ANALOG DEVICES

Charge Pump Regulator & COM Driver for Color TFT Panel

FUNCTIONAL BLOCK DIAGRAM

Preliminary Technical Data

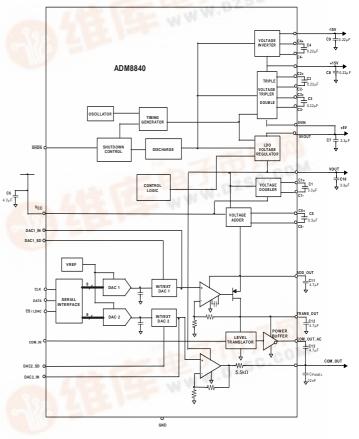
ADM8840

FEATURES

Programmable COM Driver to prevent Screen-Burn 3 Voltages (5.0V,15.0V,-15.0V) from one 3V Supply Power Efficiency optimised for use with TFT in mobile phones Low Quiescent Current Low Shutdown Current (<5uA) Shutdown Function

APPLICATIONS Handheld Instruments TFT LCD Panels

TFT LCD Panels Cellular Phones


GENERAL DESCRIPTION

The ADM8840 combines a charge pump regulator and a Common Line (COM) driver in a single chip solution for use in TFT LCD's. The device provides an LCD controller and grayscale DAC supply voltage of 5.0V ($\pm 2\%$), 2 gate drive voltages of $\pm 15V$ and $\pm 15V$ and a COM driver voltage. This COM Driver voltage alternates the polarity of the Common line voltage every line (or every frame) on the display in order to prevent screen-burn occuring over time. The ADM8840 is powered by a single 3.0V supply.

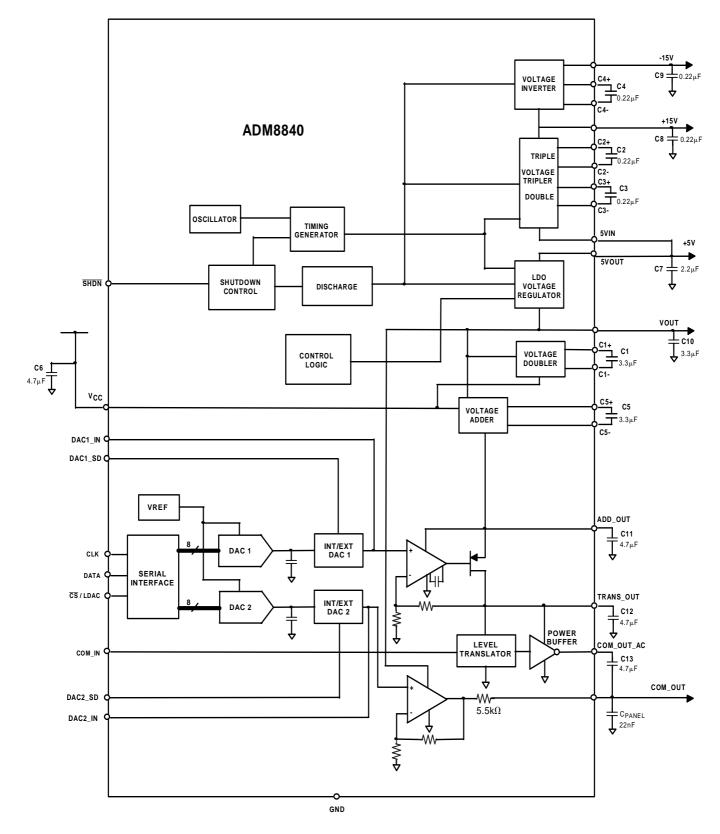
The ADM8840 has an internal 100KHz oscillator for driving the charge pumps.

The COM Driver section of the ADM8840 can be used to generate the alternate frame or line inversion of the COM line of the LCD panel. The ADM8840 receives the COM clock from the controller with a frequency up to 10kHz and allows programmable conditioning of its amplitude and centre voltage through the use of on-board DAC's. This allows programmable elimination of display flicker caused by the COM inversion.

The COM_OUT amplitude can be programmed from 4.0V to 7.0V in steps of 28mV. The COM_OUT centre voltage can be programmed to 0.9V to 2.8V in steps of 14mV.

The ADM8840 provides power up sequencing of the -15V and +15V gate drive outputs, ensuring the -15V starts to power up before the +15V.

The ADM8840 has a number of power save features, including low power Shutdown. The 5.0V output consumes the most power, so Power Efficiency is also maximised on this output with an oscillator enabling scheme (Green IdleTM).


The ADM8840 is fabricated using CMOS technology for minimal power consumption. The part is packaged in a 32pin LFCSP package.

 $^{\rm TM}$ Green Idle is a registered trademark of Analog Devices Inc.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781/329-4700World Wide Web Site: http://www.analog.comFax: 781/326-8703Analog Devices, Inc., 2003

REV. PrG 2/03

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Odf.dzsc.com

ADM8840 FUNCTIONAL BLOCK DIAGRAM

$(V_{CC} = +3V-10\%, +20\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C \text{ unless otherwise noted })$ $C_{1,C5,C10=3.3\mu}F; C_{2,C3,C4,C8,C9=0.22\mu}F; C_{6,C11,C12,C13=4.7\mu}F; C_{7}=2.2\mu$ F ADM8840-SPECIFICATIONS

PARAMETER	Min	Тур	Max	Units	Test Conditions
Input Voltage,V _{CC}	2.7	3.3	3.6	V	
Supply Current, I _{CC}		750		uA	O/Ps Unloaded; COM_IN Low;
		5		uA	DAC1_SD, DAC2_SD Low Shutdown Mode
		5			DAC1_IN and DAC2_IN should
					be open circuit because there
					is a voltage on these pins due to the output of the DAC.
					the output of the DAC.
CHARGE PUMP REGULATOR +5.0V OUTPUT					
Output Voltage	4.9	5.0	5.1	v	$I_L = 10uA$ to 5mA
Output Current		510	5	mA	
Output Ripple		10		mV p-p	5mA load
Transient Response		5		us	I_L stepped from 10uA to 5mA
+15.0V OUTPUT					
Output Voltage	14.0	15.0	16.0	V	$I_L = 1uA$ to 100uA
Output Current		50	150	uA	T 100 A
Output Ripple -15.0V OUTPUT		50		mV p-p	$I_L = 100 u A$
Output Voltage	-16.0	-15.0	-14.0	V	$I_L = -1uA$ to $-100uA$
Output Current	-150	-50		uA	T 100 I
Output Ripple		50		mV p-p	I_L =-100uA
Charge-Pump Frequency	TBD	100	TBD	kHz	
DIGITAL INPUT PINS	0.71			\$7	
Input Voltage, V _{IH}	0.7V _{CC}		$0.3V_{CC}$	V V	
Digital Input Current			1	μA	
Digital Input Capacitance			10	pF	Note 1.
COM DRIVER					
COM_OUT			_		
Amplitude	4	20	7	V	
Amplitude Stepsize Amplitude Accuracy		28 <10%		mV %	$V_{COM_OUT}=5V;$
Amplitude Accuracy		10 /0		70	DAC1 loaded with preset values;
					Measured at TRANS_OUT
					DAC1 preset values is 1V and
- · · ·			• •		Vcom should be 6V
Center Voltage	0.9	1.8	2.8	V	
Center Voltage Stepsize Center Voltage Accuracy		14 <10%		mV %	$V_{CENTER} = 1.8V;$
Center Voltage Accuracy		10 /0		70	DAC2 loaded with preset values
					DAC2 preset values is 500mV and
					Vcentre should be 1.5V.
Rise/Fall Time		1		μs	C _{PANEL} =20nF
Center Voltage Settling Time		TBD		us	
PANEL Load Capacitance		20		nF	
-		-			SV Lood - Sur A
POWER EFFICIENCY		70		%	5V _{OUT} Load = 5mA; +/-15V Load = +/-100uA;
					COM_{IN} Freq = 10kHz;
					$C_{PANEL} = 20nF;$
					Vcc=2.7V;
					Note 2

Guaranteed by Design. Not 100% Production Tested.
 COM Driver load is defined as the load current flowing through C13 with DACs loaded with preset values.
 * Specifications are target values and are subject to change without notice.

Timing Specifications

$V_{CC} = +3V-10\%, +20\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C$

PARAMETER	Min Typ	Max	Units	Test Conditions /Comments
POWER-UP SEQUENCE				
5V Rise time, T_{R5V}	TBD		us	10% to 90%, Figure 2
+15V Rise time, T_{R15V}	TBD		ms	10% to 90%, Figure 2
-15V Fall time, T _{F15V}	TBD		ms	90% to 10%, Figure 2
Delay between V _{CC} rise				
and SHDN rise, T _{DELAY1}	TBD		ms	Figure 2
Delay between -15V fall				
and +15V rise, T _{DELAY2}	TBD		ms	Figure 2
POWER- DOWN SEQUENCE				
5V Fall time, T _{F5V}	TBD		ms	90% to 10%, Figure 2
+15V Fall time, T _{F15V}	TBD		ms	90% to 10%, Figure 2
-15V Rise time, T _{R15V}	TBD		ms	10% to 90%, Figure 2
SERIAL INTERFACE				
t1	TBD		ns	CS/LDAC falling edge to SCLK
				Rising Edge; Note 1; Note2
t2	TBD		ns	SCLK High Pulsewidth; Note 1; Note2
t3	TBD		ns	SCLK Low Pulsewidth; Note 1; Note2
t4	TBD		ns	Minumum CS/LDAC high time;
				Note 1; Note2
t5	TBD		ns	SCLK Rising Edge to CS/LDAC
				Rising Edge; Note 1; Note2
t6	TBD		ns	DATA Setup time; Note 1; Note2
t7	TBD		ns	DATA Hold time; Note 1; Note2

NOTES

1. Guaranteed by Design. Not 100% Production Tested.

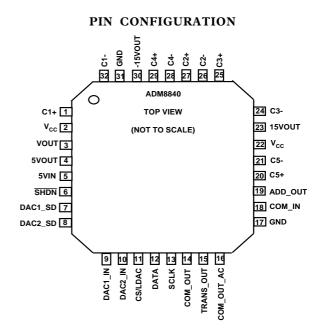
2. See Timing Diagram in Figure 4.

* Specifications are target values and are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

(TA=25°C unless otherwise noted.)	
Supply Voltage	-0.3 V to +4.0 V
Input Voltage on Digital Inputs	-0.3 V to +4.0 V
Output Short Circuit Duration to GND	10 seconds
Output Voltage	
+5.0V Output	-0.3 V to +6.0 V
-15.0V Output	-17 V to +0.3 V
+15.0V Output	-0.3 V to +17 V
Operating Temperature Range	-40°C to +85°C
Power Dissipation	50mW
Storage Temperature Range	-65°C to +150°C
ESD	Class I

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


THERMAL CHARACTERISTICS

32-Lead LFCSP Package:

 $\Theta_{JA} = 28^{\circ}C/Watt$

ORDERING GUIDE

Model Temperature Range		Package Option	
ADM8840ACI	P -40°C to +85°C	CP-32	

ADM8840

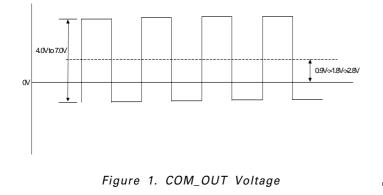
Pin	Mnemonic	Function	
1,32	C1+,C1-	External capacitor C1 is connected between these pins. A $3.3\mu F$ capacitor is recommended.	
2,22	V _{CC}	Positive Supply Voltage Input. Connect this pin to 3V supply. A 4.7μ F decoupling capacitor should be attached close to pin 2.	
3	VOUT	Voltage Doubler Output. This was derived by doubling the 3V supply. A 3.3μ F capacitor to ground is required on this pin.	
4	+5VOUT	+5.0V output pin. This was derived by doubling and regulating the +3V supply. A 2.2μ F capcitor to ground is required on this pin to stabilise the regulator.	
5	+5VIN	+5.0V input pin. This is the input to the voltage tripler and inverter charge pump circuits.	
6	SHDN	Digital Input. 3V CMOS Logic. Active low shutdown control. This shuts down the timing generator and enables the discharge circuit to dissipate the charge on the voltage outputs, thus driving them to 0V.	
7	DAC1_SD	Switches over to external DAC1 input when asserted.	
9	DAC1_IN	Input for external DAC1 signal.	
17, 31	GND	Device Ground Pin.	
13	SCLK	External Clock Input. Used to load DAC 1 with COM Voltage amplitude and DAC 2 with COM Centre Voltage.	
12	DATA	Digital Data Input to both DAC's 1 and 2.	
11	CS / LDAC	 Dual function pin. 1.Chip Select. Digital Input Logic. Chip Select for Digital Interface. 2. Load DAC. Digital Input Logic. DAC's 1 and 2 perform a conversion on a low-to-high transition. 	
18	COM_IN	Clock Input from digital controller chip. This input is level shifted, offset and inverted to provide a COM Voltage output swing at a frequency of the COM_IN input.	
16	COM_OUT_AC	COM_OUT_AC outputs the COM_IN signal inverted and level shifted by the value programmed on DAC 1. A $4.7\mu F$ capacitor is connected between this pin and COM_OUT.	
14	COM_OUT	The AC output on COM_OUT_AC is added to the center voltage programmed DAC2 so that the desired amplitude, centered about the correct center voltage appears on COM_OUT. The load capacitance seen by this pin is the bulk capa tance of the panel, typically 20nF.	
8	DAC2_SD	Switches over to external DAC2 input when asserted.	
10	DAC2_IN	Input for external DAC2 signal.	
15	TRANS_OUT	Level Translator Reference Output Voltage. This is the voltage that the value on DAC 1 is gained up to to provide the upper voltage for the Level Translator. A voltage of between 4.0V and 7.0V can be output here. A 4.7μ F cap is recommended for this pin.	

PIN FUNCTION DESCRIPTION

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADM8840 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADM8840


Pin	Mnemonic	Function	
19	ADD_OUT	Voltage Adder Output Pin. This is voltage generated by adding VOUT (unregulated output of first stage doubler) to V_{CC} . This summed voltage is then used as the supply for the gain stage which generates the Level Translator Output Voltage. A 4.7 μ F capacitor is recommended for this pin.	
20,21	C5+,C5-	External capacitor C5 is connected between these pins. A $3.3\mu F$ capacitor is recommended.	
23	+15VOUT	+15.0V output pin. This was derived by tripling the +5.0V regulated output. A 0.22μ F capacitor is required on this pin.	
29,28	C4+,C4-	External capacitor C4 is connected between these pins. A $0.22\mu F$ capacitor is recommended.	
25,24	C3+,C3-	External capacitor C3 is connected between these pins. A $0.22\mu F$ capacitor is recommended.	
27,26	C2+,C2-	External capacitor C2 is connected between these pins. A $0.22\mu F$ capacitor is recommended.	
30	-15VOUT	-15.0V output pin. This was derived by inverting the +15.0V output. A 0.22μ F capacitor is required on this pin.	

PIN FUNCTION DESCRIPTION (Contd.)

COM_OUT VOLTAGE

The COM Driver section of the ADM8840 can be used to generate the alternate frame or line inversion of the COM line of the LCD panel. The ADM8840 receives the COM clock (with frequency up to 10kHz) from the controller and allows programmable conditioning of its amplitude and centre voltage through the use of on-board DAC's 1 and 2. This allows programmable elimination of display flicker caused by the COM inversion.

The COM_OUT amplitude can be programmed from 4.0V to 7.0V in steps of 28mV. The COM_OUT centre voltage can be programmed from 0.9V to 2.8V in steps of 14mV. Figure 1 below shows a typical output from the COM_OUT pin. If programmable operation is not required the DACs can be shutdown with the DAC1_SD and DAC2_SD pins and an analog voltage applied to the DAC1_IN and DAC2_IN pins to set up the amplitude and centre voltage at COM_OUT.

POWER SEQUENCING

In order for the TFT panel to power up correctly, the gate drive supplies must be sequenced such that the -15V supply starts up before the +15V supply. The ADM8840 controls this sequence. When the device is turned on, the ADM8840 allow the -15V output to ramp immediately, but holds off the +15V output. It continues to do this until the negative output has reached -3V. At this point, the positive output is enabled and allowed to ramp to +15V. This sequence is highlighted in figure 2.

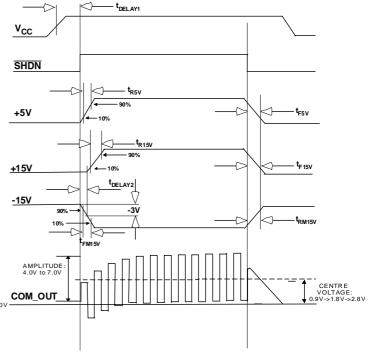


Figure 2. Power Sequence

SERIAL INTERFACE

The COM Driver section of the ADM8840 uses a serial interface to input data and transfer it into the DACs. Figure 3, below, shows the operation of the serial interface. The data is transmitted along the serial DATA line, along with a serial clock signal, SCLK. This data is read into a Shift Register. When the 8 bits are successfully stored in the Shift Register a low-to-high transition on the CS/LDAC input causes the latch to load the 8-bits of data into the relevent DAC.

This function is also shown in the waveforms in Figure 4 below. A falling edge on the CS/LDAC input initiates the data read into the shift register. The first bit of the datastream is the DAC Select Bit (DAC_SEL) which determines which internal DAC the data will be written to. A '1' selects DAC 1 which sets the Amplitude of the output and a '0' selects

DAC 2 which sets the Centre Voltage of the output. The individual data bits are then read in one by one on the DATA line. After the DAC_SEL bit and the 8 data bits have been read there is a pause to ensure the shift register outputs are stable. Then a rising edge on the CS/LDAC input loads the 8 bits on the shift register outputs into the relevent DAC (and the DAC outputs will change accordingly). Note that if CS/LDAC goes high before all 8 data bits are read in then incorrect data will be loaded into the DACs. All bits on the DATA line are read in on each rising edge of the SCLK signal.

When the ADM8840 comes out of shutdown the DACs are preset with default values generating a COM_OUT Amplitude of 6V with a Centre voltage of 1.5V.

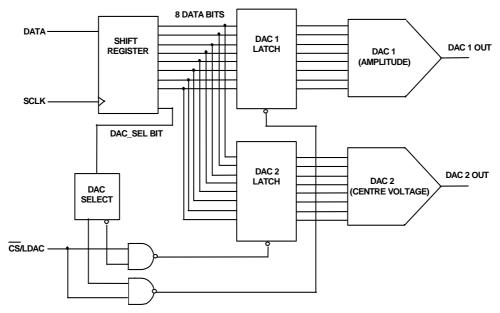


Figure 3. Serial Interface Diagram

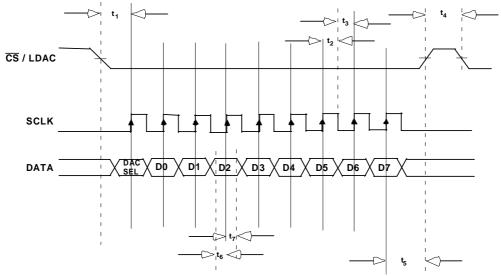


Figure 4. Serial Interface Waveforms

ADM8840

DAC1 Setup

The resolution of DAC1 is 4.7mV this is scaled up by 6 to give COM_OUT amplitude resolution of 28mV (4.7mV * 6 = 28mV). The COM_OUT amplitude Vp-p is given by, (Binary Code/255)(1.188)(6)= Vp-p (COM_OUT). A table of the min, max and typical values for COM_OUT amplitude is given in the Table 1 below.

DAC2 Setup

The resolution of DAC2 is 4.7mV this is scaled up by 3 to give you the COM_OUT centre voltage resolution of 14mV ($4.7\text{mV} \times 3 = 14\text{mV}$). The COM_OUT centre voltage is given by,

(Binary Code/255)(1.188)(3)= COM_OUT DC Voltage. A table of the min, max and typical values for COM_OUT centre voltage is given in the Table 2 below.

Table	1	СОМ	OUT	amplitude	Voltage
1 4010	•	00111_		umphicade	, on age

сом_с	OUT amplitude voltage	Binary Bits written to DAC1	Integer	DAC1_IN Voltage
(Max)	7.016V	11111011	251	1.667V
	6.9882	11111010	250	1.6623
(Typ)	6.0098V	11010111	215	1.0011V
	4.0531V	10010001	145	671.7mV
(Min)	4.0025V	10010000	144	667mV

Table 2 COM_OUT centre voltage

COM_OUT centre voltage		Binary Bits written to DAC2	Integer	DAC2_IN Voltage	
(Max)	2.8092V 2.7952V	11001001 11001000	201 200	933mV 928mV	
(Typ)	1.5094V	01101100	 108	503.9mV	
	 0.9224V	01000010	 66	 304.7mV	
(Min)	0.9084V	01000001	65	300mV	

BOOSTING THE CURRENT DRIVE OF THE +/-15V SUPPLY

The ADM8840 +/-15V output can deliver 100uA of current in the typical configuration, as shown in Figure 5.

In this configuration the 5Vout (pin 4) is connected to 5Vin (pin 5), as can be seen on block diagram Page 1 of this data sheet.

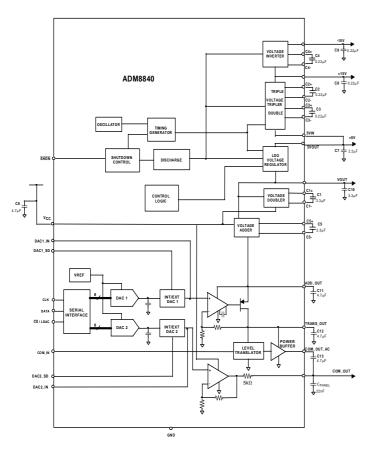
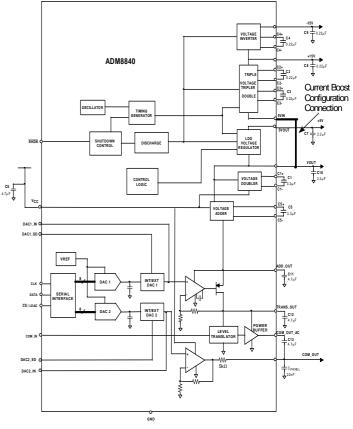
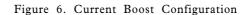




Figure 5. Typical Configuration

It is possible to configure the ADM8840 to supply up to 400uA on the +/-15V outputs, by changing its configuration slightly, as shown in Figure 6.

The configuration in Figure 6, can supply up to 400uA of current on both the +15V and the -15V outputs. If the load on the +/-15V does not draw any current the voltage on the +/-15V outputs can rise up to +/-16.5V.In this configuration Vout (pin 3) is connected to 5Vin (pin 5).

ADM8840

OUTLINE DIMENSIONS Dimensions Shown in Inches and (mm). 32-Lead 5X5 Chip Scale Package (CP-32) 0.024 (0.60) 0.017 (0.42) 0.009 (0.24) 0.010 (0.25) MIN 0.197 (5.0) BSC SQ 0.024 (0.60) 0.017 (0.42) H ក្តិពត្តព្រំ 0.009 (0.24) -(H)-0.128 (3.25) 0.122 (3.10) SQ 0.116 (2.95) PIN 1 INDICATOR $\frac{0.012 (0.30)}{0.009 (0.23)} \underbrace{\Downarrow}_{4}$ 0.187 (4.75) BSC SQ TOP VIEW BOTTOM VIEW 0.020 (0.50) 0.016 (0.40)), <u>่ ได้ทุกกุกกตั้</u> 0.012 (0.30) 🛉 ← 0.138 (3.50) → REF 0.031 (0.80) MAX 12. MAX 0.035 (0.90) MAX 0.002 (0.05) 0.0004 (0.01) 0.0 (0.00) 0.033 (0.85) NOM SEATING PLANE 0.008 (0.20) REF