

January 1995 Revised May 1999

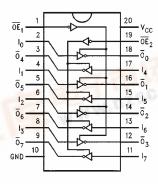
74F2240 Octal Buffer/Line Driver with 25 Ω Series Resistors in the Outputs

General Description

The 74F2240 is an inverting octal buffer and line driver designed to drive capacitive inputs of MOS memory devices, address and clock lines or act as a low undershoot general purpose bus driver.

The 25Ω series resistor in the outputs reduces undershoot and ringing and eliminates the need for external resistors.

Features


- 3-STATE outputs drive bus lines or buffer memory address registers
- Outputs sink 12 mA and source 15 mA
- \blacksquare 25 Ω series resistors in outputs eliminate the need for external resistors
- Designed to drive the capacitive inputs of MOS devices
- Guaranteed 4000V minimum ESD protection

Ordering Code:

Order Number	Package Number	Package Description
74F2240SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F2240QC	V20A	20-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.350 Square

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

OE ₁	D _{1n}	O _{1n}	OE ₂	D _{2n}	O _{2n}	
Н	X	Z	Н	X	Z	
L	Н	H L L		Н	L	
L	L	Н	L	L	Н	

Unit Loading/Fan Out

Pin	December 1	U.L.	Output	
Names	Description	HIGH/LOW	I _{OH} /I _{OL}	
$\overline{\text{OE}}_1$, $\overline{\text{OE}}_2$	3-STATE Output			
	Enable Input	1.0/1.667	20 μA/–1 mA	
	(Active LOW)	198	一工布	
I ₀ - I ₇	Inputs	1.0/1.667	20 μA/–1 mA	
$\overline{O}_0 - \overline{O}_7$	Outputs	750/20	-15 mA/12 mA	

Absolute Maximum Ratings(Note 1)

Storage Temperature $-65^{\circ}\text{C to} + 150^{\circ}\text{C}$

 $\begin{tabular}{lll} Ambient Temperature under Bias & -55^{\circ} to +125^{\circ} C \\ Junction Temperature under Bias & -55^{\circ} C to +150^{\circ} C \\ \end{tabular}$

 V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V

Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

In HIGH State (with $V_{CC} = 0V$)

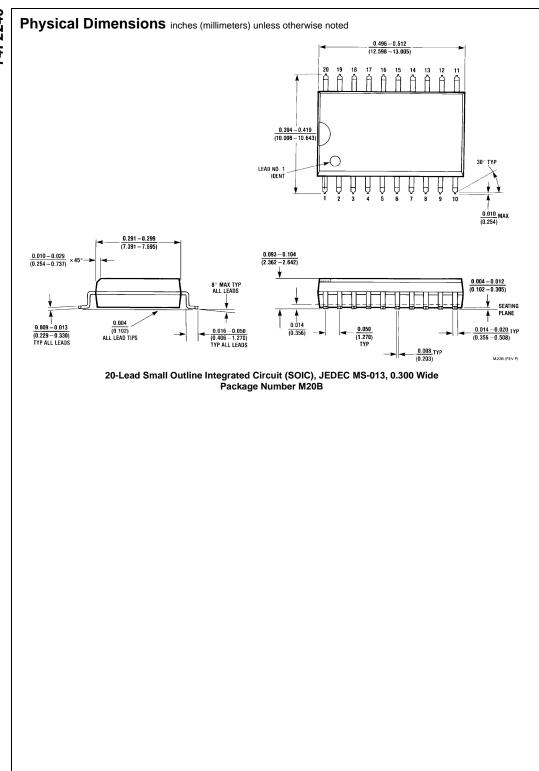
 $\begin{array}{ll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{3-STATE Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output

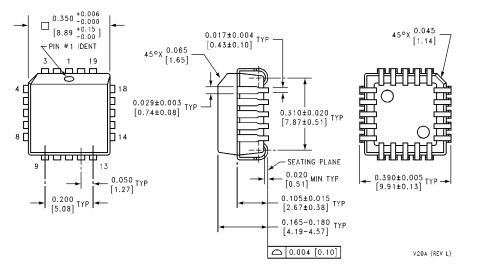
in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

Recommended Operating Conditions

Free Air Ambient Temperature 0°C to 70°C Supply Voltage +4.5V to +5.5V


Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol Parameter		Min	Тур	Max	Units	V _{cc}	Conditions	
				.,,,	IIIUA		• 66	
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage)			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$
	Voltage	10% V _{CC}	2.0			v	IVIIII	$I_{OH} = -15 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.75	V	Min	I _{OL} = 12 mA
I _{IH}	Input HIGH Current				5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown Test				7.0	μΑ	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Current				50	μΑ	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage		4.75		V	0.0	$I_{ID} = 1.9 \mu A$	
	Test					\ \ \	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV
	Circuit Current			All Other Pins Grounded				
I _{IL}	Input LOW				-1.0		Max	V _{IN} = 0.5V
	Current			mA		$(\overline{OE}_1, \overline{OE}_2, D_n)$		
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V
los	Output Short-Circuit Curre	nt	-100		-225	mA	Max	V _{OUT} = 0V
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0	V _{OUT} = 5.25V
I _{CCH}	Power Supply Current			16	29	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			47	75	mA	Max	$V_O = LOW$
I _{CCZ}	Power Supply Current		•	45	63	mA	Max	$V_O = HIGH Z$

AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = 0$ °C to $+70$ °C $V_{CC} = +5.0V$ $C_L = 50$ pF		Units	
		Min	Тур	Max	Min	Max	†	
t _{PLH}	Propagation Delay	3.0	4.9	7.5	3.0	7.5		
t _{PHL}	Data to Output	2.0	3.7	6.0	2.0	6.0	ns	
t _{PZH}	Output Enable Time	2.0	3.9	6.5	2.0	7.0	ns	
t_{PZL}		4.0	6.7	9.5	4.0	10.0	115	
t _{PHZ}	Output Disable Time	2.0	4.1	6.5	2.0	7.0	ne	
t_{PLZ}		2.0	4.9	8.5	2.0	9.5	ns	

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.350 Square Package Number V20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com