8L Series／Spartan DIP Reed Relays

Economy DIP Reed Relays

The Coto 8L Spartan Series relays combine Coto quality and economy in the industry standard 14 pin molded DIP package．This series will cross to all competitive DIP packages and is ideal for telecom，security， and other general purpose applications．

8L Series Features

－Drop－in low cost replacement for industry standard DIP packages
－Contact forms；1A，2A，1B and 1C available
－Available coils in $5 \mathrm{~V}, 12 \mathrm{~V}$ and 24 V
－Molded thermoset body on integral lead frame design
－Hermetically Sealed Contacts
－Optional Electrostatic Shield and Coil Suppression Diode
－UL File \＃E67117

（For Model \＃＇s 8L01，8L02，8L21 \＆8L41）
（For Model \＃8L61）
Dimensions in Inches（Millimeters）

Ordering Information

Part Number 8LXX－XX－XXI

Ordering Information

Part Number	8LXX－XX	
Model Number		Diode Option ${ }^{3}$
8L02 8L21		$0=$ No Diode $1=$ Diode
Coil Voltage		Shield Option ${ }^{4}$
$05=5$ volts		$0=$ No Shield
$12=12$ volts		1＝Electrostatic Shield
$24=24$ volts		

8L Series/Spartan DIP Reed Relays

Notes:

${ }^{1}$ Consult factory for life expectancy at other switching loads.
${ }^{2}$ Molded Depression on top of relay refers to pin \#1
location.
${ }^{3}$ Optional coil suppression diode across pins 2(+) and 6(-).
${ }^{4}$ Optional ES Shield is tied to pin 9 .
${ }^{5}$ Surface mount processing temperature: $260^{\circ} \mathrm{C}$ max for 1 minute dwell time. Temperature measured on leads where lead exits molded package.
${ }^{6}$ Consists of 56V Zener diode and 1N4148 diode in series, connected in parallel with coil.

Environmental Ratings:

Storage Temp: $-35^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating Temp: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Solder Temp: $270^{\circ} \mathrm{C}$ max; 10 sec . max
The operate and release voltage and the coil resistance are specified at $25^{\circ} \mathrm{C}$. These values vary by approximately $0.4 \% /{ }^{\circ} \mathrm{C}$ as the ambient temperature varies. Vibration: 20 G's to 2000 Hz; Shock: 50 G's

