

95PF(R)...(W) High Voltage Series

Vishay High Power Products

Standard Recovery Diodes Generation 2 DO-5 (Stud Version), 95 A

95PF(R)...

DO-203AB (DO-5)

95PF(R)...W

DO-203AB (DO-5)

FEATURES

- High surge current capability
- Designed for a wide range of applications
- Stud cathode and stud anode version
- Wire version available
- Low thermal resistance
- RoHS compliant
- Designed and qualified for multiple level

RoHS
COMPLIANT

TYPICAL APPLICATIONS

- Converters
- Power supplies
- Machine tool controls
- Welding
- Any high voltage input rectification bridge

PRODUCT SUMMARY

$I_{F(AV)}$	95 A
-------------	------

MAJOR RATINGS AND CHARACTERISTICS

PARAMETER	TEST CONDITIONS	VALUES	UNITS
$I_{F(AV)}$		95	A
	T_C	128	°C
$I_{F(RMS)}$		149	A
I_{FSM}	50 Hz	1700	A
	60 Hz	1800	
I^2t	50 Hz	14 500	A^2s
	60 Hz	13 500	
V_{RRM}	Range	1400 to 1600	V
T_J		- 55 to 150	°C

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS				
TYPE NUMBER	VOLTAGE CODE	V_{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V_{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I_{RRM} MAXIMUM AT $T_J = 150$ °C mA
95PF(R)...(W)	140	1400	1650	4.5
	160	1600	1900	

95PF(R)...(W) High Voltage Series

Vishay High Power Products

Standard Recovery Diodes
Generation 2 DO-5 (Stud Version), 95 A

FORWARD CONDUCTION

PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS		
Maximum average forward current at case temperature	$I_{F(AV)}$	180° conduction, half sine wave			95	A		
				128	°C			
Maximum RMS forward current	$I_{F(RMS)}$				149	A		
Maximum peak, one cycle forward, non-repetitive surge current	I_{FSM}	$t = 10 \text{ ms}$	No voltage reapplied	Sinusoidal half wave, initial $T_J = 150 \text{ °C}$	1700	A		
		$t = 8.3 \text{ ms}$			1800			
		$t = 10 \text{ ms}$			1450			
		$t = 8.3 \text{ ms}$			1500			
Maximum I^2t for fusing	I^2t	$t = 10 \text{ ms}$	No voltage reapplied	Sinusoidal half wave, initial $T_J = 150 \text{ °C}$	14 500	A^2s		
		$t = 8.3 \text{ ms}$			13 500			
		$t = 10 \text{ ms}$			10 500			
		$t = 8.3 \text{ ms}$			9400			
Maximum $I^2\sqrt{t}$ for fusing	$I^2\sqrt{t}$	$t = 0.1 \text{ to } 10 \text{ ms}$, no voltage reapplied			145 000	$\text{A}^2\sqrt{\text{s}}$		
Low level value of threshold voltage	$V_{F(TO)}$	$(16.7\% \times \pi \times I_{F(AV)} < I < \pi \times I_{F(AV)})$, $T_J = T_J \text{ maximum}$			0.73	V		
Low level value of forward slope resistance	r_f	$(16.7\% \times \pi \times I_{F(AV)} < I < \pi \times I_{F(AV)})$, $T_J = T_J \text{ maximum}$			2.4	$\text{m}\Omega$		
Maximum forward voltage drop	V_{FM}	$I_{pk} = 267 \text{ A}$, $T_J = 25 \text{ °C}$, $t_p = 400 \mu\text{s}$ rectangular wave			1.40	V		

THERMAL AND MECHANICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T_J, T_{Stg}		- 55 to 150	°C
Maximum thermal resistance, junction to case	R_{thJC}	DC operation	0.27	K/W
Thermal resistance, case to heatsink	R_{thCS}		0.25	
Allowable mounting torque		Tightening on nut ⁽¹⁾ Not lubricated threads	$3.4 + 0 - 10\%$ (30)	$\text{N} \cdot \text{m}$ (lbf · in)
		Tightening on hexagon ⁽²⁾ Lubricated threads	$2.3 + 0 - 10\%$ (20)	
Approximate weight			15.8	g
			0.56	
Case style		See dimensions - link at the end of datasheet	DO-203AB (DO-5)	

Notes

(1) As general recommendation we suggest to tight on hexagon and not on nut

(2) Torque must be applicable only to hexagon and not to plastic structure

95PF(R)...(W) High Voltage Series

Standard Recovery Diodes
Generation 2 DO-5 (Stud Version), 95 A

Vishay High Power Products

ΔR_{thJC} CONDUCTION

CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS
180°	0.14	0.10	$T_J = T_J$ maximum	K/W
120°	0.16	0.17		
90°	0.21	0.22		
60°	0.30	0.31		
30°	0.50	0.50		

Note

- The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

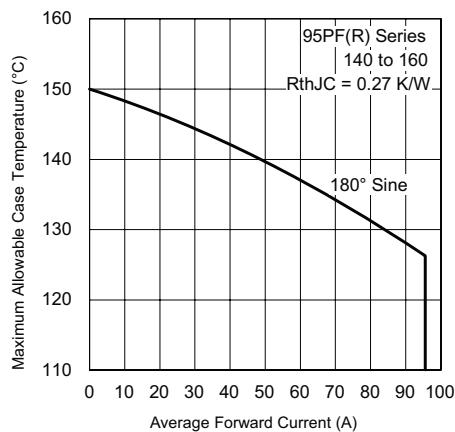


Fig. 1 - Current Ratings Characteristics

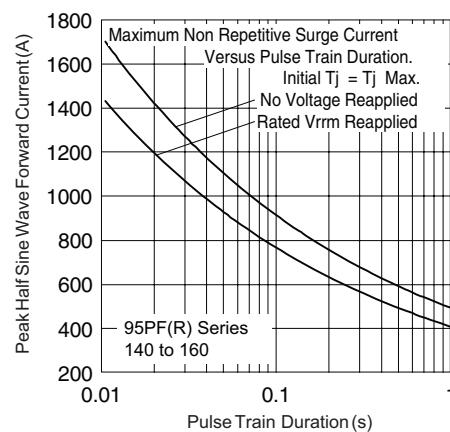


Fig. 3 - Maximum Non-Repetitive Surge Current

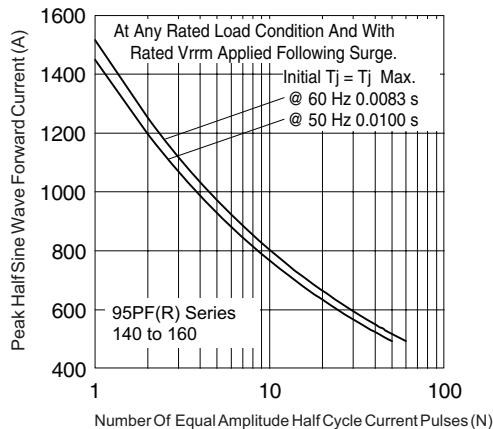


Fig. 2 - Maximum Non-Repetitive Surge Current

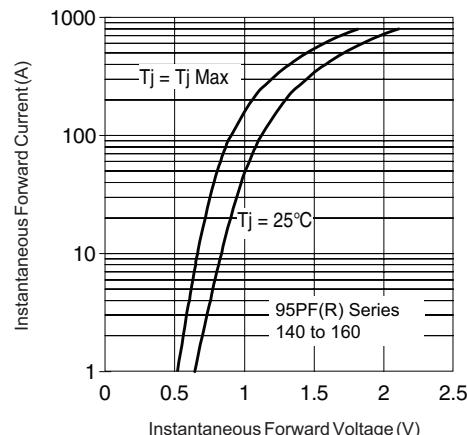


Fig. 4 - Forward Voltage Drop Characteristics

95PF(R)...(W) High Voltage Series

Vishay High Power Products

Standard Recovery Diodes
Generation 2 DO-5 (Stud Version), 95 A

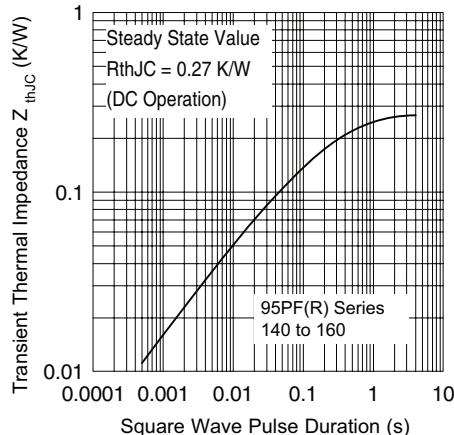


Fig. 5 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code	95	PF	R	160	W
1					
2					
3					
4					
5					

1 - 95 = Standard device
2 - PF = Plastic package
3 - • None = Stud normal polarity (cathode to stud)
• R = Stud reverse polarity (anode to stud)
4 - Voltage code x 10 = V_{RRM} (see Voltage Ratings table)
5 - • None = Standard terminal
(see dimensions for 95PF(R)... - link at the end of datasheet)
• W = Wire terminal
(see dimensions for 95PF(R)...W - link at the end of datasheet)

LINKS TO RELATED DOCUMENTS	
Dimensions	http://www.vishay.com/doc?95345

Legal Disclaimer Notice

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.