查询74LV241D供应商

DATA SHEET

74LV241

Octal buffer/line driver (3-State)

Product specification
Supersedes data of 1997 Feb 19
IC24 Data Handbook

1998 May 20

Octal buffer/line driver (3-State)

74LV241

FEATURES

- Optimized for low voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- Output capability: bus driver
- I_{CC} category: MSI

DESCRIPTION

The 74LV241 is a low-voltage Si-gate CMOS device and is pin and function compatible with 74HC/HCT241.

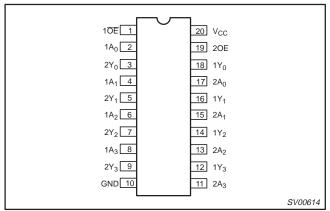
The 74LV241 is an octal non-inverting buffer/line driver with 3-State outputs. The 3-State outputs are controlled by the output enable inputs $1\overline{OE}$ and 2OE.

QUICK REFERENCE DATA

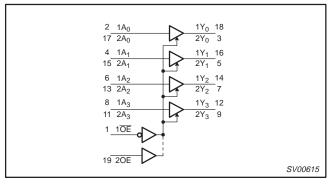
GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_{r} = t_{f} \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay 1A _n to 1Y _n ; 2A _n to 2Y _n	C _L = 15 pF; V _{CC} = 3.3 V	8.0	ns
C _I	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per buffer	$V_{CC} = 3.3 \text{ V}$ $V_I = \text{GND to } V_{CC}^1$	30	pF

NOTE:


- C_{PD} is used to determine the dynamic power dissipation (P_D in μW)
 - $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:
 - f_i = input frequency in MHz; C_L = output load capacitance in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V;

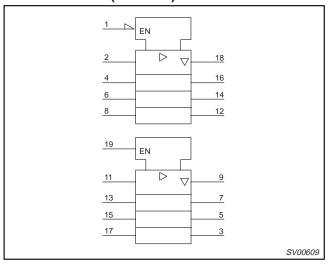
 - $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of the outputs.}$


ORDERING INFORMATION

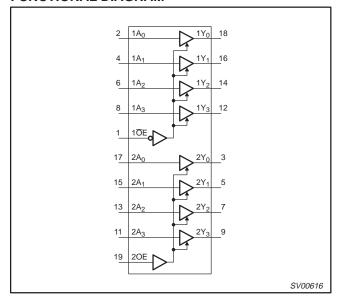
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
20-Pin Plastic DIL	-40°C to +125°C	74LV241 N	74LV241 N	SOT146-1
20-Pin Plastic SO	-40°C to +125°C	74LV241 D	74LV241 D	SOT163-1
20-Pin Plastic SSOP Type II	-40°C to +125°C	74LV241 DB	74LV241 DB	SOT339-1
20-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV241 PW	74LV241PW DH	SOT360-1

PIN CONFIGURATION

LOGIC SYMBOL



74LV241


PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	1 OE	Output enable input (active LOW)
2, 4, 6, 8	1A ₀ to 1A ₃	Data inputs
3, 5, 7, 9	2Y ₀ to 2Y ₃	Bus outputs
10	GND	Ground (0 V)
17, 15, 13, 11	2A ₀ to 2A ₃	Data inputs
18, 16, 14, 12	1Y ₀ to 1Y ₃	Bus outputs
19	20E	Output enable input (active HIGH)
20	V _{CC}	Positive supply voltage

LOGIC SYMBOL (IEEE/IEC)

FUNCTIONAL DIAGRAM

FUNCTION TABLE

	INP	JTS		OUT	PUT
1OE	1A _n	1Y _n	2Y _n		
L	L	Н	L	Н	L
L	Н	Н	Н	L	Н
Н	Х	L	Х	Z	Z

NOTES:

HIGH voltage level LOW voltage level don't care

high impedance OFF-state

Octal buffer/line driver (3-State)

74LV241

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	DC supply voltage	See Note 1	1.0	3.3	3.6	V
V _I	Input voltage		0	_	V _{CC}	V
V _O	Output voltage		0	_	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.0V \text{ to } 2.0V$ $V_{CC} = 2.0V \text{ to } 2.7V$ $V_{CC} = 2.7V \text{ to } 3.6V$		- - - -	500 200 100	ns/V

NOTE:

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
±Ι _{ΙΚ}	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5V$	20	mA
±I _{OK}	DC output diode current	$V_{O} < -0.5 \text{ or } V_{O} > V_{CC} + 0.5V$	50	mA
±ΙΟ	DC output source or sink current – bus driver outputs	$-0.5V < V_O < V_{CC} + 0.5V$	35	mA
±I _{GND} , ±I _{CC}	DC V _{CC} or GND current for types with –bus driver outputs		70	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{tot}	Power dissipation per package -plastic DIL -plastic mini-pack (SO) -plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{1.} The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 3.6V.

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Octal buffer/line driver (3-State)

74LV241

DC CHARACTERISTICS FOR THE LV FAMILY

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

					LIMITS	· · · · · · · · · · · · · · · · · · ·		
SYMBOL	PARAMETER	TEST CONDITIONS	-4	0°C to +8	5°C	-40°C to	+125°C	דואט
			MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2V	0.9			0.9		Π
V_{IH}	HIGH level Input voltage	V _{CC} = 2.0V	1.4			1.4		V
	Tonago	V _{CC} = 2.7 to 3.6V	2.0			2.0		1
		V _{CC} = 1.2V			0.3		0.3	
V_{IL}	LOW level Input voltage	V _{CC} = 2.0V			0.6		0.6	V
	Tonago	V _{CC} = 2.7 to 3.6V			0.8		0.8	1
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$		1.2				
	HIGH level output	$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$	1.8	2.0		1.8] ,
V_{OH}	voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$	2.5	2.7		2.5		1 °
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$	2.8	3.0		2.8		1
V _{OH}	HIGH level output voltage; BUS driver outputs	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 8mA$	2.40	2.82		2.20		V
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0				
V	LOW level output	$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2	
V_{OL}	voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2]
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2	
V _{OL}	LOW level output voltage; BUS driver outputs	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 8mA$		0.20	0.40		0.50	٧
I _I	Input leakage current	$V_{CC} = 3.6V$; $V_I = V_{CC}$ or GND			1.0		1.0	μА
I _{OZ}	3-State output OFF-state current	V_{CC} = 3.6V; V_{I} = V_{IH} or V_{IL} ; V_{O} = V_{CC} or GND			5		10	μА
I _{CC}	Quiescent supply current; MSI	$V_{CC} = 3.6V$; $V_I = V_{CC}$ or GND; $I_O = 0$			20.0		160	μА
Δl _{CC}	Additional quiescent supply current per input	$V_{CC} = 2.7V$ to 3.6V; $V_I = V_{CC} - 0.6V$			500		850	μА

NOTE:

^{1.} All typical values are measured at $T_{amb} = 25$ °C.

74LV241

AC CHARACTERISTICS

GND = 0V; $t_r = t_f \le 2.5$ ns; $C_L = 50$ pF; $R_L = 1$ K Ω

			CONDITION			LIMITS			
SYMBOL	PARAMETER	WAVEFORM	CONDITION	_	40 to +85 °	С	-40 to -	-125 °C	UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
			1.2		45				
l	Propagation delay 1A _n to 1Y _n ;	Figures 4	2.0		15	31		36	
t _{PHL} /t _{PLH}	$2A_n$ to $2Y_n$	Figures 1	2.7		11	23		26	ns
			3.0 to 3.6		92	18		21	
			1.2		55				
l	3-State output enable time 1OE to 1Y _n ;	Figures 2, 2	2.0		19	36		44	
t _{PZH/} t _{PZL}	20E to 2Y _n	Figures 2, 3	2.7		14	26		33	ns
			3.0 to 3.6		10 ²	21		26	
			1.2		60				
l	3-State output disable time 1 OE to 1Y _n ;	Figures 2, 2	2.0		22	39		48	
t _{PHZ} /t _{PLZ}	20E to 2Y _n	Figures 2, 3	2.7		17	29		36	ns
			3.0 to 3.6		13 ²	24		29	

NOTES:

- 1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25^{\circ}C$. 2. Typical values are measured at $V_{CC} = 3.3 \text{ V}$.

AC WAVEFORMS

V_M = 1.5 V at V_{CC} \geq 2.7 V; V_M = 0.5 V \times V_{CC} at V_{CC} < 2.7 V V_X = V_{OL} + 0.3 V at V_{CC} \geq 2.7 V; V_X = V_{OL} + 0.1 V \times V_{CC} at V_{CC} < 2.7 V

 V_Y = V_{OH} – 0.3 V at V_{CC} \geq 2.7V; V_Y = V_{OH} – 0.1 \times V_{CC} at V_{CC} < 2.7

 $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are the typical output voltage drop that occur with the output load.

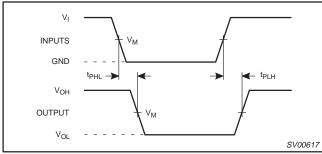


Figure 1. Input $(1A_n, 2A_n)$ to output $(1Y_n, 2Y_n)$ propagation delays.

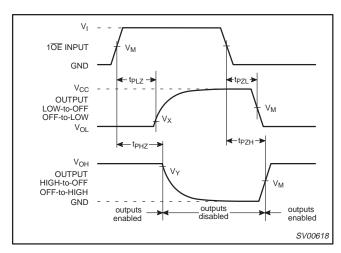


Figure 2. 3-State enable and disable times.

74LV241

AC WAVEFORMS (Continued)

 V_M = 1.5 V at V_{CC} \geq 2.7 V; V_M = 0.5 V \times V V_{CC} at V_{CC} < 2.7 V V_X = V_{OL} + 0.3 V at V_{CC} \geq 2.7 V; V_X = V_{OL} + 0.1 V \times V V_{CC} at V_{CC} < 2.7 V

V_Y = V_{OH} - 0.3 V at V_{CC} \geq 2.7V; V_Y = V_{OH} - 0.1 \times V_{CC} at V_{CC} < 2.7 V

 $\ensuremath{\text{V}_{\text{OL}}}$ and $\ensuremath{\text{V}_{\text{OH}}}$ are the typical output voltage drop that occur with the output load.

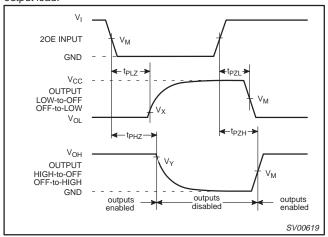


Figure 3. 3-State enable and disable times for input 20E.

TEST CIRCUIT

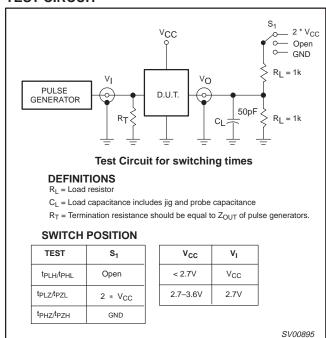
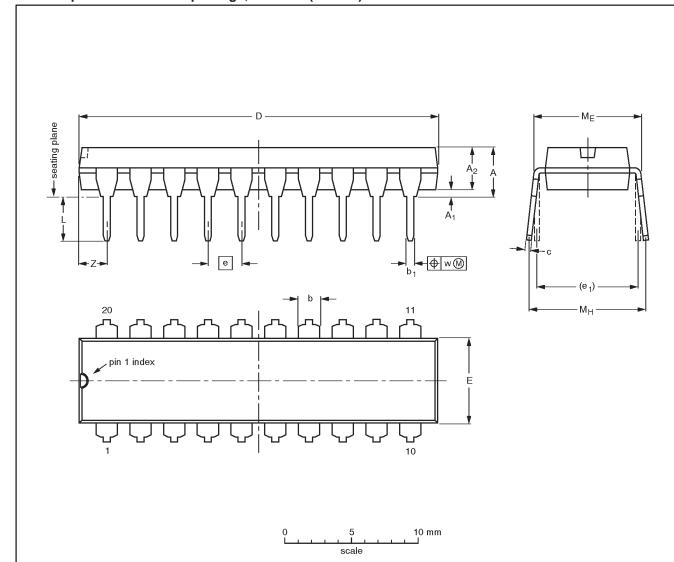



Figure 4. Load circuitry for switching times.

74LV241

DIP20: plastic dual in-line package; 20 leads (300 mil)

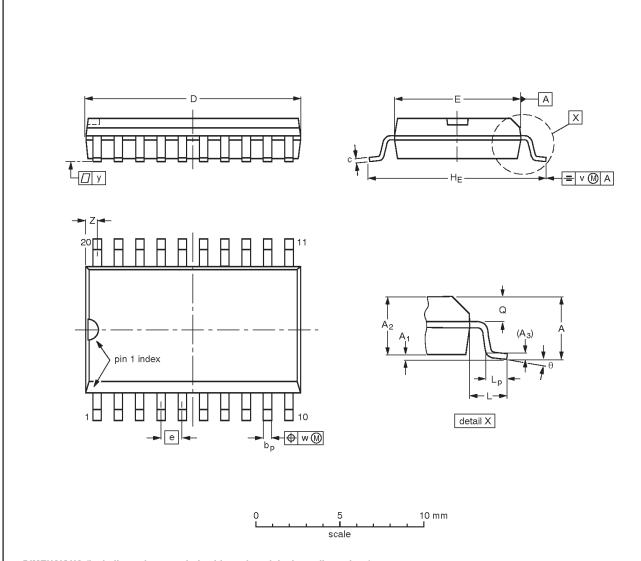
SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT146-1			SC603		-92-11-17 95-05-24

Octal buffer/line driver (3-State)

74LV241

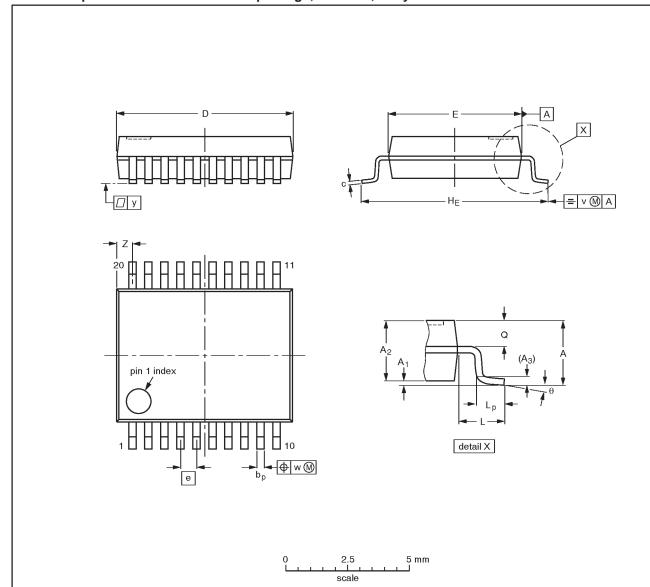
SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bp	c	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.050	0.42 0.39	0.055			0.01	0.01	0.004	0.035 0.016	0°

Note


1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	1990E DATE
SOT163-1	075E04	MS-013AC			-92-11-17 95-01-24

74LV241

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

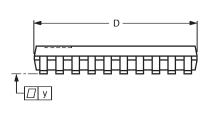
SOT339-1

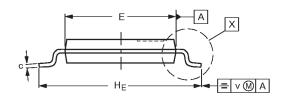
DIMENSIONS (mm are the original dimensions)

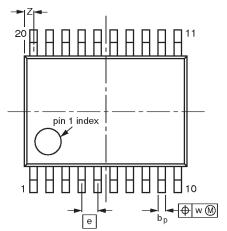
			9			,												
UNIT	A max.	Α1	A ₂	Α3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

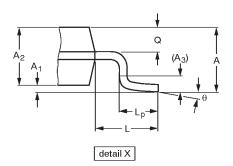
Note

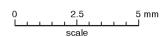
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT339-1		MO-150AE				-93-09-08 95-02-04


Octal buffer/line driver (3-State)


74LV241


TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm


SOT360-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	А3	рb	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ICCUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT360-1		MO-153AC				-93-06-16 95-02-04

Octal buffer/line driver (3-State)

74LV241

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381

Philips

© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.


print code

Date of release: 05-96

Document order number:

9397-750-04436

Let's make things better.

