OCTAL BUFFER/LINE DRIVER WITH 3-STATE OUTPUTS

SCAS448A - MAY 1987 - REVISED APRIL 1996

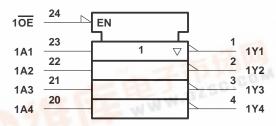
- Flow-Through Architecture Optimizes
 PCB Layout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- EPIC™ (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline (DW) and Shrink Small-Outline (DB) Packages, and Standard Plastic 300-mil DIPs (NT)

description

This octal buffer/line driver is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. This device provides inverting outputs and symmetrical active-low output-enable (\overline{OE}) inputs. This device features high fan-out and improved fan-in.

DB, DW, OR NT PACKAGE (TOP VIEW)

		$\overline{}$		
1Y1[1	U	24	10E
1Y2	2		23] 1A1
1Y3	3		22] 1A2
1Y4[4		21] 1A3
GND	5		20] 1A4
GND[6		19] v _{cc}
GND[7		18] v _{cc}
GND[8		17	2A1
2Y1	9		16	2A2
2Y2	10		15	2A3
2Y3	11		14	2A4
2Y4	12		13	20E


The 74AC11240 is organized as two 4-bit buffers/line drivers with separate \overline{OE} inputs. When \overline{OE} is low, the device passes inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

The 74AC11240 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each buffer)

INPL	JTS	ОИТРИТ
OE	Α	Υ
L	Н	L
L	L	Н
Н	Χ	Z

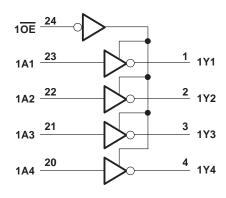
logic symbol†

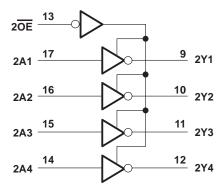
2OE	13	 EN	VI Y	102		
2A1 2A2	17 16		1	▽	9 10	2Y1 2Y2
2A3	15				11	2Y3
2A4						2Y4

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TEXAS


FPIC is a trademark of Texas Instruments Incorporated.



74AC11240 OCTAL BUFFER/LINE DRIVER WITH 3-STATE OUTPUTS

SCAS448A - MAY 1987 - REVISED APRIL 1996

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 6 V
Input voltage range, V _I (see Note 1)	\dots -0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through V _{CC} or GND	±200 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2): DB package .	0.65 W
DW package	1.7 W
NT package .	1.3 W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{2.} The maximum package power dissipation is calculated using a junction temperature of 150 °C and a board trace length of 750 mils, except for the NT package, which has a trace length of zero.

recommended operating conditions

			MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		3	5	5.5	V	
		V _{CC} = 3 V	2.1				
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15			V	
	$V_{\text{IH}} \text{High-level input voltage} \begin{array}{c} V_{\text{CC}} = 3 \text{ V} \\ V_{\text{CC}} = 4.5 \text{ V} \\ V_{\text{CC}} = 5.5 \text{ V} \\ \end{array}$ $V_{\text{IL}} \text{Low-level input voltage} \begin{array}{c} V_{\text{CC}} = 3 \text{ V} \\ V_{\text{CC}} = 3 \text{ V} \\ \end{array}$ $V_{\text{CC}} = 3 \text{ V} \\ V_{\text{CC}} = 5.5 \text{ V} \\ \end{array}$ $V_{\text{Input voltage}} \begin{array}{c} V_{\text{CC}} = 3 \text{ V} \\ \end{array}$ $V_{\text{CC}} = 5.5 \text{ V} \\ \end{array}$ $V_{\text{CC}} = 3 \text{ V} \\ \end{array}$ $V_{\text{CC}} = 3 \text{ V} \\ \end{array}$	3.85					
		V _{CC} = 3 V			0.9		
VIL	Low-level input voltage	V _{CC} = 4.5 V			1.35	V	
		V _{CC} = 5.5 V			1.65		
٧ _I	Input voltage		0		VCC	V	
٧o	Output voltage		0		VCC	V	
		V _{CC} = 3 V			-4		
IOH	High-level output current	$V_{CC} = 4.5 \text{ V}$			-24	mA	
	High-level input voltage	V _{CC} = 5.5 V			-24		
		V _{CC} = 3 V			12		
lOL	Low-level output current	$V_{CC} = 4.5 \text{ V}$			24	mA	
		$V_{CC} = 5.5 \text{ V}$			24		
A4/A1/	langet transition rise or fall rate	ŌE	0		5	20/1	
Δt/Δv	input transition rise or fail rate	Data	0		10	ns/V	
T _A	Operating free-air temperature	•	-40		85	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

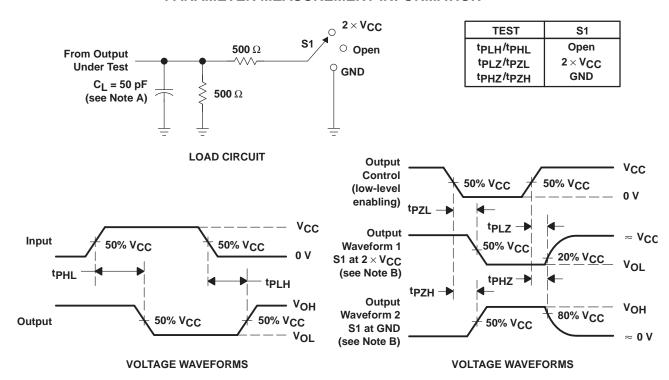
PARAMETER	TEST CONDITIONS		T,	Δ = 25°C		MIN MAX	MAX	UNIT
PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	IVIIIV	WAX	UNII
		3 V	2.9			2.9		
	I _{OH} = -50 μA		4.4			4.4		
			5.4			5.4		
Voн	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V
<u> </u>	Ιου - 24 mΔ	4.5 V	3.94			3.8		
	I _{OH} = -24 mA		4.94			4.8		1
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
					0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1	
		5.5 V			0.1		0.1	
VOL	I _{OL} = 12 mA 5.5 V 0.1 0.36		0.44	V				
	I _{OL} = 24 mA	4.5 V			0.36		0.44	
	IOL = 24 IIIA	5.5 V			0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
loz	$V_O = V_{CC}$ or GND	5.5 V			±0.5		±5	μΑ
lį	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μΑ
Ci	$V_I = V_{CC}$ or GND	5 V		4				pF
CO	$V_O = V_{CC}$ or GND	5 V		10				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

74AC11240 **OCTAL BUFFER/LINE DRIVER** WITH 3-STATE OUTPUTS SCAS448A - MAY 1987 - REVISED APRIL 1996

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	TO T _A = 25°C			MIN	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIN	IVIAA	UNIT
t _{PLH}	А	V	1.5	7.6	10.5	1.5	11.7	ne
^t PHL	A	'	1.5	6.3	8.6	1.5	9.5	ns
^t PZH		V	1.5	8.2	11.6	1.5	12.7	20
t _{PZL}	OE	T	1.5	7.6	10.8	1.5	12	ns
^t PHZ	ŌĒ	V	1.5	5.5	7.5	1.5	7.8	ns
^t PLZ	OE .	'	1.5	6.7	9.4	1.5	9.8	115


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	ТО	TO T _A = 25°C			MIN	MAX	UNIT
FARAWIETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIV	IVIAA	ONIT
t _{PLH}	А	V	1.5	5.4	7.5	1.5	8.4	ns
^t PHL		<u> </u>	1.5	4.6	6.6	1.5	7.2	115
^t PZH	<u> -</u>	V	1.5	5.7	8.2	1.5	9.2	ne
t _{PZL}	OE	I	1.5	5.3	7.7	1.5	8.7	ns
^t PHZ	ŌĒ	V	1.5	4.7	6.3	1.5	6.6	nc
^t PLZ	UE .	ľ	1.5	5.2	7.3	1.5	7.7	ns

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CO	TYP	UNIT		
C . Down dissipation consistence per buffer	Outputs enabled	C. 50 pF	f = 1 MHz	39	~F	
l Cbo	C _{pd} Power dissipation capacitance per buffer	Outputs disabled	$C_L = 50 \text{ pF},$	f = 1 MHz	12	pF

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.

 B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50~\Omega$, $t_f = 3~ns$, $t_f = 3~ns$.
 - D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated