查询74AHC16244DGVRG4供应商

捷多邦,专业PS和54AHC162444458174AHC16244 **16-BIT BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS SCLS327G - MARCH 1996 - REVISED JANUARY 2000

 EPIC™ (Enhanced-Performance Implanted CMOS) Process Operating Range 2-V to 5.5-V V_{CC} 10E 11 148 20E 1445 142 142 143 144 143 144 144 144 145 144 145 144 146 144 147 141 144 <l< th=""><th> Members of the Texas Instruments Widebus™ Family </th><th>SN54AHC16244 WD PACKAGE SN74AHC16244 DGG, DGV, OR DL PACKAGE (TOP VIEW)</th></l<>	 Members of the Texas Instruments Widebus™ Family 	SN54AHC16244 WD PACKAGE SN74AHC16244 DGG, DGV, OR DL PACKAGE (TOP VIEW)
 Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise Flow-Through Architecture Optimizes PCB Layout Flow-Through Architecture Optimizes PCB Layout Latch-Up Performance Exceeds 250 mA Per JESD 17 ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGG), and Thin Very Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Vaccular Content of Content of		
High-Speed Switching NoiseGND445GNDFlow-Through Architecture Optimizes PCB1Y35441A3Layout1Y46431A4LayoutV _{CC} 742V _{CC} Latch-Up Performance Exceeds 250 mA Per JESD 172Y18412A1ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)2Y41237Package Options Include Plastic Shrink Small-Outline (DG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings3Y417323A4Vcc1831Vcc4Y119304A1description4Y220294A24Y119304A1The 'AHC16244 devices are 16-bit buffers and line drivers designed specifically to improve the4Y322274A3	 Operating Range 2-V to 5.5-V V_{CC} 	1Y1 2 47 1A1
Iteration1Y46431A4Layout1Y46431A4Latch-Up Performance Exceeds 250 mA Per JESD 17YCC742VCCESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)YA41039GNDPackage Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings37417323A4descriptionY4220294A14A14A1How AHC16244 devices are 16-bit buffers and line drivers designed specifically to improve the4Y322274A3		GND 4 45 GND
2Y18412A1JESD 172Y29402A2ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)2Y311382A3Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings3Y113363A1description4Y119304A1The 'AHC16244 devices are 16-bit buffers and line drivers designed specifically to improve theGND2128GND		1Y4 🛛 6 43 🕽 1A4
 ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings V_{CC} 433 441 442 202 442 442 443 441 442 443 441 442 443 441 442 443 441 442 443 		2Y1 🛛 8 🛛 41 🖸 2A1
 Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings description The 'AHC16244 devices are 16-bit buffers and line drivers designed specifically to improve the 214 12 37 2244 3Y1 13 36 3A1 3Y2 14 35 3A2 GND 15 34 GND 3Y3 16 33 3A3 3Y4 17 32 3A4 V_{CC} 18 31 V_{CC} 4Y1 19 30 4A1 4Y2 20 29 4A2 	MIL-STD-883, Method 3015; Exceeds 200 V	GND 10 39 GND 2Y3 11 38 22A3
description4Y119304A14Y220294A2The 'AHC16244 devices are 16-bit buffers and line drivers designed specifically to improve theGND2128GND4Y322274A3	Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package	3Y1 13 36 3A1 3Y2 14 35 3A2 GND 15 34 GND 3Y3 16 33 3A3 3Y4 17 32 3A4
line drivers designed specifically to improve the 4Y3 22 27 4A3	description description	4Y2 20 29 4A2
performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.	line drivers designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented	4Y3 22 27 4A3 4Y4 23 26 4A4

These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. They provide true outputs and symmetrical active-low output-enable (OE) inputs.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54AHC16244 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74AHC16244 is characterized for operation from -40°C to 85°C. WWW.DZSC.COM

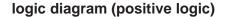
(each 4-bit buffer/driver)								
INPU	JTS	OUTPUT						
OE	Α	Y						
L	Н	Н						
4	L	L						
Н	Х	Z						

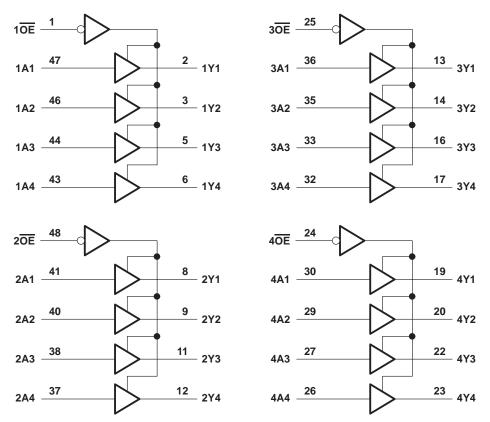
EUNCTION TABLE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Cand Widebus are trademarks of Texas Instruments Incorporated.

SN54AHC16244, SN74AHC16244 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCLS327G – MARCH 1996 – REVISED JANUARY 2000


logic symbol[†]


10E 20E 30E 40E	1 48 25 24	EN1 EN2 EN3 EN4				
1A1	47	ſ	1	1 ▽	2	1Y1
1A2	46				3	1Y2
1A3	44				5	1Y3
1A4	43	<u> </u>			6	1Y4
2A1	41	<u> </u>	1	2 🗸	8	2Y1
2A2	40	<u> </u>		2 '	9	2Y2
2A2 2A3	38				11	
	37				12	2Y3
2A4	36	 		• \	13	2Y4
3A1	35	 	1	3 ▽	14	3Y1
3A2	33	 			16	3Y2
3A3	32	 			17	3Y3
3A4	30	 			19	3Y4
4A1	29		1	4 ▽	20	4Y1
4A2	27				20	4Y2
4A3					22	4Y3
4A4	26				23	4Y4

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCLS327G - MARCH 1996 - REVISED JANUARY 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

DL package 63°C/W Storage temperature range, T _{stg}

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

			SN54AH0	C16244	SN74AHC	16244	UNIT
			MIN	MAX	MIN MAX		UNIT
VCC	Supply voltage		2	5.5	2	5.5	V
		V _{CC} = 2 V	1.5		1.5		
VIH	High-level input voltage	V _{CC} = 3 V	2.1		2.1		V
		V _{CC} = 5.5 V	3.85		3.85		
		V _{CC} = 2 V		0.5		0.5	
VIL	Low-level input voltage	V _{CC} = 3 V		0.9		0.9	0.9 V
		V _{CC} = 5.5 V		1.65		1.65	
VI	Input voltage	•	0	5.5	0	5.5	V
Vo	Output voltage		0 0	Vcc	0	Vcc	V
		V _{CC} = 2 V	(C)	-50		-50	μΑ
ЮН	High-level output current	$V_{CC} = 3.3 \pm 0.3 V$	20	-4		-4	A
		$V_{CC} = 5 \pm 0.5 V$	A.	-8		-8	mA
		V _{CC} = 2 V		50		50	μA
IOL	Low-level output current	$V_{CC} = 3.3 \pm 0.3 V$		4		4	A
		$V_{CC} = 5 \pm 0.5 V$		8		8	mA
A+/A.,	Input transition rise or fell rate	$V_{CC} = 3.3 \pm 0.3 V$		100		100	n o/\/
$\Delta t / \Delta v$	Input transition rise or fall rate	$V_{CC} = 5 \pm 0.5 V$		20		20	ns/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical	characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise						-	•	

PARAMETER	TEST CONDITIONS	Vee	T,	ς = 25°Ω	;	SN54AHC	16244	SN74AHC	C16244	UNIT
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	1.9	2		1.9		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		2.9		
VOH		4.5 V	4.4	4.5		4.4		4.4		V
	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		2.48		
	$I_{OH} = -8 \text{ mA}$	4.5 V	3.94			3.8	2	3.8		
		2 V			0.1		0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1		0.1		0.1	
V _{OL}		4.5 V			0.1	70	0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36	UC VC	0.5		0.44	
	I _{OL} = 8 mA	4.5 V			0.36	20	0.5		0.44	
Ц	$V_{I} = V_{CC}$ or GND	0 V to 5.5 V			±0.1	44	±1*		±1	μΑ
loz	$V_{O} = V_{CC}$ or GND, $V_{I} (OE) = V_{IL}$ or V_{IH}	5.5 V			±0.25		±2.5		±2.5	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			4		40		40	μA
Ci	VI = V _{CC} or GND	5 V		2	10				10	pF
Co	$V_{O} = V_{CC} \text{ or } GND$	5 V		3.5						pF

* On products compliant to MIL-PRF-38535, this parameter is not production tested at $V_{CC} = 0$ V.

SCLS327G – MARCH 1996 – REVISED JANUARY 2000

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	Τ ₄	λ = 25°C	;	SN54AHC	C16244	SN74AHC	16244	UNIT										
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT										
^t PLH	А	Y	C _I = 15 pF		5.8*	8.4*	1*	10*	1	10	ns										
^t PHL	A	Ĭ	CL = 15 pr		5.8*	8.4*	1*	10*	1	10	115										
^t PZH	OE	Y	CI = 15 pF		6.6*	10.6*	1*	12.5*	1	12.5	ns										
^t PZL	ÛE	I	CL = 13 pr		6.6*	10.6*	1*	12.5*	1	12.5	115										
^t PHZ		Y	C ₁ = 15 pF		5*	11.5*	1*	12.5*	1	12.5	ns										
^t PLZ	OE	ÛE		0L = 10 bi		5*	11.5*	1*	12.5*	1	12.5	115									
^t PLH	А	Y	$C_{1} = 50 pF$		8.3	11.9	1	13.5	1	13.5	ns										
^t PHL	A	~	А	A	A	A	А	A	A	A	A	I	0L = 30 pi		8.3	11.9	170	13.5	1	13.5	115
^t PZH	OE	Y	$C_{1} = 50 \text{ pc}$		9.1	14.1	0 1	16	1	16	ns										
^t PZL	ÛE		C _L = 50 pF		9.1	14.1	Q 1	16	1	16	115										
^t PHZ	<u></u>	Y	$C_{1} = 50 \text{ pc}$		10.3	14	1	16	1	16											
^t PLZ	OE	ŕ	C _L = 50 pF		10.3	14	1	16	1	16	ns										
^t sk(o)			CL = 50 pF			1.5**				1.5	ns										

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

** On products compliant to MIL-PRF-38535, this parameter does not apply.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

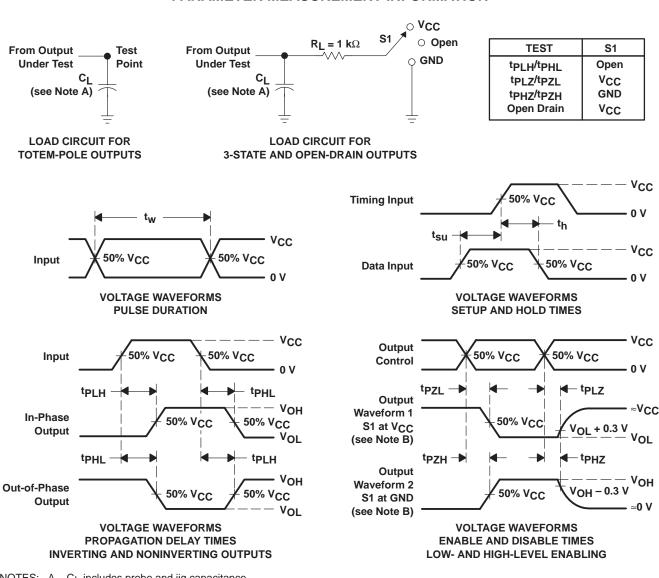
PARAMETER	FROM	то	LOAD	Т	λ = 25°C	;	SN54AHC	16244	SN74AH0	C16244	UNIT									
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT									
^t PLH	А	Y	C _I = 15 pF		3.9*	6*	1*	7*	1	6.5	ns									
^t PHL	А	Т	CL = 15 pr		3.9*	6*	1*	7*	1	6.5	115									
^t PZH	OE	Y	C _I = 15 pF		4.7*	7.3*	1*	8.5*	1	8.5	ns									
^t PZL	ÛE	I	CL = 15 pr		4.7*	7.3*	1*	8.5*	1	8.5	115									
^t PHZ	OE	v	Y	C _I = 15 pF		5*	7.2*	1*	8.5*	1	8.5	ns								
t _{PLZ}	OE	ÛE		0L = 10 bi		5*	7.2*	1* 4	8.5*	1	8.5	115								
^t PLH	А	Y	$C_{1} = 50 pF$		5.4	8	1	9	1	8.5	ns									
^t PHL	~	~	73	r\	r\	A	A	A	A	А		CL = 50 pF		5.4	8	170	9	1	8.5	115
^t PZH		Y	$C_{1} = 50 pF$		6.2	9.3	01	10.5	1	10.5	ns									
^t PZL	ŌĒ		CL = 30 pr		6.2	9.3	Q 1	10.5	1	10.5	115									
^t PHZ	OE Y		C: 50 pF		6.7	9.2	1	10.5	1	10.5	ns									
t _{PLZ}		T T	C _L = 50 pF		6.7	9.2	1	10.5	1	10.5	115									
^t sk(o)			CL = 50 pF			1**				1	ns									

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

** On products compliant to MIL-PRF-38535, this parameter does not apply.

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25^{\circ}C (see Note 4)

	PARAMETER	SN74	UNIT		
		MIN	TYP	MAX	UNIT
VOL(P)	Quiet output, maximum dynamic V _{OL}		0.5		V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.2		V
VOH(V)	Quiet output, minimum dynamic V _{OH}		4.8		V
VIH(D)	High-level dynamic input voltage	3.5			V
V _{IL(D)}	Low-level dynamic input voltage			1.5	V


NOTE 4: Characteristics are for surface-mount packages only.

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CO	ONDITIONS	TYP	UNIT
Cpd	Power dissipation capacitance	No load,	f = 1 MHz	10.5	pF

SCLS327G - MARCH 1996 - REVISED JANUARY 2000

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_Q = 50 Ω , t_f \leq 3 ns, t_f \leq 3 ns.

D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

27-Sep-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74AHC16244DGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74AHC16244DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74AHC16244DGVRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74AHC16244DGVRG4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16244DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16244DGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16244DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16244DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16244DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AHC16244DLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

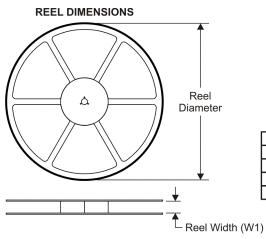
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

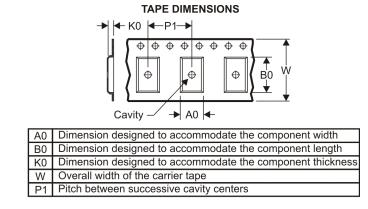
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

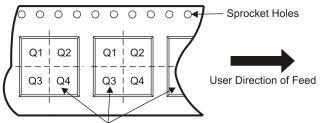
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



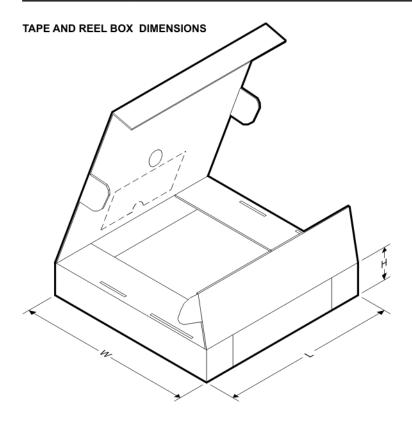

*All dimensions are nominal

PACKAGE MATERIALS INFORMATION


11-Mar-2008

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

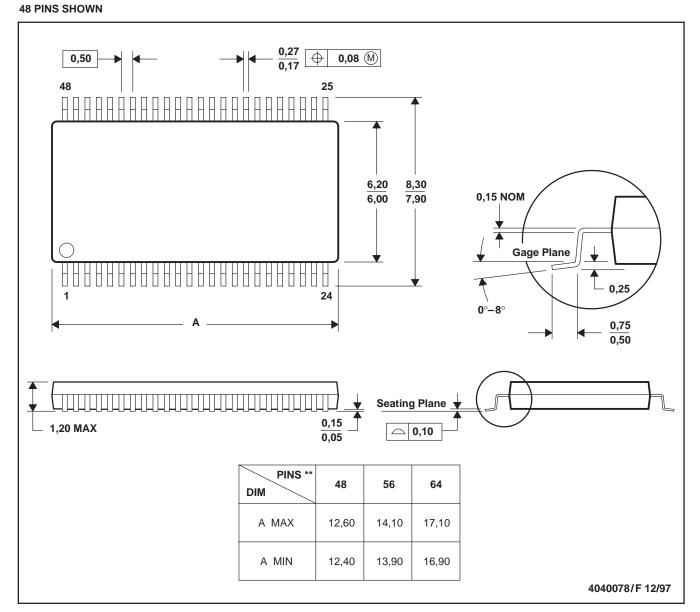


Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC16244DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
SN74AHC16244DGVR	TVSOP	DGV	48	2000	330.0	24.4	6.8	10.1	1.6	12.0	24.0	Q1
SN74AHC16244DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

PACKAGE MATERIALS INFORMATION

11-Mar-2008

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC16244DGGR	TSSOP	DGG	48	2000	346.0	346.0	41.0
SN74AHC16244DGVR	TVSOP	DGV	48	2000	346.0	346.0	41.0
SN74AHC16244DLR	SSOP	DL	48	1000	346.0	346.0	49.0

MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

PLASTIC SMALL-OUTLINE PACKAGE

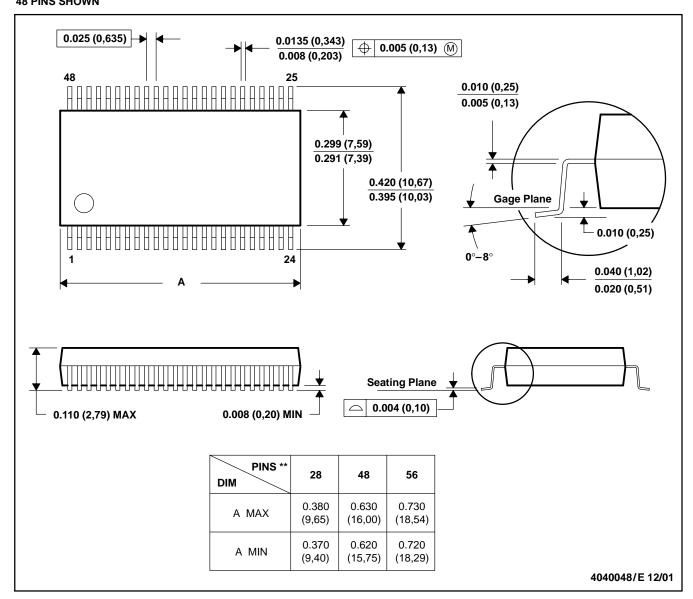
DGG (R-PDSO-G**)

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153



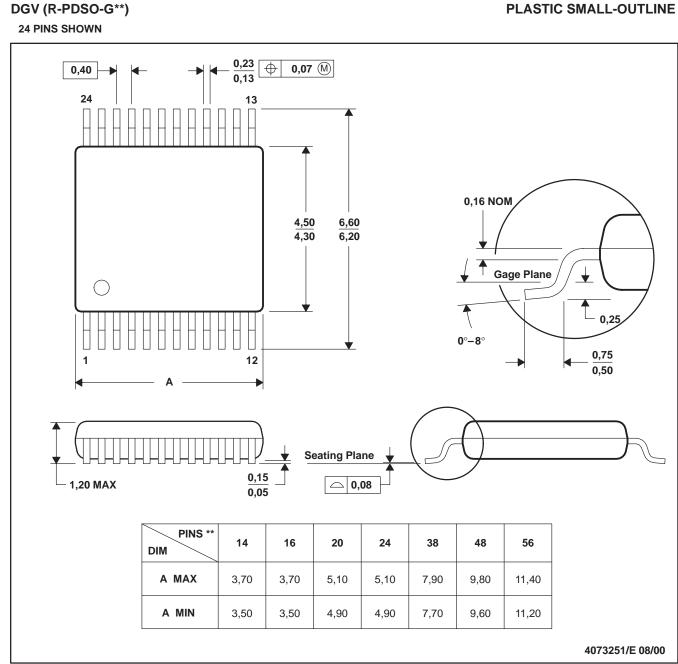
MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

DL (R-PDSO-G**) 48 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

MECHANICAL DATA

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153
 - 14/16/20/56 Pins MO-194

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	am
Data Converters	data
DSP	dsp
Clocks and Timers	ww
Interface	inte
Logic	logi
Power Mgmt	pow
Microcontrollers	mic
RFID	WW
RF/IF and ZigBee® Solutions	ww

mplifier.ti.com ataconverter.ti.com sp.ti.com ww.ti.com/clocks iterface.ti.com ogic.ti.com ower.ti.com icrocontroller.ti.com ww.ti-rfid.com ww.ti.com/lprf

Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/security www.ti.com/video www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated

Wireless