_{CC}-2.1V\\ \text{Data Input }V_{I}=V_{CC}-2.1V\\ \text{All Others at }V_{CC} \text{ or GND} \end{array}$	
ICCD	Dynamic I _{CC} (Note 2)	No Load			0.12	mA/ MHz	Max		

Note 2: Guaranteed, but not tested.

DO Els stuissel		
DC Electrical	Characteristics	(SOIC Package) (Continued)

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions $C_L = 50 \text{ pF}, R_L = 500 \Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.4	0.8	V	5.0	T _A = 25°C (Note 1)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-1.2	-0.8		V	5.0	T _A = 25°C (Note 1)
V _{OHV}	Minimum High Level Dynamic Output Voltage	2.5	3.0		V	5.0	T _A = 25°C (Note 3)
VIHD	Minimum High Level Dynamic Input Voltage	2.0	1.7		V	5.0	T _A = 25°C (Note 2)
VILD	Maximum Low Level Dynamic Input Voltage		0.9	0.6	V	5.0	T _A = 25°C (Note 2)

Note 1: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output at Low. Guaranteed, but not tested. Note 2: Max number of data inputs (n) switching. n - 1 inputs switching 0V to 3V. Input-under-test switching: 3V to theshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested.

Note 3: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics

Symbol Parameter		$74ABT \\ T_A = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_L = 50 \text{ pF} \\ \label{eq:table_transform}$		$54ABT \\ T_{A} = -55^{\circ}C \text{ to } + 125^{\circ}C \\ V_{CC} = 4.5V \text{ to } 5.5V \\ C_{L} = 50 \text{ pF} \\ \end{cases}$		$\label{eq:TABT} \begin{array}{c} \textbf{74ABT} \\ \textbf{T}_{\textbf{A}} = -40^{\circ}\text{C to} + 85^{\circ}\text{C} \\ \textbf{V}_{\textbf{CC}} = 4.5\text{V to} 5.5\text{V} \\ \textbf{C}_{\textbf{L}} = 50 \text{ pF} \end{array}$		Units	
		Min	Тур	Max	Min	Мах	Min	Мах	
t _{PLH} t _{PHL}	Propagation Delay D _n to O _n	1.9 1.9	2.7 2.8	4.5 4.5	1.0 1.0	6.8 7.0	1.9 1.9	4.5 4.5	ns
t _{PLH} t _{PHL}	Propagation Delay LE to O _n	2.0 2.0	3.1 3.0	5.0 5.0	1.0 1.5	7.7 7.7	2.0 2.0	5.0 5.0	ns
t _{PZH} t _{PZL}	Output Enable Time	1.5 1.5	3.1 3.1	5.3 5.3	1.0 1.5	6.7 7.2	1.5 1.5	5.3 5.3	ns
t _{PHZ} t _{PLZ}	Output Disable Time	2.0 2.0	3.6 3.4	5.4 5.4	1.7 1.0	8.0 7.0	2.0 2.0	5.4 5.4	ns

AC Operating Requirements

Symbol	74ABT				54.	ABT	74.	_	
	Parameter	Parameter $ \begin{array}{c} T_{A}=+25^{\circ}C\\ V_{CC}=+5.0V\\ C_{L}=50\ pF \end{array} $				$\begin{array}{l} {\sf T_A} = \ -55^\circ {\sf C} \ {\rm to} \ +125^\circ {\sf C} \\ {\sf V_{CC}} = \ 4.5 {\sf V} \ {\rm to} \ 5.5 {\sf V} \\ {\sf C_L} = \ 50 \ {\sf pF} \end{array}$		T _A = -40°C to +85°C V _{CC} = 4.5V to 5.5V C _L = 50 pF	
		Min	Тур	Мах	Min	Мах	Min	Мах	
f _{toggle}	Max Toggle Frequency		100		100				MHz
t _s (H) t _s (L)	Setup Time, HIGH or LOW D _n to LE	1.5 1.5			2.5 2.5		1.5 1.5		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW D _n to LE	1.0 1.0			2.5 2.5		1.0 1.0		ns
t _w (H)	Pulse Width, LE HIGH	3.0			3.3		3.0		ns

Symbol		74/	ABT	74	ABT	74	ABT	
	Parameter	$\begin{array}{l} {\sf T_A}=-40^\circ{\rm C}~{\rm to}~+85^\circ{\rm C}\\ {\sf V_{CC}}=4.5{\sf V}~{\rm to}~5.5{\sf V}\\ {\sf C_L}=50~{\sf pF}\\ {\sf 8}~{\rm Outputs}~{\rm Switching}\\ ({\rm Note}~4) \end{array}$		$\begin{split} \textbf{T}_{\textbf{A}} &= -40^{\circ}\textbf{C} \text{ to } + 85^{\circ}\textbf{C} \\ \textbf{V}_{\textbf{CC}} &= 4.5\textbf{V} \text{ to } 5.5\textbf{V} \\ \textbf{C}_{\textbf{L}} &= 250 \text{ pF} \\ \textbf{(Note 5)} \end{split}$		$\begin{array}{r} T_{A}=-40^{\circ}\text{C to}+85^{\circ}\text{C}\\ V_{CC}=4.5\text{V to}5.5\text{V}\\ C_{L}=250\text{ pF}\\ \text{8 Outputs Switching}\\ (\text{Note 6}) \end{array}$		Units
		Min	Мах	Min	Max	Min	Max	7
t _{PLH} t _{PHL}	Propagation Delay D _n to O _n	1.5 1.5	5.2 5.2	2.0 2.0	6.8 6.8	2.0 2.0	9.0 9.0	ns
t _{PLH} t _{PHL}	Propagation Delay LE to O _n	1.5 1.5	5.5 5.5	2.0 2.0	7.5 7.5	2.0 2.0	9.5 9.5	ns
t _{PZH} t _{PZL}	Output Enable Time	1.5 1.5	6.2 6.2	2.0 2.0	8.0 8.0	2.0 2.0	10.5 10.5	ns
t _{PHZ} t _{PZL}	Output Disable Time	1.0 1.0	5.5 5.5	(Nc	ote 7)	(No	te 7)	ns

Note 4: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 5: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in plce of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

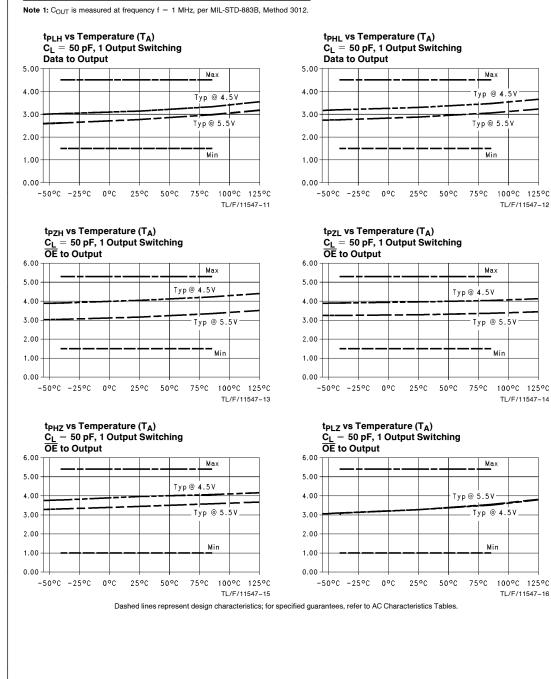
Note 6: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

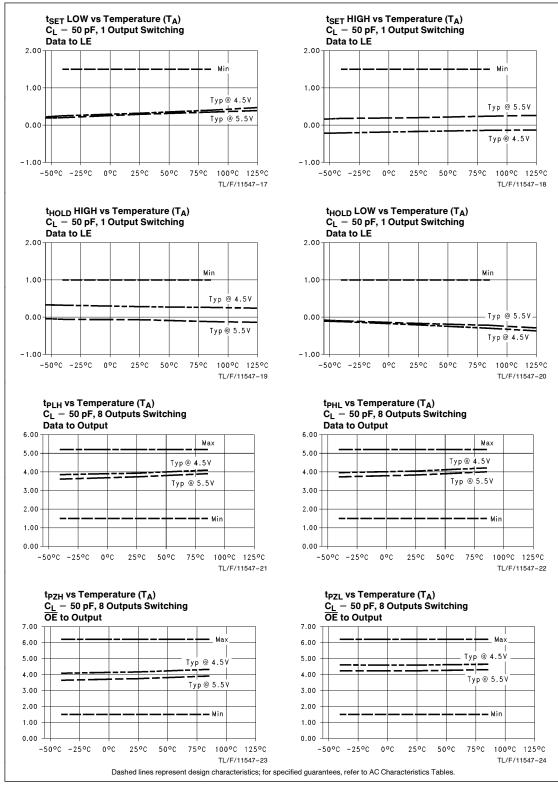
Note 7: The TRI-STATE delay times are dominated by the RC network (500Ω, 250 pF) on the output and has been excluded from the datasheet.

Skew

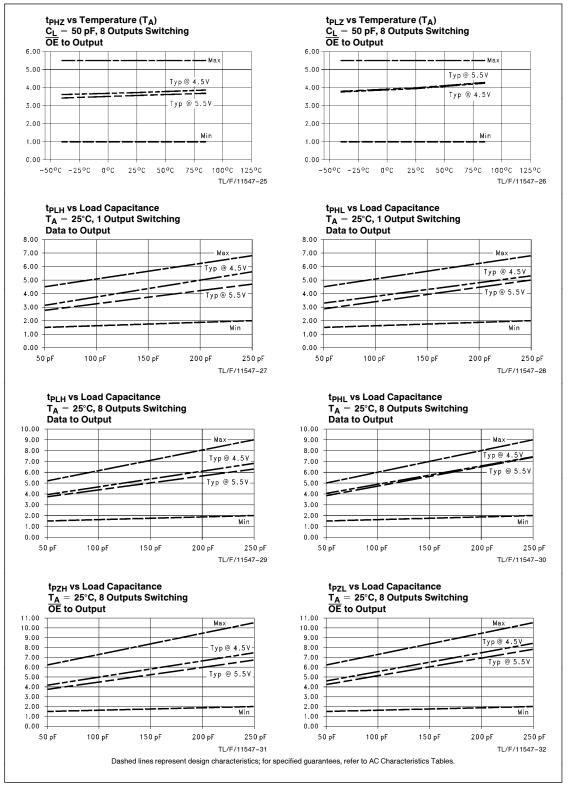
Symbol	Parameter	74ABT $T_{\text{A}} = -40^{\circ}\text{C to} + 85^{\circ}\text{C}$ $V_{\text{CC}} = 4.5\text{V}-5.5\text{V}$ $C_{\text{L}} = 50 \text{ pF}$ 8 Outputs Switching (Note 3) Max	$74ABT$ $T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V-5.5V$ $C_{L} = 250 \text{ pF}$ 8 Outputs Switching (Note 4) Max	Units	
t _{OSHL} (Note 1)	Pin to Pin Skew HL Transitions	1.0	1.5	ns	
^t OSLH (Note 1)	Pin to Pin Skew LH Transitions	1.0	1.5	ns	
t _{PS} (Note 5)	Duty Cycle LH-HL Skew	1.4	3.5	ns	
t _{OST} (Note 1)	Pin to Pin Skew LH/HL Transitions	1.5	3.9	ns	
t _{PV} (Note 2)	Device to Device Skew LH/HL Transitions	2.0	4.0	ns	

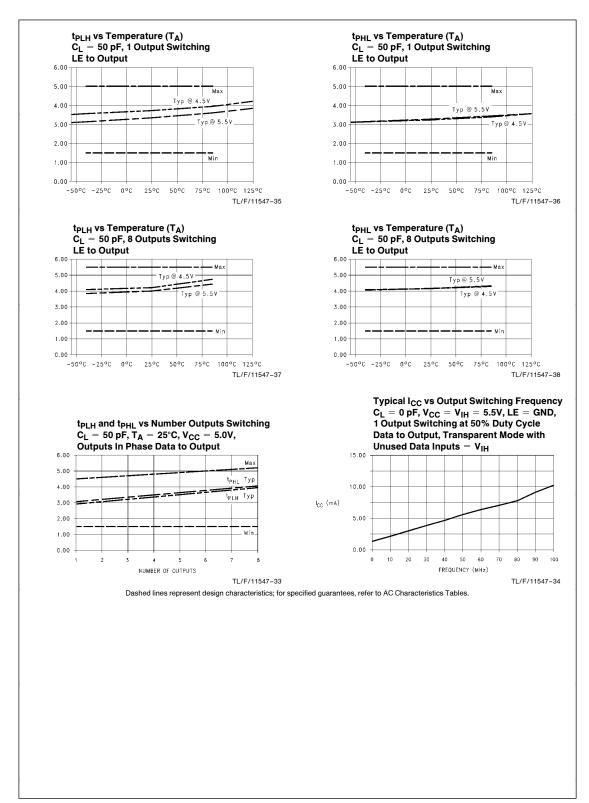
Note 1: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW (t_{OSHL}), LOW to HIGH (t_{OSLH}), or any combination switching LOW to HIGH and/or HIGH to LOW (t_{OST}). This specification is guaranteed but not tested.

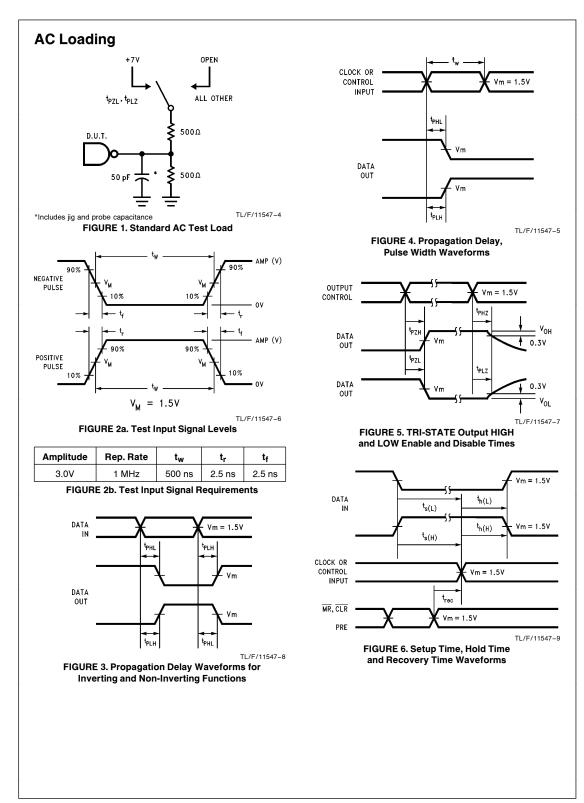

Note 2: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested. Note 3: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

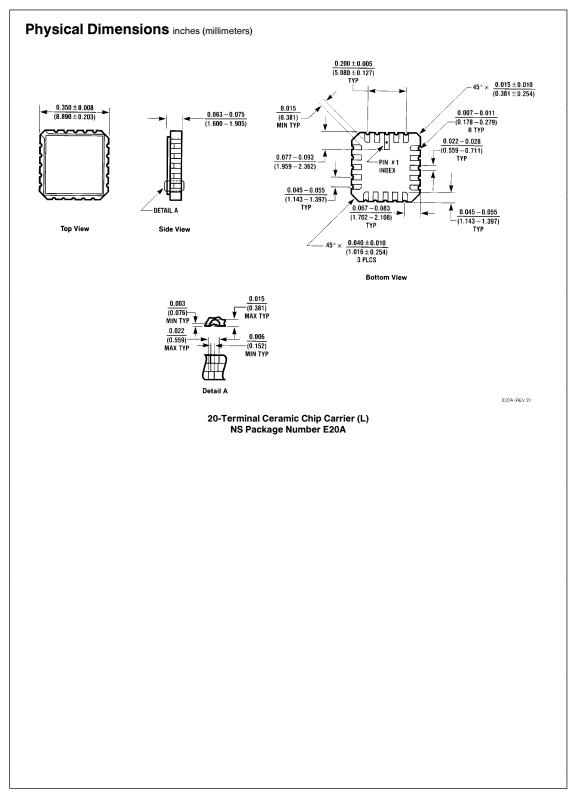

Note 4: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

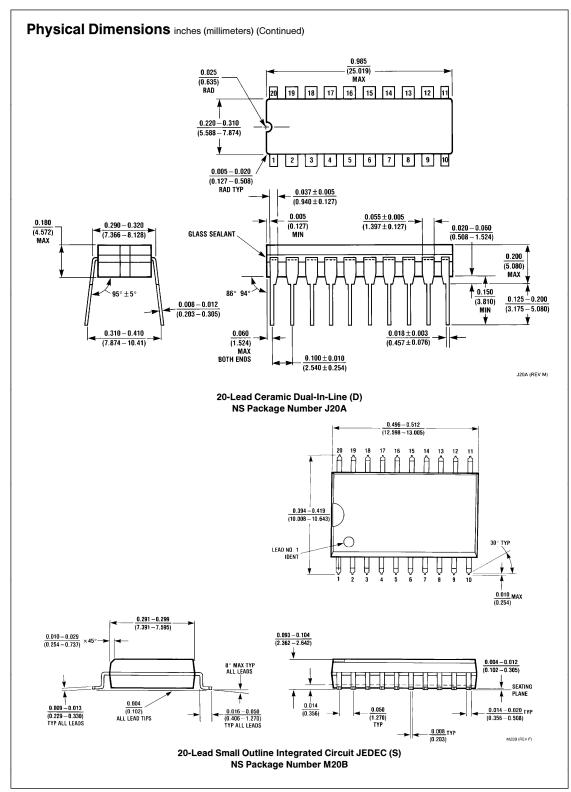
Note 5: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.

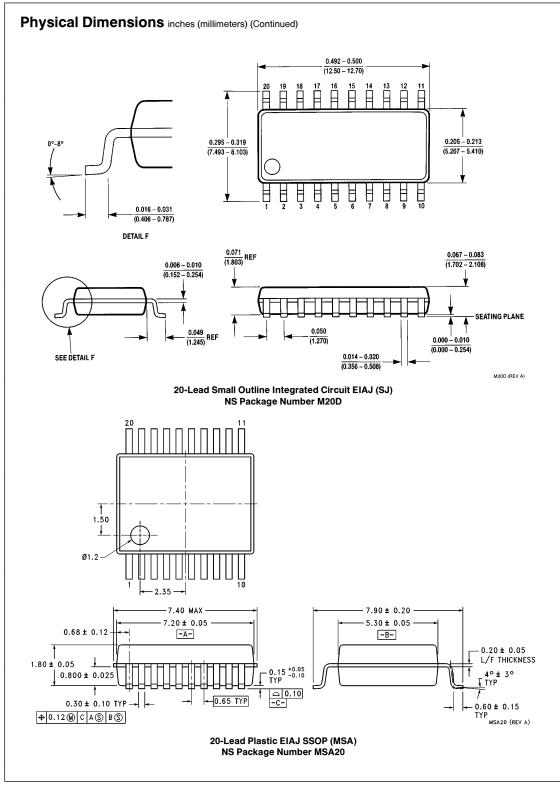

Capacitance

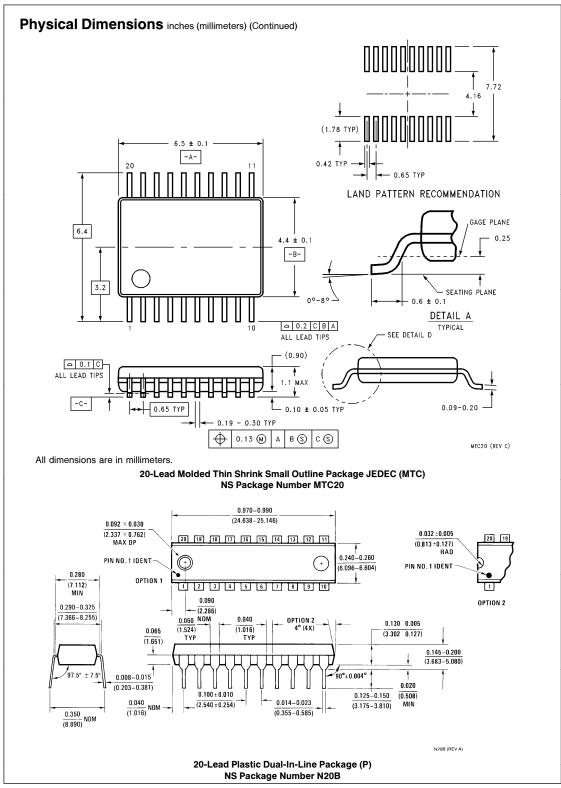

Symbol	Parameter	Typ Units		Conditions (T _A = 25°C)
C _{IN}	Input Capacitance	5	pF	$V_{CC} = 0V$
C _{OUT} (Note 1)	Output Capacitance	9	pF	$V_{CC} = 5.0V$

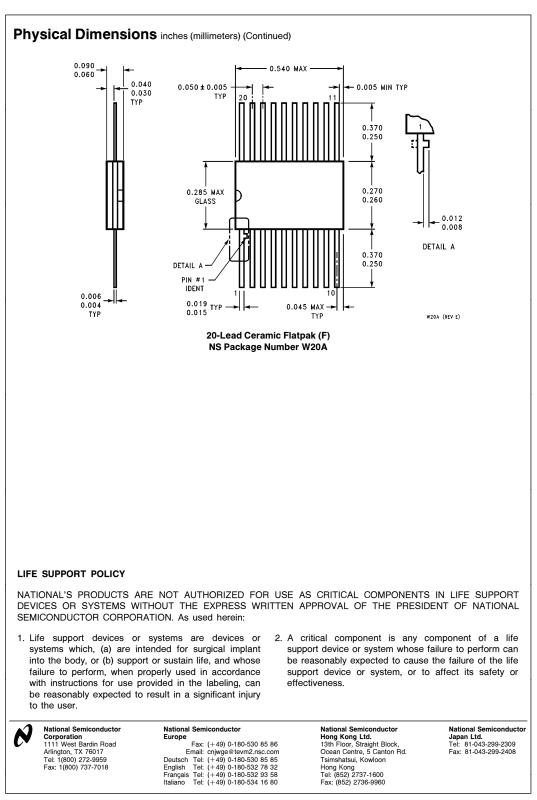











Temperature Range F 74ABT = Commer 54ABT = Military	$-\frac{373C}{1} + \frac{S}{1} + \frac{C}{1}$	X Special Variations X = Devices shipped in 13" reel QB = Military grade device with
Device Type Package Code P = Plastic DIP S = Small Outlin. SJ = Small Outlin L = Leadless Cer F = Flatpak MSA = Shrink Smal D = Ceramic DIP	Type II)	Temperature Range C = Commercial (-40°C to +85°C M = Military (-55°C to +125°C)
		TL/F/11

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.