查询74FCT245供应商

Data sheet acquired from Harris Semiconductor

January 1997 - Revised October 1999

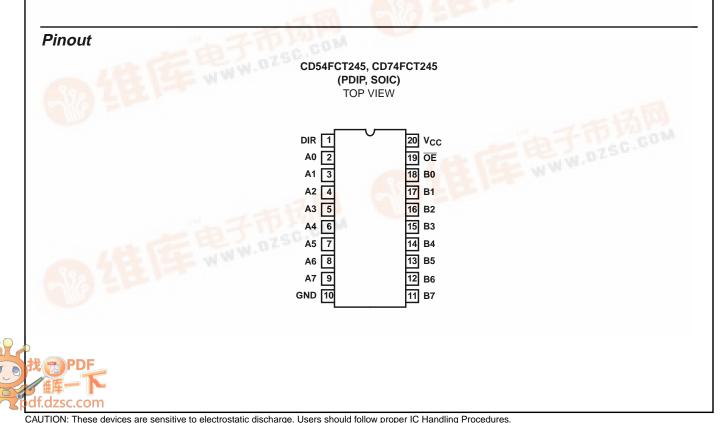
Features

- Buffered Inputs
- Typical Propagation Delay: 5.0ns at $V_{CC} = 5V$, $T_A = 25^{\circ}C$
- Noninverting
- SCR Latchup Resistant BiCMOS Process and Circuit Design
- Speed of Bipolar FAST™/AS/S
- 64mA Output Sink Current (74 Series)
- 48mA Output Sink Current (54 Series)
- Output Voltage Swing Limited to 3.7V at V_{CC} = 5V
- Controlled Output Edge Rates
- Input/Output Isolation to V_{CC}
- BiCMOS Technology with Low Quiescent Power

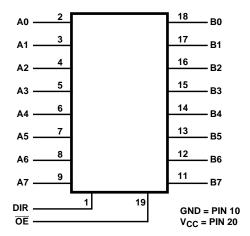
CD54FCT245, CD74FCT245

BiCMOS FCT Interface Logic, Octal-Bus Tranceivers, Three-State

Description


The CD54/74FCT245 octal bus transceiver uses a small geometry BiCMOS technology. The output stage is a combination of bipolar and CMOS transistors that limits the output HIGH level to two diode drops below V_{CC} . This resultant lowering of output swing (0V to 3.7V) reduces power bus ringing (a source of EMI) and minimizes V_{CC} bounce and ground bounce and their effects during simultaneous output switching. The output configuration also enhances switching speed and is capable of sinking 48mA to 64mA.

The CD54/74FCT245 is a noninverting, three-state, bidirectional transceiver/buffer intended for two-way transmission from"A" bus to "B" bus or "B" bus to "A" bus. The logic level present on the Direction Input (DIR) determines the data direction. When the Output Enable input is HIGH, the outputs are in the high impedance state.


Ordering Information

PART NUMBER	TEMP. RANGE (^o C)	PACKAGE	PKG. NO.
CD74FCT245E	0 to 70	20 Ld PDIP	E20.3
CD74FCT245M	0 to 70	20 Ld SOIC	M20.3
CD54FCT245E	-55 to 125	20 Ld PDIP	E20.3

NOTE: When ordering the suffix M and SM packages, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.

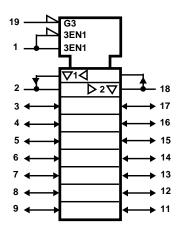
Functional Diagram

TRUTH TABLE (NOTE 1)

CONTRO	CONTROL INPUTS		
ŌĒ	DIR	OPERATION	
L	L	B Data to A Bus	
L	Н	A Data to B Bus	
Н	Х	Isolation	

NOTES:

1. H = High Voltage Level


L = Low Voltage Level

X = Irrelevant

2. To prevent excess currents in the High-Z (isolation) modes, all I/O terminals should be terminated with 10k Ω to 1 M Ω resistors.

IEC Logic Symbol

CD74FCT245, CD54FCT245

CD54FCT245, CD74FCT245

Absolute Maximum Ratings

DC Supply Voltage (V _{CC})	0.5V to 6.0V
DC Input Diode Current, I _{IK} (for V _I < -0.5V)	- 20mA
DC Output Diode Current, I_{OK} (for $V_O < -0.5V$)	50mA
DC Output Sink Current per Output Pin, IO	70mA
DC Output Source Current per Output Pin, IO	30mA
DC V _{CC} Current (I _{CC})	140mA
DC Ground Current (I _{GND})	528mA

Operating Conditions

Operating Temperature Range (T _A)
Supply Voltage Range, V _{CC}
CD74 Series, $T_A = 0^{\circ}C$ to $70^{\circ}C$ 4.75V to 5.25V
CD54 Series, $T_A = -55^{\circ}C$ to $125^{\circ}C$ 4.5V to 5.5V
DC Input Voltage, V ₁ 0 to V _{CC}
DC Output Voltage, V_0 0 to $\leq V_{CC}$
Input Rise and Fall Slew Rate, dt/dv 0 to 10ns/V

Thermal Information

Thermal Resistance (Typical, Note 3)	θ_{JA} (^o C/W)				
PDIP Package	69				
SOIC Package	58				
Maximum Junction Temperature	150 ^о С				
Maximum Storage Temperature Range65°C to 150°C					
Maximum Lead Temperature (Soldering 10s) (SOIC Lead Tips Only)	300 ⁰ C				

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

3. θ_{JA} is calculated in accordance with JESD 51.

Electrical Specifications 74FCT Commercial Temperature Range 0°C to 70°C, V_{CC} Max = 5.25V, V_{CC} Min = 4.75V 54FCT Extended Industrial Temperature Range -55°C to 125°C; V_{CC} Max = 5.5V, V_{CC} Min = 4.5V

		TEST CONDITIONS			AMBIENT TEMPERATURE (T _A)						
					25 ⁰ C		0°C TO 70°C		-55°C TO 125°C		
PARAMETER	SYMBOL	VI	I _O (mA)	V _{CC} (V)	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
High Level Input Voltage	VIH			4.5 to 5.5	2	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}			4.5 to 5.5	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage	V _{ОН}	V _{IH} or	-15	Min	2.4	-	2.4	-	-	-	V
		v_{IL}	-12	Min	2.4	-	-	-	2.4	-	V
Low Level Output Voltage	V _{OL}	V _{IH} or	64	Min	-	0.55	-	0.55	-	-	V
		v_{IL}	48	Min	-	0.55	-	-	-	0.55	V
High Level Input Current	IIН	V _{CC}		Max	-	0.1	-	1	-	1	μA
Low Level Input Current	۱ _{IL}	GND		Max	-	-0.1	-	-1	-	-1	μA
Three-State Leakage	I _{OZH}	V _{CC}		Max	-	0.5	-	10	-	10	μA
Current	I _{OZL}	GND		Max	-	-0.5	-	-10	-	-10	μA
Short Circuit Output Current (Note 4)	I _{OS}	V _{CC} or GND V _O = 0		Max	-60	-	-60	-	-60	-	mA
Input Clamp Voltage	V _{IK}	V _{CC} or GND	-18	Min	-	-1.2	-	-1.2	-	-1.2	V
Quiescent Supply Current, MSI	Icc	V _{CC} or GND	0	Max	-	8	-	80	-	500	μA
Additional Quiescent Supply Current per Input Pin TTL In- puts High, 1 Unit Load	ΔI _{CC}	3.4V (Note 5)		Max	-	1.6	-	1.6	-	2	mA

NOTES:

4. Not more than one output should be shorted at one time. Test duration should not exceed 100ms.

5. Inputs that are not measured are at V_{CC} or GND.

6. FCT Input Loading: All inputs are 1 unit load. Unit load is △I_{CC} limit specified in Static Characteristics Chart, e.g., 1.6mA Max at 70°C.

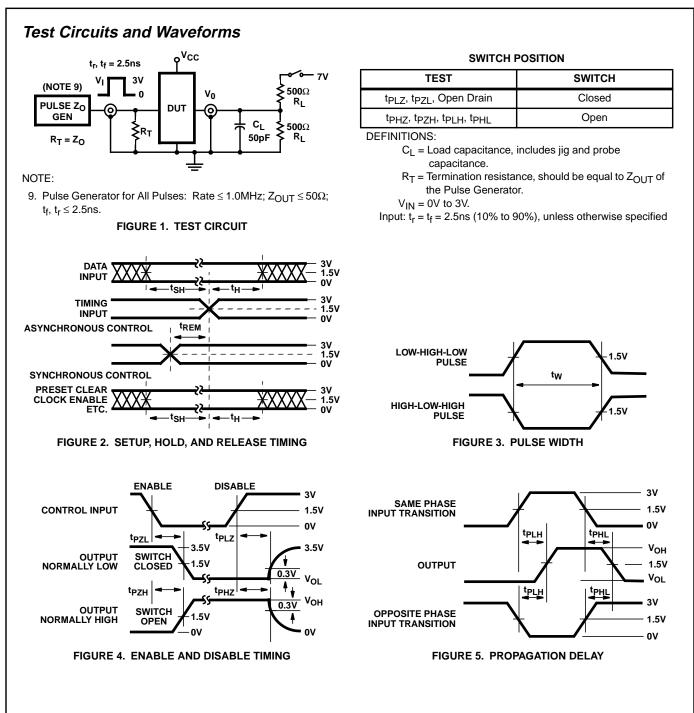
CD54FCT245, CD74FCT245

Switching Specifications t_r, t_f = 2.5ns, C_L = 50pF, R_L - See Figure 3

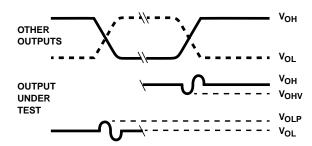
			AMBIENT TEMPERATURE (T _A)							
			25 ^o C 0 ^o C TO 70 ⁶			°C -55°C TO 125°			25°C	
PARAMETER	SYMBOL	V _{CC} (V)	ТҮР	MIN	ТҮР	MAX	MIN	ТҮР	МАХ	UNITS
Propagation Delays Data to Outputs)	t _{PLH} , t _{PHL}	5	5	1.5	-	7	1.5	-	7.5	ns
Output Enable to Output	t _{PZL} , t _{PZH}	5	6	1.5	-	9.5	1.5	-	10	ns
Output Disable to Output	t _{PLZ} , t _{PHZ}	5	6	1.5	-	7.5	1.5	-	10	ns
Power Dissipation Capacitance	C _{PD}	-	49	-	49	-	-	49	-	pF
Min (Valley) V _{OHV} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OHV}	5	0.5	-	-	-	-	-	-	V
Max (Peak) V _{OLP} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP}	5	1	-	-	-	-	-	-	V
Input Capacitance	CI	-	-	-	-	10	-	-	10	pF
Input/Output Capacitance	C _{I/O}	-	-	-	-	15	-	-	15	pF

NOTES:

7. 5V: Min is at 5.5V, Max is at 4.5V.


5V: Min is at 5.25V for 0° C to 70° C, Max is at 4.75V for 0° C to 70° C, Typ is at 5V.

8. C_{PD}, measured per function, is used to determine the dynamic power consumption. P_D (per package) = V_{CC} I_{CC} + Σ (V_{CC}² f_I C_{PD} + V_O² f_O C_L + V_{CC} Δ I_{CC} D) where: V_{CC} = supply voltage Δ I_{CC} = flow through current x unit load C_L = output load capacitance


 \overline{D} = duty cycle of input high

 f_{O} = output frequency

f_I= input frequency

Test Circuits and Waveforms (Continued)

NOTES:

- 10. V_{OLP} is measured with respect to a ground reference near the output under test. V_{OHV} is measured with respect to V_{OH} .
- 11. Input pulses have the following characteristics:
- $P_{RR} \le 1MHz$, $t_r = 2.5ns$, $t_f = 2.5ns$, skew 1ns.
- 12. R.F. fixture with 700MHz design rules required. IC should be soldered into test board and bypassed with 0.1µF capacitor. Scope and probes require 700MHz bandwidth.

FIGURE 6. SIMULTANEOUS SWITCHING TRANSIENT WAVEFORMS

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated