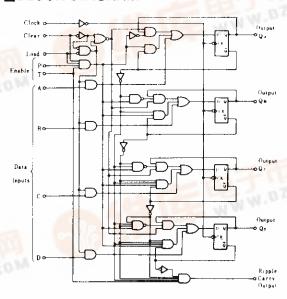
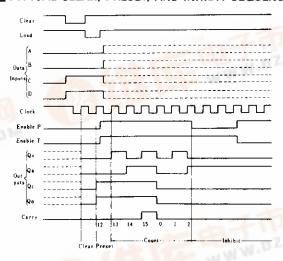

This synchronous 4-bit binary counter features an internal carry look-ahead to application in high-speed counting designs. Synchronous operation is provided by having all flipflops clock simultaneously so that the outputs change coincident with each other when so instructed by the countenable inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positivegoing) edge of the clock input waveform. This counter is fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs, Low-to-high transitions at the load input would be avoided when the clock is low if the enable inputs are high at or before the transition. The clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate.

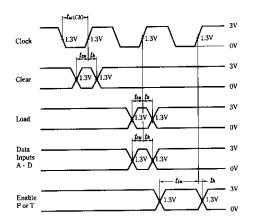
The gate output is connected to the clear input to synchronously clear the counter to LLLL. Low-to-high transitions at the clear input should be avoided when the clock is low if the enable and load inputs are high at or before the transition. The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two countenable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed


enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the Q_A output.

This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low-level transitions at the enable P or T inputs should occur only when the clock input is high.


PIN ARRANGEMENT

■BLOCK DIAGRAM


TYPICAL CLEAR, PRESET, AND INHIBIT SEQUENCE

■ RECOMMENDED OPERATING CONDITIONS

lt-	em	Symbol	min	typ	max	Unit	
Clock frequ	uency	felock	0		25	MH2	
Clock pulse width		tw (CK)	25		<u> </u>	ns	
Clear puls	e width	tw (CLR)	20	_		ns	
Setup time	A, B, C, D		20			ns	
	Enable P.T] [20	-	_	ns	
	Load	tsu	20	-		пs	
	Clear	1	20			ns	
Hold time		Íh	3	-	_	ns	

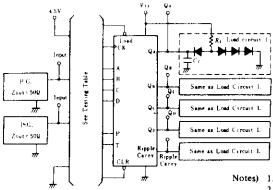
TIMING DEFINITION

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75$ °C)

Item		Symbol	Test Condition	ons	min	typ*	max	Unit
Input voltage		VIH			2.0			v
		VIL					0.8	V
Output voltage		Von	$V_{CC} = 4.75V$, $V_{IH} = 2V$, $V_{IL} = 0$	$.8V, I_{OH} = -400 \mu A$	2.7		-	V
		Vo t.	$V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}$	Io1. = 4mA	_	_	0.4	v
			$\dot{\mathbf{W}}_{IL} = \mathbf{0.8V}$	Iot = 8mA	-		0.5	v
Input current	Data, Enable P	T				-	20	
	Load, Clock, Enable T	TIH.	$V_{CC} = 5.25 \text{V}, V_I = 2.7 \text{V}$	·	_	40	μA	
	Clear					40		
	Data, Enable P			-		-0.4	mA	
	Load, Clock, Enable T	In	$V_{CC} = 5.25 \text{V}, V_I = 0.4 \text{V}$	_	T -	-0.8		
	Clear			_	-	-0.8		
	Data, Enable P			-	_	0.1	mA	
	Lond, Clock, Enable T	I_{L}	$V_{CC} = 5.25 \text{V}, V_I = 7 \text{V}$		_	0.2		
	Clear	┤ -:		-	_	0.2		
Short-circuit output current		los	V _{CC} = 5.25V		- 20		-100	mA
Supply current**		Іссн	$V_{CC} = 5.25 \text{V}$			18	31	mΑ
		Icc i.	V _{CC} = 5.25V	_	19	32	mA	
Input clamp voltage		Vik	$V_{CC} = 4.75 \text{V}, I_{LN} = -18 \text{mA}$		_		-1.5	V

^{*} VCC=5V, Ta=25°C

SWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $T_a = 25^{\circ}C$)

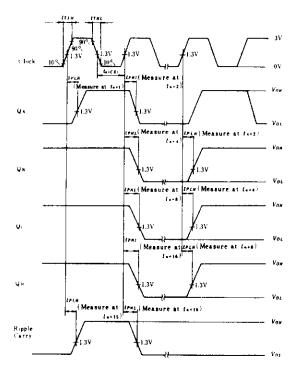

Item	Symbol	Inputs	Outputs	Test Conditions	min	typ	max	Unit
Maximum clock frequency	f _{mux}	Clock	$Q_A \sim Q_D$		25	32	_	MHz
Propagation delay time	tei,n	a	Ripple		-	20	35	ns
	tphi.	Clock	Carry		_	18	35	ns
	tela	Clock	2 0		_	13	24	ns
	teni.	(Load="H")	$Q_A \sim Q_D$	$C_L = 15 pF$, $R_L = 2 k\Omega$	_	18	27	ns
	tpi.n	Clock			-	13	24	ns
	teht.	(Load="L")	$Q_A \sim Q_D$		_	18	27	ns
	teln		Ripple			9	14	ns
	tphi.	Enable T	Carry			9	14	ns
	tphi.	Clear	$Q_A \sim Q_D$		_	20	28	ns

^{**} I_{CCH} is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open. I_{CCL} is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

HD74LS163A

TESTING METHOD

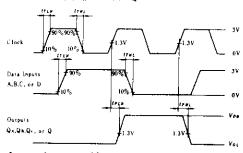
1) Test Circuit


Notes) 1. C_L includes probe and jig capacitance. 2. All diodes are 1S2074 H.

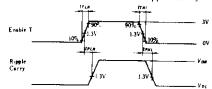
2) Testing Table

ltem	From input to output	Inputs									Outputs				
		Clear	Load	Enable		0	Data]	1	T	Ripple
				P	T	Clock	Α	В	C	D	Q _A	¹ Qa ∣	Q٠	Q _D	Carry
fmar		4.5V	4.5V	4.5V	4.5V	IN	GND	GND	GND	GND	оит	OUT	OUT	OUT	OUT
tvlh tvhl	CK→ Ripple Carry	4.5V	4.5V	4.5V	4.5V	IN	GND	GND	GND	GND				-	OUT
	CK→Q	4.5V	4.5V	4.5V	4.5V	IN	GND	GND	GND	GND	OUT	OUT	OUT	OUT	1 -
	CK→Q	4.5V	GND	GND	GND	IN	IN*	IN*	IN.	IN*	OUT	OUT	OUT	OUT	1
	Enable T-Ripple	4.5V	GND	4.5V	IN	IN*	4.5V	4.5V	4.5V	4.5V	_				OUT
	CLR→Q	IN	GND	GND	GND	IN.	4.5V	4.5V	4.5V	4.5V	OUT	OUT	OUT	OUT	†

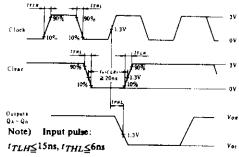
^{*} For initialized

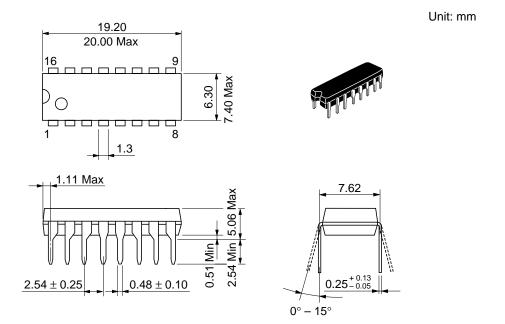

Waveform-1 fmax, tPLH, tPHL (Clock-Q, Ripple Carry)

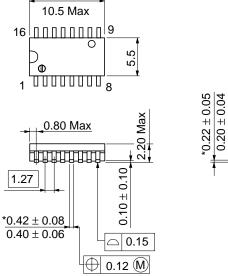
Notes) 1. Clock input pulse: $t_{TLH} \le 15 \text{ns}$, $t_{THL} \le 6 \text{ns}$, PRR = 1 MHz, duty cycle=50% and: for f_{max} , $t_{TLH} = t_{THL} \le 2.5 \text{ns}$.


2. t_n is reference bit time when all outputs are low.

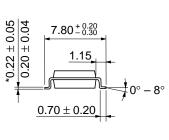
Waveform+2 t_{PLH} , t_{PHL} (Clock+Q)

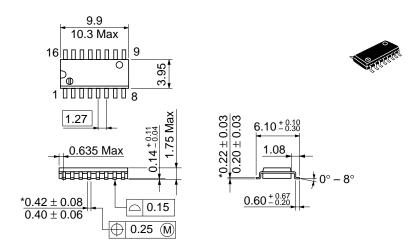

Notes) Input pulse: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, Clock input: PRR = 1MHz, duty cycle 50%, Data input: PRR = 500kHz, duty cycle 50%


Waveform-3 tplH, tpHL (Enable T→Ripple Carry)


Note) Input pulse: $t_{TLH} \le 15 \text{ns}$, $t_{THL} \le 6 \text{ns}$, PRR = 1 MHz

Waveform-4 tPHL (Clear→Q)





10.06

Unit: mm

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor

HITACH

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica http:semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/ecg

Asia (Singapore) http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKóng) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

Japan http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road

Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia I td Taipei Branch Office

3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsu Kowloon, Hong Kong

Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.