

M220x Series

9x14 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML, Clock Oscillator

Product Features

- Featuring **QiK Chip™** Technology
- From order to ship in 2 weeks
- Superior Jitter Performance (less than 0.25 ps RMS, 12 kHz - 20 MHz)
- SAW replacement - better performance
- Frequencies from 150 MHz to 1.4 GHz

QiK Chip™

Product Description

The 220x series of oscillators are 9x14 J-Lead oscillators designed with the QiK Chip™ technology. The QiK Chip™ technology was specifically designed for crystal based oscillators to provide low jitter performance (as low as 0.25 ps RMS) and a wide range of frequency support (150.00 MHz to 1.4 GHz) and provides a breakthrough in lean manufacturing enabling product to be provided in less than 2 weeks. The M220x provides design engineers with the stability needed in their advanced applications and supports the need for parts to be supplied quickly so that the rest of their circuit design can be solidified.

Product Applications

- Telecommunications such as SONET / SDH / DWDM / FEC / SERDES / OC-3 thru OC-192
- 1.2-4-10 Gigabit Fibre Channel
- Wireless Base Stations / WLAN / Gigabit Ethernet
- Avionic Flight Controls
- Military Communications
- Clock and Data Recovery
- SD/HD Video
- FPGA/ASIC Clock Generation
- Test and Measurement Equipment

Product Ordering Information

Ordering Information							
Product Series	M220	0	6	8	B	P	J 00.0000 MHz
Supply Voltage							0: 3.3 V 1: 2.5 V 2: 1.8 V
Temperature Range							2: -40°C to +85°C 6: -20°C to +70°C
Stability							4: ±50 ppm 3: ±100 ppm 8: ±20 ppm
Enable/Disable							B: Enable High (pin 1) G: Enable High (pin 2) S: Enable Low (pin 1) M: Enable Low (pin 2) U: No Enable/Disable
Logic Type							P: LVPECL L: LVDS M: CML
Package/Lead Configuration							J: 9x14 mm J-lead
Frequency (customer specified)							

M2200Sxxx, M2201Sxxx, M2202Sxxx - Contact factory for datasheets.

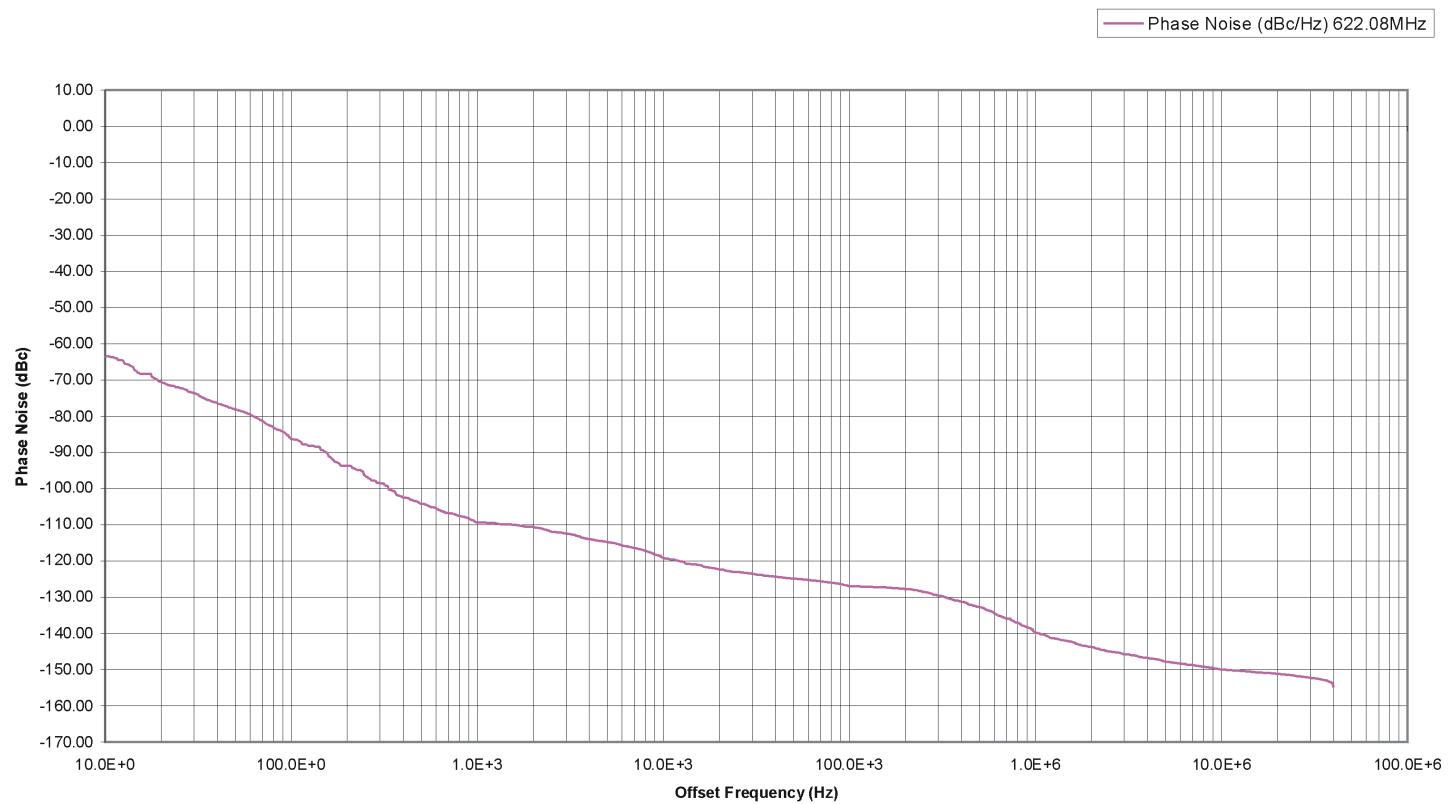
M220x Series

9x14 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML,
Clock Oscillator

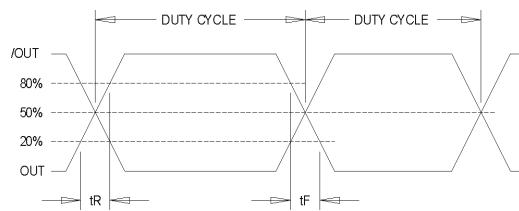
Performance Characteristics

PARAMETER	Symbol	Min.	Typ.	Max.	Units	Condition/Notes
Frequency Range	F	150		1400	MHz	See Note 1
Operating Temperature	T _A					(See ordering information)
Storage Temperature	T _S	-55		+125	°C	
Frequency Stability	ΔF/F					(See ordering information) See Note 2
Aging						
1st Year		-3		+3	ppm	
Thereafter (per year)		-1		+1	ppm	
Supply Voltage	V _{CC}	1.71	1.8	1.89	V	LVDS/CML
		2.375	2.5	2.625	V	
		3.135	3.3	3.465	V	
Input Current	I _{CC}			125	mA	LVPECL/LVDS/CML
Load						See Note 3
		50 Ohms to (V _{CC} - 2) Vdc				LVPECL Waveform
		100 Ohm differential load				LVDS/CML Waveform
Symmetry (Duty Cycle)		45		55	%	LVPECL – V _{DD} -1.3 V LVDS – 1.25 V
Output Skew			20		ps	LVPECL
			15		ps	CML
			20		ps	LVDS
Differential Voltage	V _{OD}	250	350	450	mV	LVDS
	V _{OD}	0.7	0.95	1.20	V _{PP}	CML
Common Mode Output Voltage	V _{CM}		1.2		V	LVDS
Logic "1" Level	V _{OH}	V _{CC} - 1.02			V	LVPECL
Logic "0" Level	V _{OL}			V _{CC} - 1.63	V	LVPECL
Rise/Fall Time	T _R /T _F		0.23	0.50	ns	@ 20/80% LVPECL
Enable Function			80% V _{CC} min or N/C: Output active			Output Option B or G
			0.5V max: Output disables to high-Z			
			0.5V max or N/C: Output active			Output Option S or M
			80% V _{CC} min: Output disables to high-Z			
Start up Time				10	ms	
Phase Jitter @ 622.08 MHz	φJ		0.25		ps RMS	Integrated 12 kHz – 20 MHz
Phase Noise						@ 622.08 MHz
10 Hz			-60			dBc/Hz
100 Hz			-97			dBc/Hz
1 KHz			-107			dBc/Hz
10 KHz			-116			dBc/Hz
100 KHz			-121			dBc/Hz
1 MHz			-134			dBc/Hz
10 MHz			-146			dBc/Hz
100 MHz			-148			dBc/Hz
Environmental	Mechanical Shock	Per MIL-STD-202, Method 213, Condition C (100 g's, 6 mS duration, ½ sinewave)				
	Vibration	Per MIL-STD-202, Method 201 & 204 (10 g's from 10-2000 Hz)				
	Hermeticity	Per MIL-STD-202, Method 112, (1x10 ⁻⁸ atm. cc/s of Helium)				
	Thermal Cycle	Per MIL-STD-883, Method 1010, Condition B (-55°C to +125°C, 15 min. dwell, 10 cycles)				
	Solderability	Per EIAJ-STD-002				
Max Soldering Conditions		See solder profile, Figure 1				

Note 1: Contact factory for standard frequency availability over 945 MHz


Note 2: Stability is inclusive of initial tolerance, deviation over temperature, shock, vibration, supply voltage, and aging for one year at 50°C mean ambient temperature.

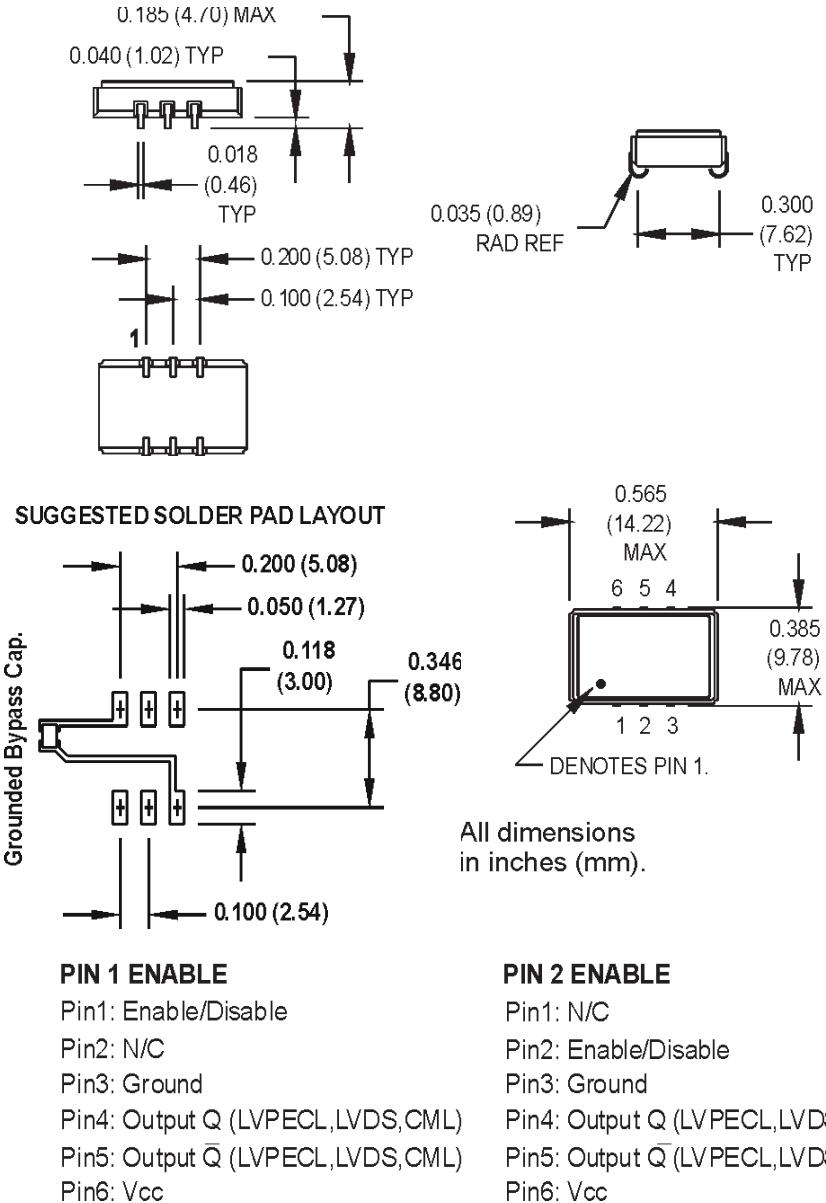
Note 3: See Load Circuit Diagram in this Datasheet. Consult factory with nonstandard output load requirements.


M220x Series

9x14 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML,
Clock Oscillator

Phase Noise Plot

Output Waveform



Output Waveform: LVDS/CML/PECL

M220x Series

9x14 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML,
Clock Oscillator

Product Dimension & Pinout Information

M220x Series

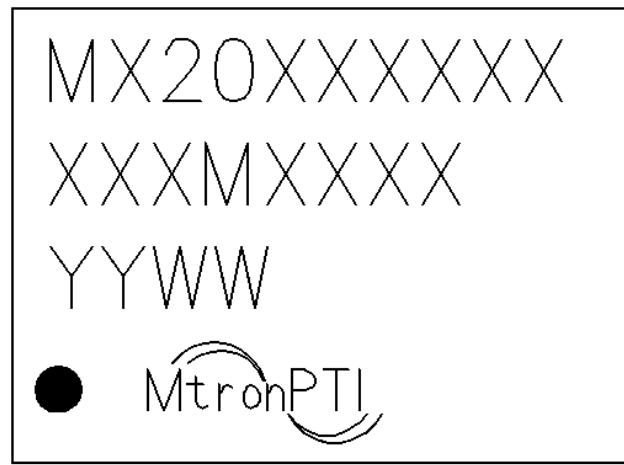
9x14 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML,
Clock Oscillator

Handling Information

Although protection circuitry has been designed into the M220x oscillator, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. MtronPTI utilizes a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the mode. Although no industry-wide standard has been adopted for the CDM, a standard HBM (resistance = 1500 Ω, capacitance = 100 pF) is widely used and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained using these circuit parameters.

Model	ESD Threshold, Minimum	Unit
Human Body	1500*	V
Charged Device	1500*	V

* MIL-STD-833D, Method 3015, Class 1

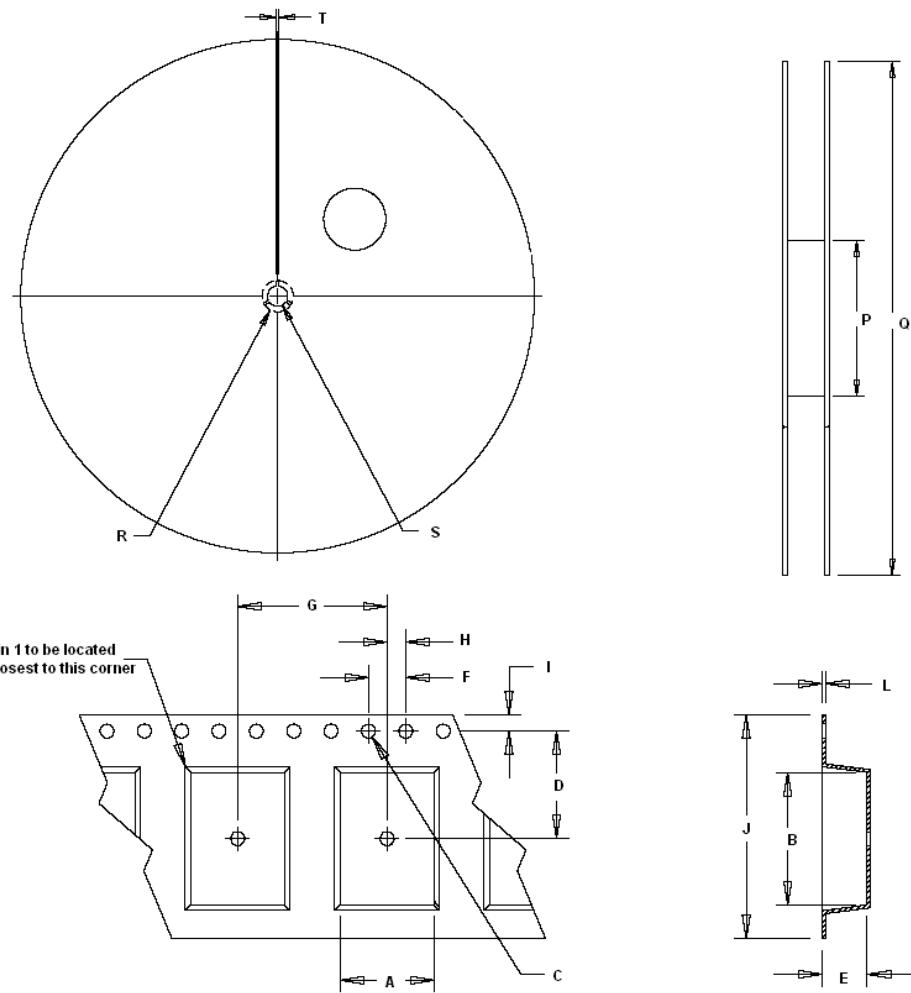

ATTENTION
Static Sensitive
Devices
Handle only at
Static Safe Work
Stations

Quality Parameters

Environmental Specifications/Qualification Testing Performed on the M220 Clock Oscillator		
Test	Test Method	Test Condition
Electrical Characteristics	Internal Specification	Per Specification
Frequency vs. Temperature	Internal Specification	Per Specification
Mechanical Shock	MIL-STD-202, Method 213, C	100 g's
Vibration	MIL-STD-202, Method 201-204	10 g's from 10-2000 Hz
Thermal Cycle	MIL-STD-883, Method 1010, B	-55 Deg. C to +125 Deg. C, 15 minute Dwell, 10 cycles
Aging	Internal Specification	168 Hours at 105 Degrees C
Gross Leak	MIL-STD-202, Method 112	30 Second Immersion
Fine Leak	MIL-STD-202, Method 112	Must meet 1×10^{-8}
Solderability	MIL-STD-883, Method 2003	8 Hour Steam Age – Must Exhibit 95% coverage
Resistance to Solvents	MIL-STD-883, Method 2015	Three 1 minute soaks
Terminal Pull	MIL-STD-883, Method 2004, A	2 Pounds
Lead Bend	MIL-STD-883, Method 2004, B1	1 Bending Cycle
Physical Dimensions	MIL-STD-883, Method 2016	Per Specification
Internal Visual	Internal Specification	Per Internal Specification

Part Marking Guide

- Line 1: Model Number
- Line 2: Frequency
- Line 3: Date Code
- Line 4: Pin 1 Indicator / MtronPTI



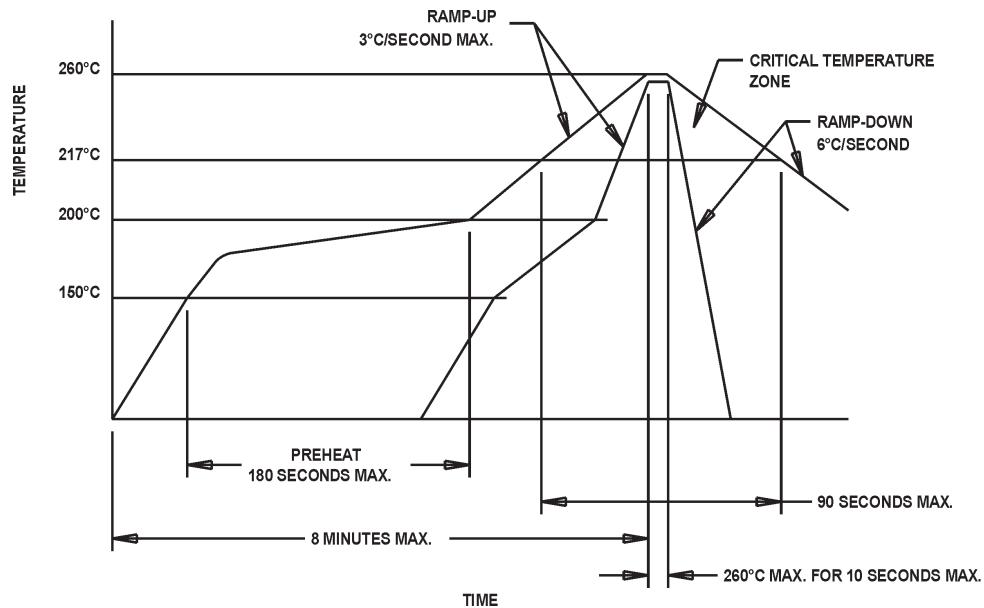
M220x Series

9x14 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML,
Clock Oscillator

Tape & Reel Specifications

(all measurements are in mm)	A	B	C	D	E	F	G	H	I	J	L	P	Q	R	S	T
M220x	10.00	14.20	1.50	11.50	4.85	4.00	16.00	2.00	1.75	24.00	0.35	100.00	330.00	20.20	13.00	2.00

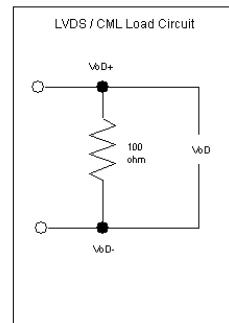
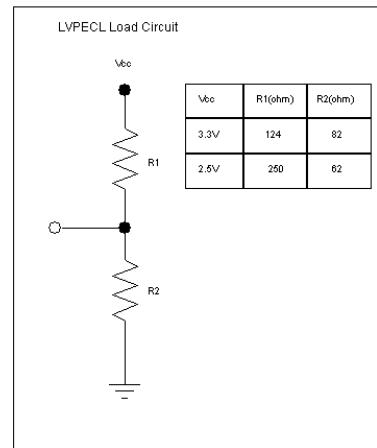
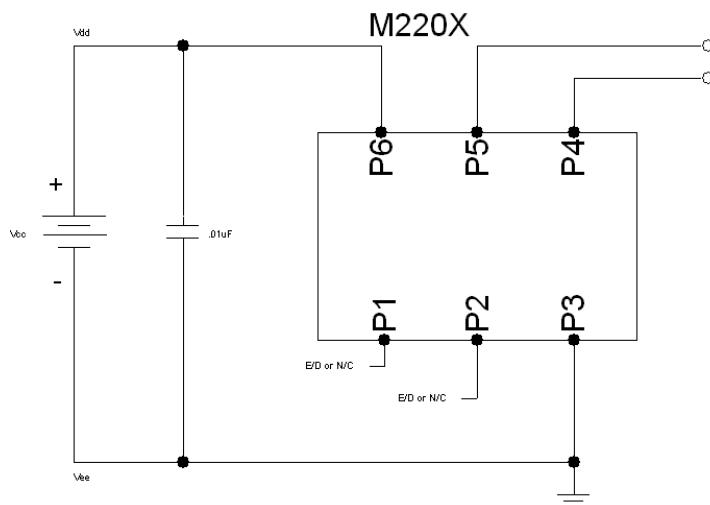
Standard Tape and Reel: 500 parts per reel


Product Revision Table

Date	Revision	PCN Number	Details of Revision
7/20/07	A	10118	IC Revision to improve phase noise and electrical performance

M220x Series

9x14 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML,
Clock Oscillator




Maximum Soldering Conditions

Solder Conditions

Note: Exceeding these limits may damage the device.

Typical Test Circuit & Load Circuit Diagrams

For custom products or additional specifications contact our sales team at
800.762.8800 (toll free) or 605.665.9321

For more information on this product visit the MtronPTI website at

www.mtronpti.com