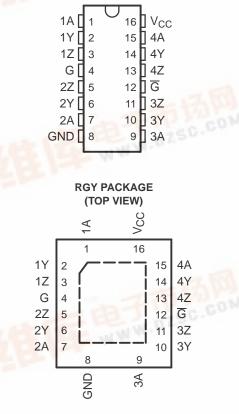


捷多邦,专业PCB打样工厂,24小时加急出货

AM26LV31E


www.ti.com

SLLS848A-APRIL 2008-REVISED MAY 2008

LOW-VOLTAGE HIGH-SPEED QUADRUPLE DIFFERENTIAL LINE DRIVER WITH ±15-kV IEC ESD PROTECTION

FEATURES

- Meets or Exceeds Standards TIA/EIA-422-B
 and ITU Recommendation V.11
- Operates From a Single 3.3-V Power Supply
- ESD Protection for RS422 Bus Pins
 - ±15-kV Human-Body Model (HBM)
 - ±8-kV IEC61000-4-2, Contact Discharge
 ±15-kV IEC61000-4-2, Air-Gap Discharge
- Switching Rates up to 32 MHz
- Propagation Delay Time ... 8 ns Typ
- Pulse Skew Time . . . 500 ps Typ
- High Output-Drive Current . . . ±30 mA
- Controlled Rise and Fall Times ... 5 ns Typ
- Differential Output Voltage With 100-Ω Load . . . 2.6 V Typ
- Accepts 5-V Logic Inputs With 3.3-V Supply
- I_{off} Supports Partial-Power-Down Mode Operation
- Driver Output Short-Protection Circuit
- Glitch-Free Power-Up/Power-Down Protection
- Package Options: SOP, SOIC, TSSOP, QFN

D, NS, OR PW PACKAGE

(TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

The AM26LV31E is a quadruple differential line driver with 3-state outputs. This driver has ±15-kV ESD (HBM and IEC61000-4-2, Air-Gap Discharge) and ±8-kV ESD (IEC61000-4-2, Contact Discharge) protection. This device is designed to meet TIA/EIA-422-B and ITU Recommendation V.11 drivers with reduced supply voltage.

The device is optimized for balanced-bus transmission at switching rates up to 32 MHz. The outputs have high current capability for driving balanced lines, such as twisted-pair transmission lines, and provide a high impedance in the power-off condition.

The AM26LV31EI is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AM26LV31E

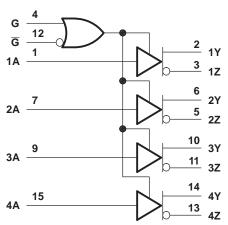
www.ti.com

SLLS848A-APRIL 2008-REVISED MAY 2008

ORDERING INFORMATION

T _A	PAC	KAGE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC – D	Tape and reel	AM26LV31EIDR	AM26LV3IEI
–40°C to 85°C	SOP – NS	Tape and reel	AM26LV31EINSR	26LV31EI
-40 C 10 65 C	TSSOP – PW	Tape and reel	AM26LV31EIPWR	SB31
	QFN – RGY	Tape and reel	AM26LV31EIRGYR	SB31

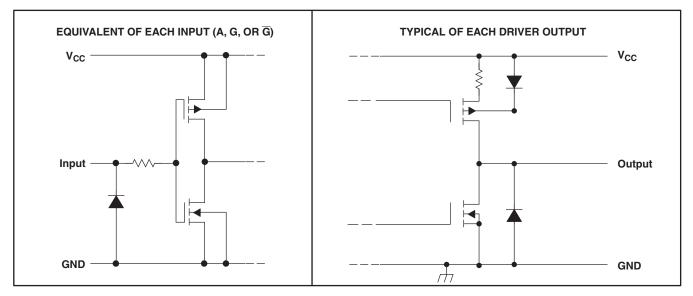
(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

INPUT	ENA	BLES	OUTPUTS			
Α	G	G	Y	Z		
Н	Н	Х	Н	L		
L	н	х	L	н		
Н	Х	L	н	L		
L	Х	L	L	н		
Х	L	Н	Z	Z		

FUNCTION TABLE⁽¹⁾

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off)


LOGIC DIAGRAM

SLLS848A-APRIL 2008-REVISED MAY 2008

SCHEMATIC

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT	
V_{CC}	Supply voltage range ⁽²⁾		-0.5	6	V		
VI	Input voltage range			-0.5	6	V	
Vo	Output voltage range			-0.5	6	V	
I _{IK}	Input clamp current	V ₁ < 0			-20	mA	
I _{OK}	Output clamp current	V _O < 0			-20	mA	
I _O	Continuous output current	Continuous output current				mA	
	Continuous current through V _{CC} or GND				±200	mA	
TJ	Operating virtual junction temperature				150	°C	
		D package			73		
0	Declares the resulting a damage $(3)(4)$	NS package			64	64	
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	PW package			108	°C/W	
		RGY package			39		
T _A	Operating free-air temperature range				85	°C	
T _{stg}	Storage temperature range				150	°C	

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating (1) conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values except differential input voltage are with respect to the network GND.

(2) Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. Selecting the maximum of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. (3)

(4)

Texas INSTRUMENTS

SLLS848A-APRIL 2008-REVISED MAY 2008

www.ti.com

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage	3	3.3	3.6	V
VI	Input voltage	0		5.5	V
VIH	High-level input voltage	2			V
V _{IL}	Low-level input voltage			0.8	V
I _{OH}	High-level output current			-30	mA
I _{OL}	Low-level output current			30	mA
T _A	Operating free-air temperature	-40		85	°C

ELECTRICAL CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OH}	High-level output voltage	$V_{IH} = 2 \text{ V}, \text{ V}_{IL} = 0.8 \text{ V}, \text{ I}_{OH} = -20 \text{ mA}$	2.4	3		V
V _{OL}	Low-level output voltage	$V_{IH} = 2 \text{ V}, \text{ V}_{IL} = 0.8 \text{ V}, \text{ I}_{OL} = 20 \text{ mA}$		0.2	0.4	V
V _{OD1}	Differential output voltage	$I_0 = 0 \text{ mA}$	2		4	V
V _{OD2}	Differential output voltage	$R_L = 100 \Omega$ (see Figure 1) ⁽²⁾	2	2.6		V
$\Delta V_{OD} $	Change in magnitude of differential output voltage	$R_L = 100 \ \Omega \ (see \ Figure \ 1)^{(2)}$			±0.4	V
V _{OC}	Common-mode output voltage	$R_L = 100 \Omega$ (see Figure 1) ⁽²⁾		1.5	2	V
Δ V _{OC}	Change in magnitude of common-mode output voltage	$R_L = 100 \ \Omega \ (see \ Figure \ 1)^{(2)}$			±0.4	V
I _{O(OFF)}	Output current with power off	V_{CC} = 0, V_{O} = –0.25 V or 5.5 V			±100	μA
I _{OZ}	High-impedance state output current	$V_{O} = -0.25$ V or 5.5 V, G = 0.8 V or $\overline{G} = 2$ V			±100	μA
I _I	Input current	$V_{CC} = 0 \text{ or } 3.6 \text{ V}, \text{ V}_{I} = 0 \text{ or } 5.5 \text{ V}$			±10	μA
I _{OS}	Short-circuit output current	$V_{O} = V_{CC} \text{ or } GND^{(3)}$	-30		-150	mA
I _{CC}	Supply current (total package)	$V_I = V_{CC}$ or GND, No load, enable			100	μA
C _{pd}	Power dissipation capacitance	No load ⁽⁴⁾		160		pF

All typical values are at V_{CC} = 3.3 V, T_A = 25°C.
 Refer to TIA-EIA-422-B for exact conditions.
 Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
 C_{pd} determines the no-load dynamic current consumption. I_S = C_{pd} × V_{CC} × f + I_{CC}

SWITCHING CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PHL}	Propagation delay time, high- to low-level output		4	8	12	ns
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 2	4	8	12	ns
tt	Transition time (t _r or t _f)	See Figure 2		5	10	ns
t _{PZH}	Output-enable time to high level	See Figure 3		10	20	ns
t _{PZL}	Output-enable time to low level	See Figure 4		10	20	ns
t _{PHZ}	Output-disable time from high level	See Figure 3		10	20	ns
t _{PLZ}	Output-disable time from low level	See Figure 4		10	20	ns
t _{sk(p)}	Pulse skew			0.5	1.5	ns
t _{sk(o)}	Skew limit (pin to pin)	See Figure 2 ⁽²⁾⁽³⁾			1.5	ns
t _{sk(lim)}	Skew limit (device to device)				3	ns
f _(max)	Maximum operating frequency	See Figure 2		32		MHz

(1)

All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. Pulse skew is defined as the $|t_{PLH} - t_{PHL}|$ of each channel of the same device. Skew limit (device to device) is the maximum difference in propagation delay times between any two channels of any two devices. (2) (3)

ESD PROTECTION

PARAMETER	TEST CONDITIONS	TYP	UNIT
	НВМ	±15	
Driver output	IEC61000-4-2, Air-Gap Discharge	±15	kV
	IEC61000-4-2, Contact Discharge	±8	

PARAMETER MEASUREMENT INFORMATION

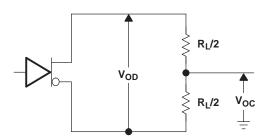
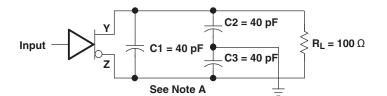
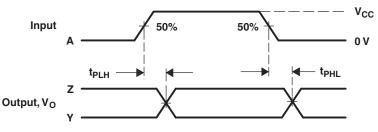
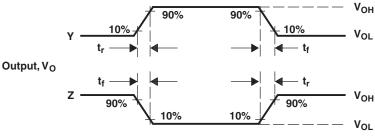





Figure 1. Test Circuit, V_{OD} and V_{OC}

PROPAGATION DELAY TIMES

RISE AND FALL TIMES

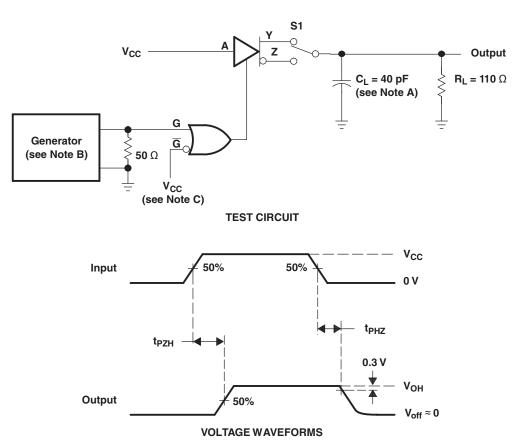
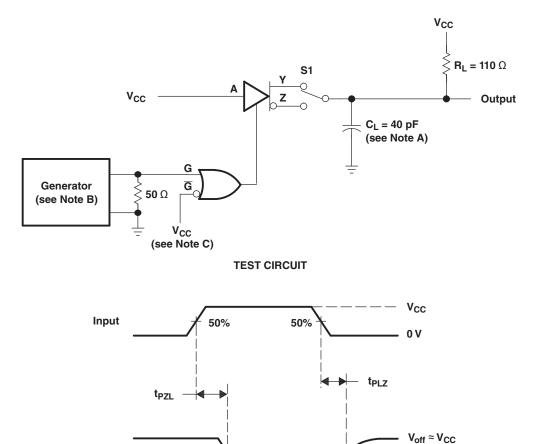

- NOTES: A. C_L includes probe and jig capacitance.
 - B. The input pulse is supplied by a generator having the following characteristics: PRR = 32 MHz, 50% duty cycle, t_r and $t_f \le 2$ ns.

Figure 2. Test Circuit and Voltage Waveforms, t_{PHL} and t_{PLH}

6

PARAMETER MEASUREMENT INFORMATION (continued)


NOTES: A. C_L includes probe and jig capacitance.

- B. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, 50% duty cycle, t_r and $t_f \le 2$ ns.
- C. To test the active-low enable G ground G and apply an inverted waveform to G

Figure 3. Test Circuit and Voltage Waveforms, t_{PZH} and t_{PHZ}

TEXAS INSTRUMENTS

www.ti.com

PARAMETER MEASUREMENT INFORMATION (continued)

VOLTAGE WAVEFORMS

Vol

0.3 V

NOTES: A. C_L includes probe and jig capacitance.

Output

- B. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, 50% duty cycle, t_r and $t_f \le 2$ ns.
- C. To test the active-low enable G ground G and apply an inverted waveform to G

Figure 4. Test Circuit and Voltage Waveforms, t_{PZL} and t_{PLZ}

50%

PACKAGE OPTION ADDENDUM

18-Sep-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
AM26LV31EIDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
AM26LV31EIDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
AM26LV31EINSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
AM26LV31EINSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
AM26LV31EIPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
AM26LV31EIPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
AM26LV31EIRGYR	ACTIVE	QFN	RGY	16	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
AM26LV31EIRGYRG4	ACTIVE	QFN	RGY	16	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

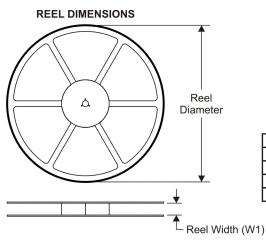
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

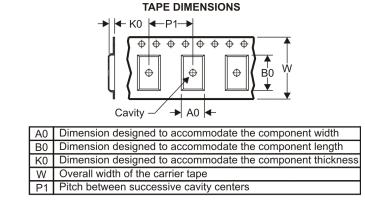
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

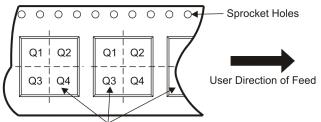
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

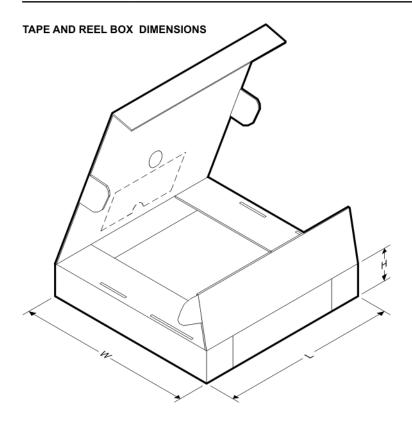


PACKAGE MATERIALS INFORMATION

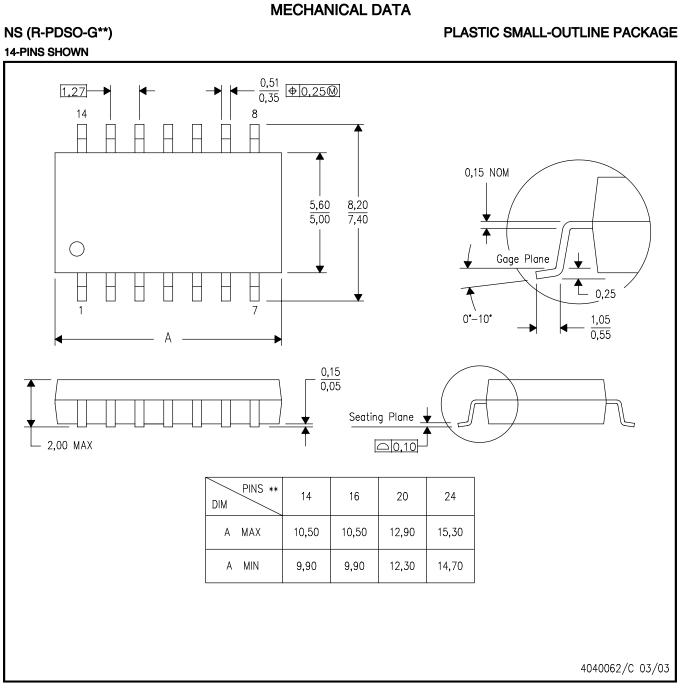

28-Jun-2008

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All di	imensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	AM26LV31EIDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
	AM26LV31EINSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
A	AM26LV31EIPWR	TSSOP	PW	16	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
A	M26LV31EIRGYR	QFN	RGY	16	1000	180.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1


PACKAGE MATERIALS INFORMATION

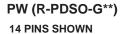
28-Jun-2008

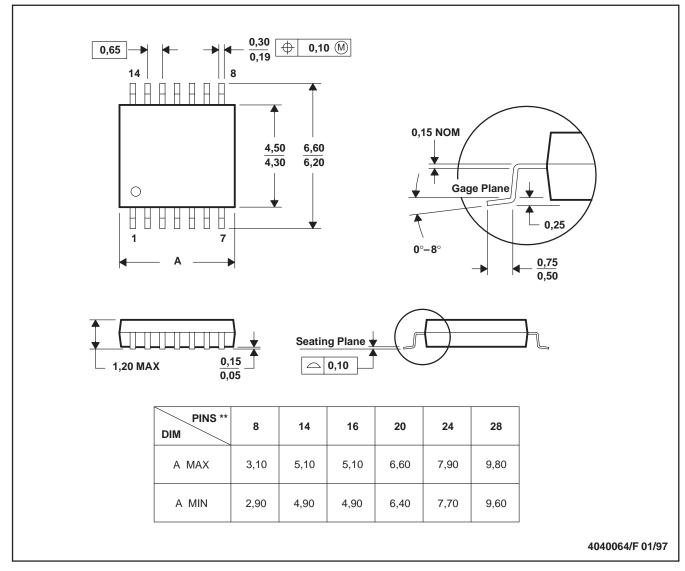
*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
AM26LV31EIDR	SOIC	D	16	2500	346.0	346.0	33.0
AM26LV31EINSR	SO	NS	16	2000	346.0	346.0	33.0
AM26LV31EIPWR	TSSOP	PW	16	2000	346.0	346.0	29.0
AM26LV31EIRGYR	QFN	RGY	16	1000	190.5	212.7	31.8

Pack Materials-Page 2

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

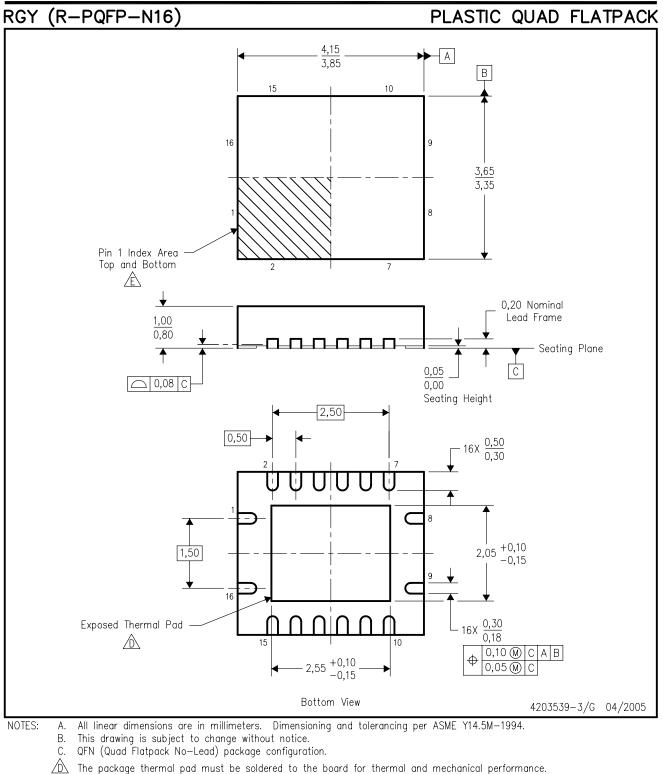


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

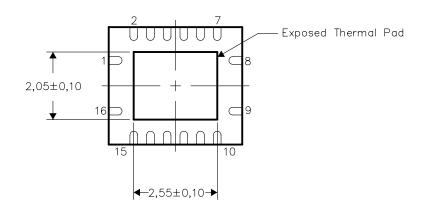
D. Falls within JEDEC MO-153

MECHANICAL DATA

F. Package complies to JEDEC MO-241 variation BB.

Æ Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.

The Pin 1 identifiers are either a molded, marked, or metal feature.

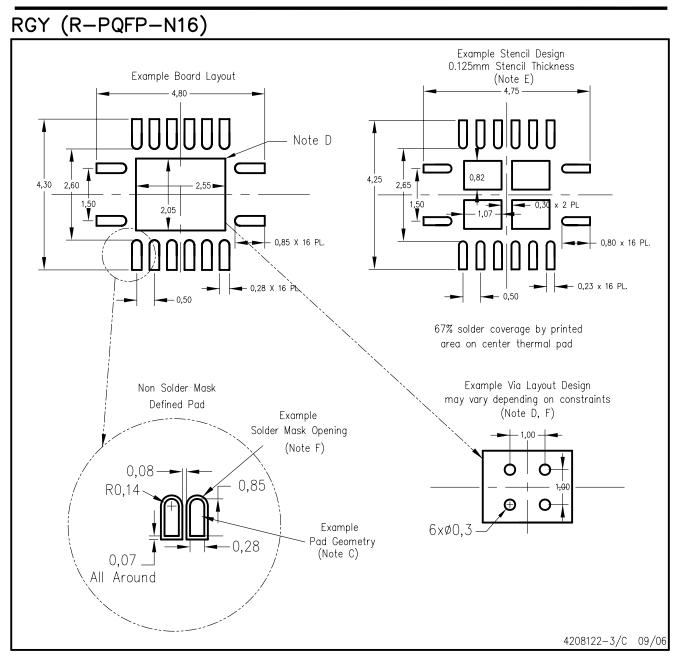

TEXAS INSTRUMENTS www.ti.com

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

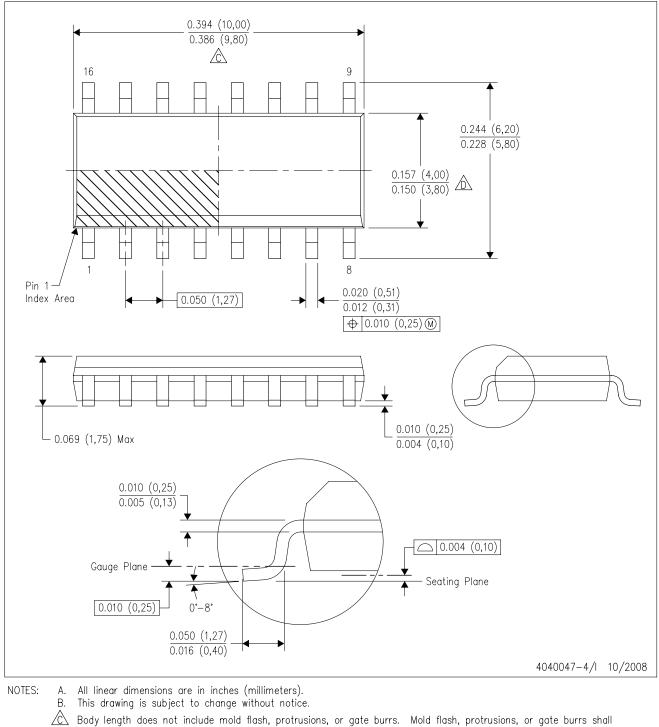


Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

LAND PATTERN



- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

not exceed .006 (0,15) per end.

 \mathbb{A} Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	am
Data Converters	data
DSP	dsp
Clocks and Timers	ww
Interface	inte
Logic	logi
Power Mgmt	pow
Microcontrollers	mic
RFID	WW
RF/IF and ZigBee® Solutions	ww

mplifier.ti.com ataconverter.ti.com sp.ti.com ww.ti.com/clocks iterface.ti.com ogic.ti.com ower.ti.com icrocontroller.ti.com ww.ti-rfid.com ww.ti.com/lprf

Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/security www.ti.com/video www.ti.com/video www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated

Wireless