

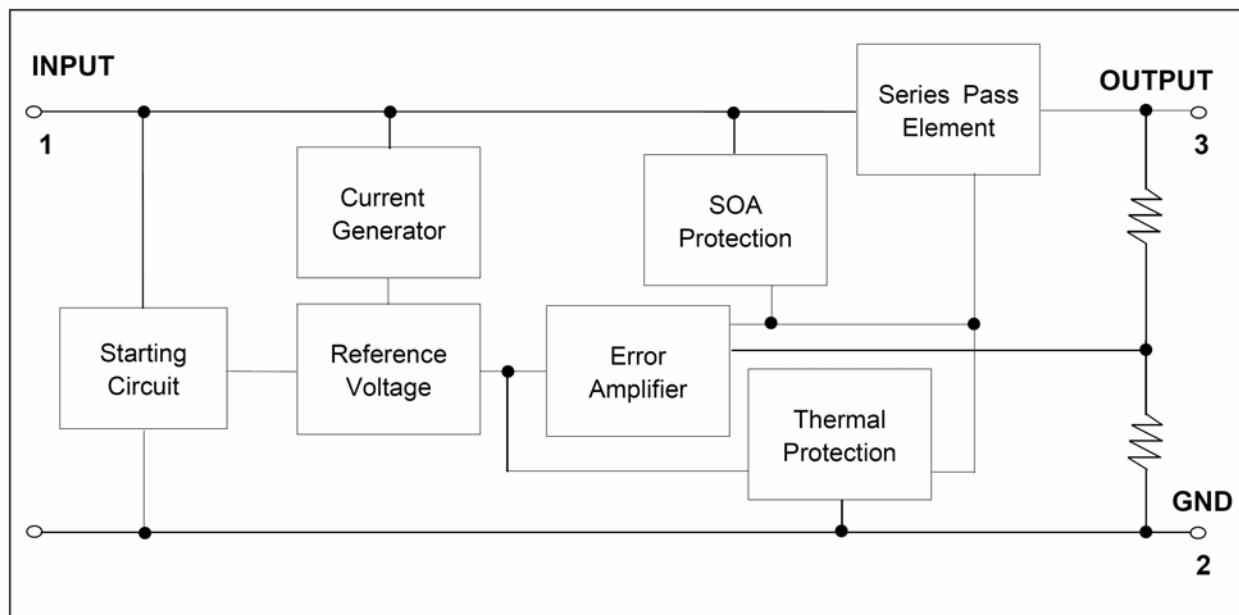
TECHNICAL DATA

POSITIVE VOLTAGE REGULATOR

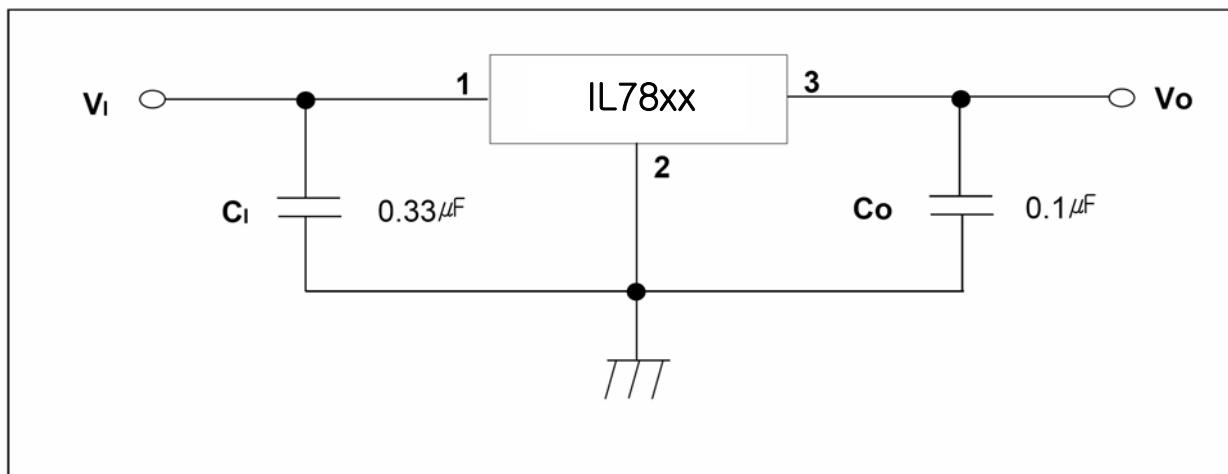
3- TERMINAL 1A POSITIVE VOLTAGE REGULATORS

IL78xx

The IL78xx series of three-terminal positive regulators are available in the TO-220, TO-252, TO-263 package and with several fixed output voltage, marking them useful in a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single point regulation with single point regulation. In addition, they can be used with power pass elements to make high current voltage regulators. If adequate heat sinking is provided, each of these regulator can deliver over 1A of output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.


FEATURES

- Output current up to 1A
- No external components required
- Internal short circuit current limiting
- Internal thermal overload protection
- Output transistor safe-area compensation
- Output voltage offered in 4% tolerance


ABSOLUTE MAXIMUM RATINGS

Characteristics		Symbol	Value	Unit
Input Voltage	IL7805 ~ IL7818	VI	35	V
	IL7824	VI	40	
Junction temperature		T _j	+150	°C
Power Dissipation (T _c =25°C)		PD	20	W
Power Dissipation (Without Heatsink)		PD	1.2	W
Operating temperature		T _{opr}	-40 ~ +125	°C
Storage temperature		T _{stg}	-60 ~ +150	°C

1. BLOCK DIAGRAM

2. TYPICAL APPLICATIONS

Notes :

- (1) To specify an output voltage, substitute voltage value for "XX"
- (2) Cl is required if regulator is located in appreciable distance from power supply filter.
- (3) Co improves stability and transient response.

IL7805 ELECTRICAL CHARACTERISTICS(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500\text{mA}$, $V_I = 10\text{V}$, $C_i = 0.33\text{\mu F}$, $C_o = 0.1\text{\mu F}$, unless otherwise specified)

Characteristic	Symbol	Test condition		Min.	Typ.	Max.	Unit
Output Voltage	V_o	$T_j = 25^\circ\text{C}$		4.8	5.0	5.2	V
		$5.0\text{mA} \leq I_o \leq 1.0\text{A}$, $PD \leq 15\text{W}$ $V_I = 7\text{V to } 20\text{V}$ $V_I = 8\text{V to } 20\text{V}$		4.75	5.0	5.25	
Line Regulation	$\triangle V_o$	$T_j = 25^\circ\text{C}$	$V_I = 7\text{V to } 25\text{V}$		4.0	100	mV
			$V_I = 8\text{V to } 12\text{V}$		1.6	50	
Load Regulation	$\triangle V_o$	$T_j = 25^\circ\text{C}$	$I_o = 5.0\text{mA to } 1.5\text{A}$		9	100	mA
			$I_o = 250\text{mA to } 750\text{mA}$		4	50	
Quiescent current	I_q	$T_j = 25^\circ\text{C}$			5	8	mA
Quiescent current Change	$\triangle I_q$	$I_o = 5\text{mA to } 1\text{A}$			0.03	0.5	mA
		$V_I = 7\text{V to } 25\text{V}$			0.3	1.3	
		$V_I = 8\text{V to } 25\text{V}$					
Output voltage Drift	$\triangle V_o/\triangle T$	$I_o = 5\text{mA}$			-0.8		mV/ $^\circ\text{C}$
Output noise voltage	V_n	$f = 10\text{Hz to } 100\text{KHz}$, $T_a = 25^\circ\text{C}$			42		μV
Ripple Rejection	RR	$f = 120\text{Hz}$, $V_I = 8\text{V to } 18\text{V}$		62	73		dB
Dropout voltage	V_d	$I_o = 1\text{A}$, $T_j = 25^\circ\text{C}$			2		V
Peak current	I_{pk}	$T_j = 25^\circ\text{C}$			2.2		A
Output Resistance	R_o	$f = 1\text{KHz}$			15		$\text{m}\Omega$
Short circuit current	I_{sc}	$V_I = 35\text{V}$, $T_a = 25^\circ\text{C}$			230		mA

* Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty is used.

IL7806 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500\text{mA}$, $V_i = 11\text{V}$, $C_i = 0.33\text{\mu F}$, $C_o = 0.1\text{\mu F}$, unless otherwise specified)

Characteristic	Symbol	Test condition			Min.	Typ.	Max.	Unit
Output Voltage	V_o	$T_j = 25^\circ\text{C}$			5.75	6.0	6.25	V
		$5.0\text{mA} \leq I_o \leq 1.0\text{A}$, $PD \leq 15\text{W}$ $V_i = 8\text{V to } 21\text{V}$ $V_i = 9\text{V to } 21\text{V}$			5.7	6.0	6.3	
Line Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$V_i = 8\text{V to } 25\text{V}$		5	120		mV
			$V_i = 9\text{V to } 13\text{V}$		1.5	60		
Load Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$I_o = 5.0\text{mA to } 1.5\text{A}$		9	120		
			$I_o = 250\text{mA to } 750\text{mA}$		3	60		
Quiescent current	I_q	$T_j = 25^\circ\text{C}$			5	8	mA	
Quiescent current Change	ΔI_q	$I_o = 5\text{mA to } 1\text{A}$				0.5		mA
		$V_i = 8\text{V to } 25\text{V}$				1.3		
		$V_i = 9\text{V to } 25\text{V}$						
Output voltage Drift	$\Delta V_o / \Delta T$	$I_o = 5\text{mA}$			-0.8			mV/°C
Output noise voltage	V_n	$f = 10\text{Hz to } 100\text{KHz}$, $T_a = 25^\circ\text{C}$			45			μV
Ripple Rejection	RR	$f = 120\text{Hz}$, $V_i = 9\text{V to } 19\text{V}$			59	75		dB
Dropout voltage	V_d	$I_o = 1\text{A}$, $T_j = 25^\circ\text{C}$			2			V
Peak current	I_{pk}	$T_j = 25^\circ\text{C}$			2.2			A
Output Resistance	R_o	$f = 1\text{KHz}$			19			mΩ
Short circuit current	I_{sc}	$V_i = 35\text{V}$, $T_a = 25^\circ\text{C}$			250			mA

* Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty is used.

IL7808 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500\text{mA}$, $VI = 14\text{V}$, $C_i = 0.33 \mu\text{F}$, $C_o = 0.1 \mu\text{F}$, unless otherwise specified)

Characteristic	Symbol	Test condition		Min.	Typ.	Max.	Unit
Output Voltage	Vo	$T_j = 25^\circ\text{C}$		7.7	8.0	8.3	V
		$5.0\text{mA} \leq I_o \leq 1.0\text{A}$, $PD \leq 15\text{W}$ $VI = 10.5\text{V to } 23\text{V}$ $VI = 11.5\text{V to } 23\text{V}$		7.6	8.0	8.4	
Line Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	VI = 10.5V to 25V		5.0	160	mV
			VI = 11.5V to 17V		2.0	80	
Load Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	Io = 5.0mA to 1.5A		10	160	
			Io = 250mA to 750mA		5	80	
Quiescent current	Iq	$T_j = 25^\circ\text{C}$			5	8	mA
Quiescent current Change	ΔI_q	Io = 5mA to 1A			0.05	0.5	mA
		VI = 10.5V to 25V			0.5	1.0	
		VI = 11.5V to 25V					
Output voltage Drift	$\Delta V_o/\Delta T$	Io = 5mA			-0.8		mV/°C
Output noise voltage	Vn	f = 10Hz to 100KHz, $T_a = 25^\circ\text{C}$			52		µV
Ripple Rejection	RR	f = 120Hz, VI = 11.5V to 21.5V		56	73		dB
Dropout voltage	Vd	Io = 1A, $T_j = 25^\circ\text{C}$			2		V
Peak current	Ipk	$T_j = 25^\circ\text{C}$			2.2		A
Output Resistance	Ro	f = 1KHz			17		mΩ
Short circuit current	Isc	Vi = 35V, $T_a = 25^\circ\text{C}$			230		mA

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

IL7809 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500\text{mA}$, $V_I = 15\text{V}$, $C_i = 0.33 \mu\text{F}$, $C_o = 0.1 \mu\text{F}$, unless otherwise specified)

Characteristic	Symbol	Test condition		Min.	Typ.	Max.	Unit
Output Voltage	V_o	$T_j = 25^\circ\text{C}$		8.65	9.0	9.35	V
		$5.0\text{mA} \leq I_o \leq 1.0\text{A}$, $PD \leq 15\text{W}$ $V_I = 11.5\text{V}$ to 24V $V_I = 12.5\text{V}$ to 24V		8.6	9.0	9.4	
Line Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$V_I = 11.5\text{V}$ to 25V		6.0	180	mV
			$V_I = 12\text{V}$ to 25V		2	90	
Load Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$I_o = 5.0\text{mA}$ to 1.5A		12	180	
			$I_o = 250\text{mA}$ to 750mA		4	90	
Quiescent current	I_q	$T_j = 25^\circ\text{C}$			5.0	8	mA
Quiescent current Change	ΔI_q	$I_o = 5\text{mA}$ to 1A				0.5	mA
		$V_I = 11.5\text{V}$ to 26V				1.3	
		$V_I = 12.5\text{V}$ to 26V					
Output voltage Drift	$\Delta V_o/\Delta T$	$I_o = 5\text{mA}$			-1		mV°C
Output noise voltage	V_n	$f = 10\text{Hz}$ to 100KHz , $T_a = 25^\circ\text{C}$			58		μV
Ripple Rejection	RR	$f = 120\text{Hz}$, $V_I = 13\text{V}$ to 23V		56	71		dB
Dropout voltage	V_d	$I_o = 1\text{A}$, $T_j = 25^\circ\text{C}$			2		V
Peak current	I_{pk}	$T_j = 25^\circ\text{C}$			2.2		A
Output Resistance	R_o	$f = 1\text{KHz}$			17		$\text{m}\Omega$
Short circuit current	I_{sc}	$V_I = 35\text{V}$, $T_a = 25^\circ\text{C}$			250		mA

* Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty is used.

IL7810 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500\text{mA}$, $V_i = 16\text{V}$, $C_i = 0.33\text{\mu F}$, $C_o = 0.1\text{\mu F}$, unless otherwise specified)

Characteristic	Symbol	Test condition		Min.	Typ.	Max.	Unit
Output Voltage	V_o	$T_j = 25^\circ\text{C}$		9.6	10.0	10.4	V
		$5.0\text{mA} \leq I_o \leq 1.0\text{A}$, $PD \leq 15\text{W}$ $V_i = 12.5\text{V}$ to 25V $V_i = 13.5\text{V}$ to 25V		9.5	10.0	10.5	
Line Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$V_i = 12.5\text{V}$ to 25V		10	200	mV
			$V_i = 13\text{V}$ to 25V		3	100	
Load Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$I_o = 5.0\text{mA}$ to 1.5A		12	200	
			$I_o = 250\text{mA}$ to 750mA		4	400	
Quiescent current	I_q	$T_j = 25^\circ\text{C}$			5.1	8	mA
Quiescent current Change	ΔI_q	$I_o = 5\text{mA}$ to 1A				0.5	mA
		$V_i = 12.5\text{V}$ to 29V				1	
		$V_i = 13.5\text{V}$ to 29V					
Output voltage Drift	$\Delta V_o/\Delta T$	$I_o = 5\text{mA}$			-1		$\text{mV}/^\circ\text{C}$
Output noise voltage	V_n	$f = 10\text{Hz}$ to 100KHz , $T_a = 25^\circ\text{C}$			58		μV
Ripple Rejection	RR	$f = 120\text{Hz}$, $V_i = 13\text{V}$ to 23V		56	71		dB
Dropout voltage	V_d	$I_o = 1\text{A}$, $T_j = 25^\circ\text{C}$			2		V
Peak current	I_{pk}	$T_j = 25^\circ\text{C}$			2.2		A
Output Resistance	R_o	$f = 1\text{KHz}$			17		$\text{m}\Omega$
Short circuit current	I_{sc}	$V_i = 35\text{V}$, $T_a = 25^\circ\text{C}$			250		mA

* Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty is used.

IL7812 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500\text{mA}$, $V_i = 19\text{V}$, $C_i = 0.33\text{\mu F}$, $C_o = 0.1\text{\mu F}$, unless otherwise specified)

Characteristic	Symbol	Test condition		Min.	Typ.	Max.	Unit
Output Voltage	V_o	$T_j = 25^\circ\text{C}$		11.5	12	12.5	V
		$5.0\text{mA} \leq I_o \leq 1.0\text{A}$, $PD \leq 15\text{W}$ $V_i = 14.5\text{V}$ to 27V $V_i = 15.5\text{V}$ to 27V		11.4	12	12.6	
Line Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$V_i = 14.5\text{V}$ to 30V		10	240	mV
			$V_i = 16\text{V}$ to 22V		3	120	
Load Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$I_o = 5.0\text{mA}$ to 1.5A		11	240	
			$I_o = 250\text{mA}$ to 750mA		5	120	
Quiescent current	I_q	$T_j = 25^\circ\text{C}$			5.1	8	mA
Quiescent current Change	ΔI_q	$I_o = 5\text{mA}$ to 1A			0.1	0.5	mA
		$V_i = 14.5\text{V}$ to 30V			0.5	1.0	
		$V_i = 15\text{V}$ to 30V					
Output voltage Drift	$\Delta V_o/\Delta T$	$I_o = 5\text{mA}$			-1		$\text{mV}/^\circ\text{C}$
Output noise voltage	V_n	$f = 10\text{Hz}$ to 100KHz , $T_a = 25^\circ\text{C}$			76		μV
Ripple Rejection	RR	$f = 120\text{Hz}$, $V_i = 15\text{V}$ to 25V		55	71		dB
Dropout voltage	V_d	$I_o = 1\text{A}$, $T_j = 25^\circ\text{C}$			2		V
Peak current	I_{pk}	$T_j = 25^\circ\text{C}$			2.2		A
Output Resistance	R_o	$f = 1\text{KHz}$			17		$\text{m}\Omega$
Short circuit current	I_{sc}	$V_i = 35\text{V}$, $T_a = 25^\circ\text{C}$			230		mA

* Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty is used.

IL7815 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500\text{mA}$, $V_i = 23\text{V}$, $C_i = 0.33\text{\mu F}$, $C_o = 0.1\text{\mu F}$, unless otherwise specified)

Characteristic	Symbol	Test condition		Min.	Typ.	Max.	Unit
Output Voltage	V_o	$T_j = 25^\circ\text{C}$		14.4	15	15.6	V
		$5.0\text{mA} \leq I_o \leq 1.0\text{A}$, $PD \leq 15\text{W}$ $V_i = 17.5\text{V to } 30\text{V}$ $V_i = 18.5\text{V to } 30\text{V}$		14.25	15	15.75	
Line Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$V_i = 17.5\text{V to } 30\text{V}$		11	300	mV
			$V_i = 20\text{V to } 26\text{V}$		3	150	
Load Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$I_o = 5.0\text{mA to } 1.5\text{A}$		12	300	
			$I_o = 250\text{mA to } 750\text{mA}$		4	150	
Quiescent current	I_q	$T_j = 25^\circ\text{C}$			5.2	8	mA
Quiescent current Change	ΔI_q	$I_o = 5\text{mA to } 1\text{A}$				0.5	mA
		$V_i = 17.5\text{V to } 30\text{V}$				1.0	
		$V_i = 18.5\text{V to } 30\text{V}$					
Output voltage Drift	$\Delta V_o/\Delta T$	$I_o = 5\text{mA}$			-1		$\text{mV}/^\circ\text{C}$
Output noise voltage	V_n	$f = 10\text{Hz to } 100\text{KHz}$, $T_a = 25^\circ\text{C}$			90		μV
Ripple Rejection	RR	$f = 120\text{Hz}$, $V_i = 18.5\text{V to } 28.5\text{V}$		54	70		dB
Dropout voltage	V_d	$I_o = 1\text{A}$, $T_j = 25^\circ\text{C}$			2		V
Peak current	I_{pk}	$T_j = 25^\circ\text{C}$			2.2		A
Output Resistance	R_o	$f = 1\text{KHz}$			19		$\text{m}\Omega$
Short circuit current	I_{sc}	$V_i = 35\text{V}$, $T_a = 25^\circ\text{C}$			250		mA

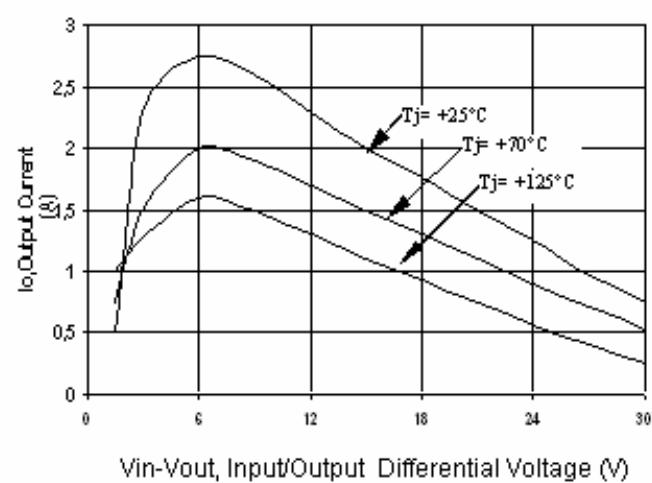
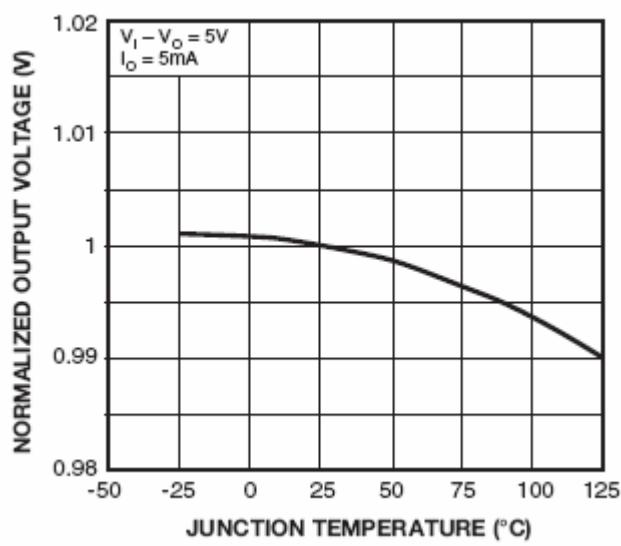
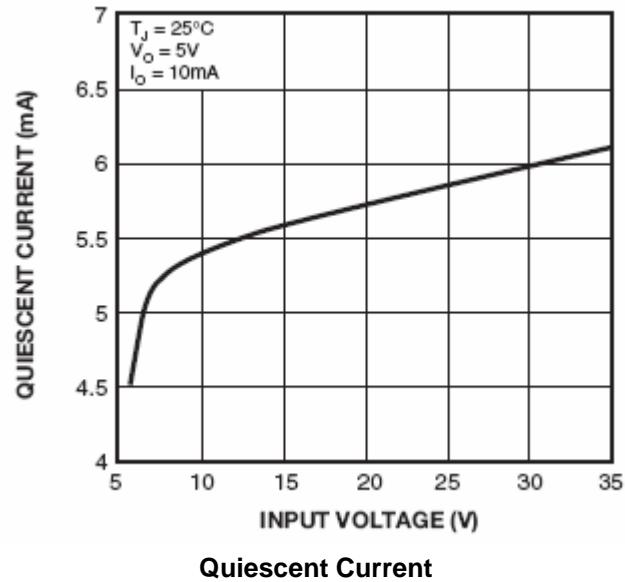
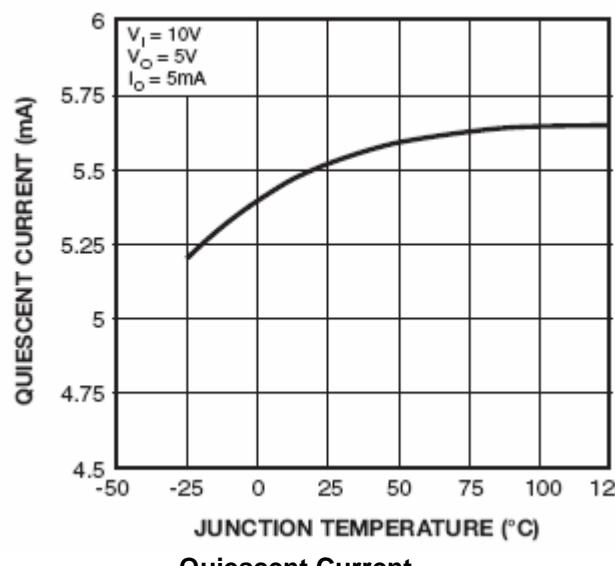
* Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty is used.

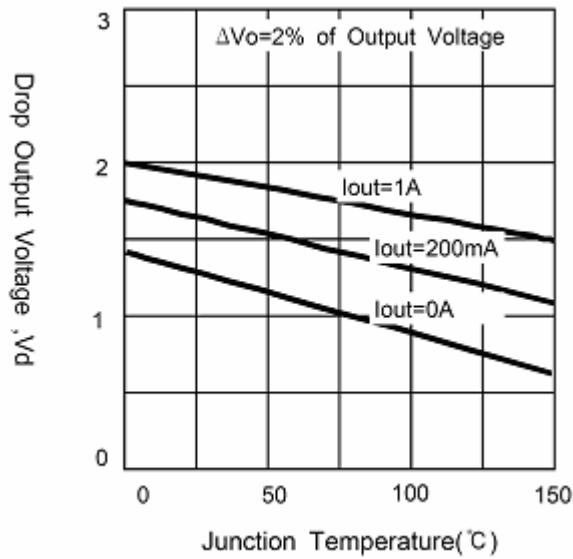
IL7818 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500\text{mA}$, $V_I = 27\text{V}$, $C_i = 0.33\text{\mu F}$, $C_o = 0.1\text{\mu F}$, unless otherwise specified)

Characteristic	Symbol	Test condition		Min.	Typ.	Max.	Unit
Output Voltage	V_o	$T_j = 25^\circ\text{C}$		17.3	18	18.7	V
		$5.0\text{mA} \leq I_o \leq 1.0\text{A}$, $PD \leq 15\text{W}$ $V_I = 21\text{V to } 33\text{V}$ $V_I = 22\text{V to } 33\text{V}$		17.1	18	18.9	
Line Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$V_I = 21\text{V to } 33\text{V}$		15	360	mV
			$V_I = 24\text{V to } 30\text{V}$		5	180	
Load Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$I_o = 5.0\text{mA to } 1.5\text{A}$		15	360	
			$I_o = 250\text{mA to } 750\text{mA}$		5	180	
Quiescent current	I_q	$T_j = 25^\circ\text{C}$			5.2	8	mA
Quiescent current Change	ΔI_q	$I_o = 5\text{mA to } 1\text{A}$				0.5	mA
		$V_I = 21\text{V to } 33\text{V}$				1.0	
		$V_I = 22\text{V to } 33\text{V}$					
Output voltage Drift	$\Delta V_o/\Delta T$	$I_o = 5\text{mA}$			-1		$\text{mV}/^\circ\text{C}$
Output noise voltage	V_n	$f = 10\text{Hz to } 100\text{KHz}$, $T_a = 25^\circ\text{C}$			110		μV
Ripple Rejection	RR	$f = 120\text{Hz}$, $V_I = 22\text{V to } 32\text{V}$		53	69		dB
Dropout voltage	V_d	$I_o = 1\text{A}$, $T_j = 25^\circ\text{C}$			2		V
Peak current	I_{pk}	$T_j = 25^\circ\text{C}$			2.2		A
Output Resistance	R_o	$f = 1\text{KHz}$			22		$\text{m}\Omega$
Short circuit current	I_{sc}	$V_I = 35\text{V}$, $T_a = 25^\circ\text{C}$			250		mA

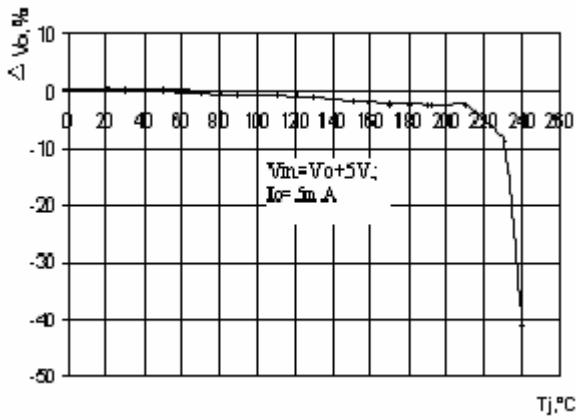
* Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty is used.

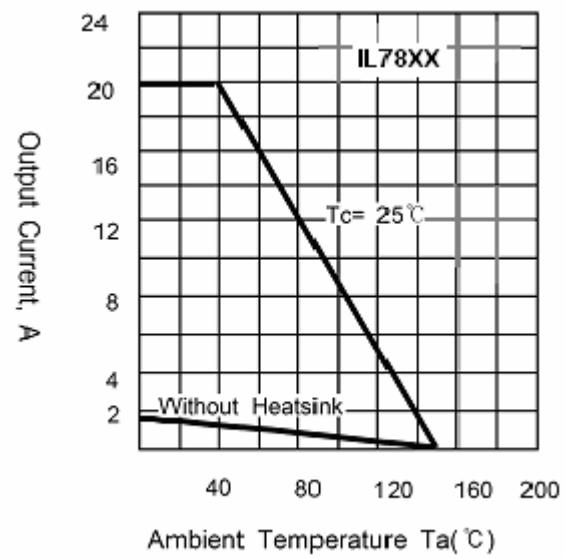




IL7824 ELECTRICAL CHARACTERISTICS


(Refer to test circuit, $T_{min} < T_j < T_{max}$, $I_o = 500\text{mA}$, $V_I = 33\text{V}$, $C_i = 0.33\text{\mu F}$, $C_o = 0.1\text{\mu F}$, unless otherwise specified)

Characteristic	Symbol	Test condition		Min.	Typ.	Max.	Unit
Output Voltage	V_o	$T_j = 25^\circ\text{C}$		23	24	25	V
		$5.0\text{mA} \leq I_o \leq 1.0\text{A}$, $PD \leq 15\text{W}$ $V_I = 27\text{V}$ to 38V $V_I = 28\text{V}$ to 38V		22.8	24	25.25	
Line Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$V_I = 27\text{V}$ to 38V		17	480	mV
			$V_I = 30\text{V}$ to 36V		6	240	
Load Regulation	ΔV_o	$T_j = 25^\circ\text{C}$	$I_o = 5.0\text{mA}$ to 1.5A		15	480	
			$I_o = 250\text{mA}$ to 750mA		5	240	
Quiescent current	I_q	$T_j = 25^\circ\text{C}$			5.2	8	mA
Quiescent current Change	ΔI_q	$I_o = 5\text{mA}$ to 1A			0.1	0.5	mA
		$V_I = 27\text{V}$ to 38V			0.5	1.0	
		$V_I = 28\text{V}$ to 38V					
Output voltage Drift	$\Delta V_o/\Delta T$	$I_o = 5\text{mA}$			-1.5		mV/ $^\circ\text{C}$
Output noise voltage	V_n	$f = 10\text{Hz}$ to 100KHz , $T_a = 25^\circ\text{C}$			60		μV
Ripple Rejection	RR	$f = 120\text{Hz}$, $V_I = 28\text{V}$ to 38V		50	67		dB
Dropout voltage	V_d	$I_o = 1\text{A}$, $T_j = 25^\circ\text{C}$			2		V
Peak current	I_{pk}	$T_j = 25^\circ\text{C}$			2.2		A
Output Resistance	R_o	$f = 1\text{KHz}$			28		$\text{m}\Omega$
Short circuit current	I_{sc}	$V_I = 35\text{V}$, $T_a = 25^\circ\text{C}$			230		mA

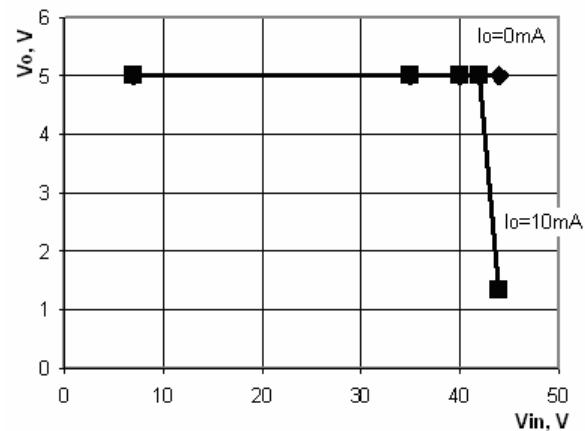
* Load and line regulation are specified at constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty is used.


TYPICAL PERFORMANCE CHARACTERISTICS

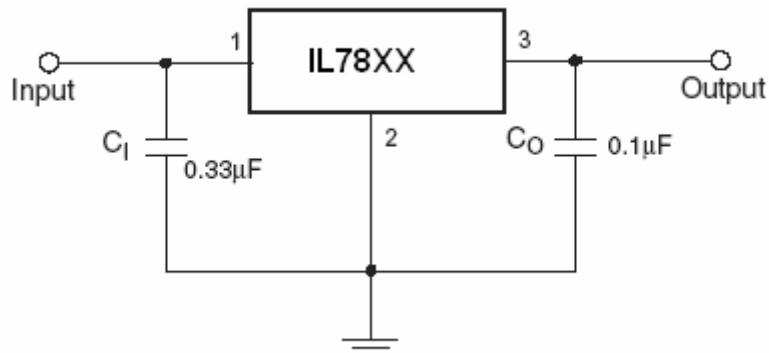
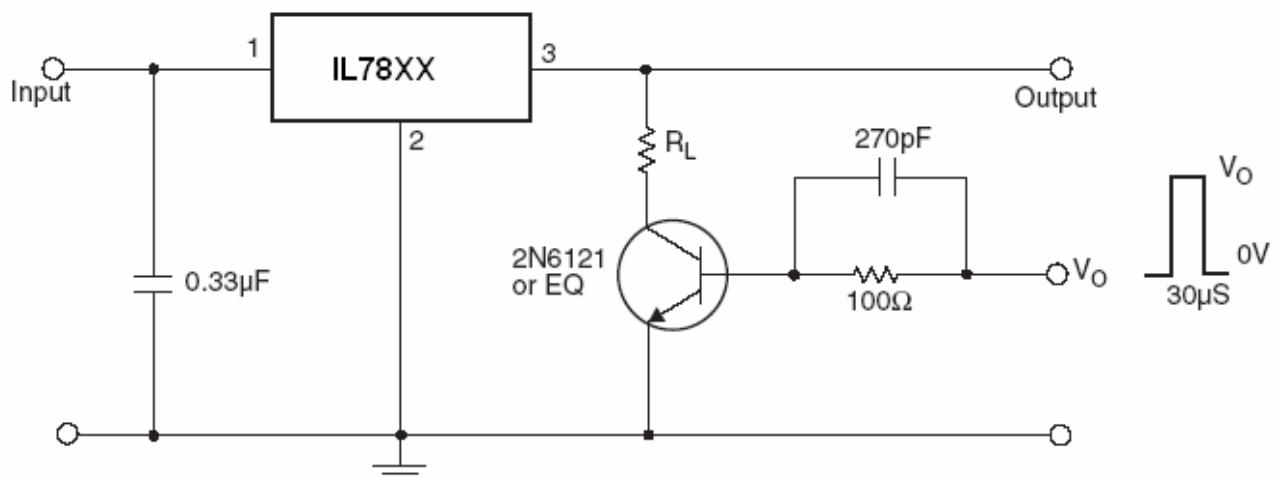
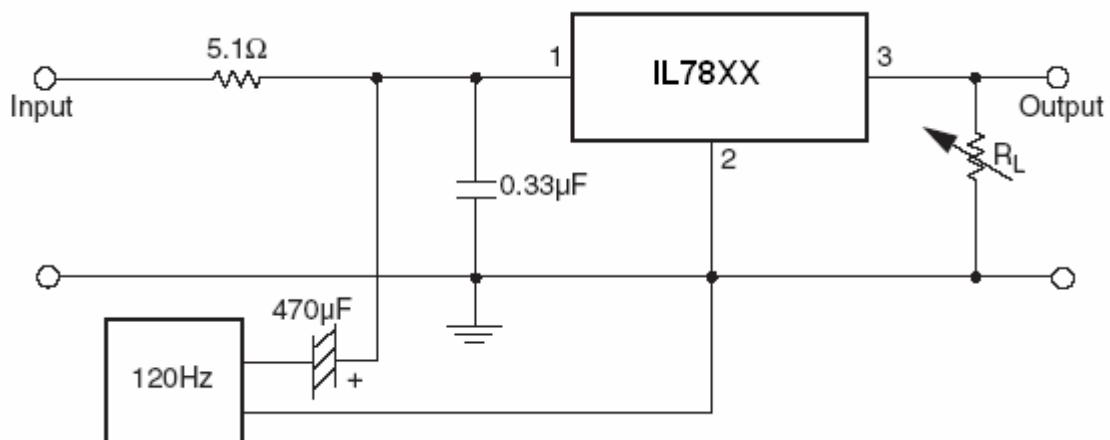


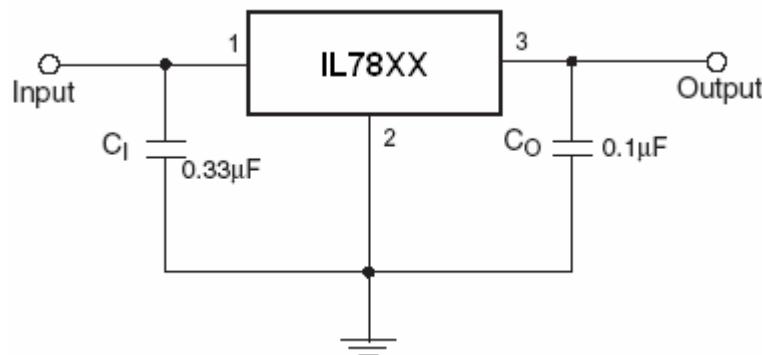
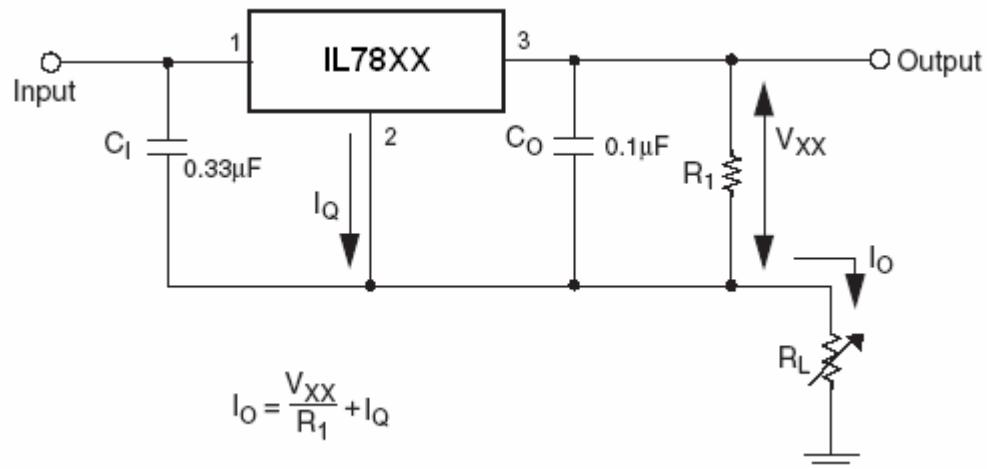
Drop Output Voltage

Output Voltage Change vs. Junction Temperature

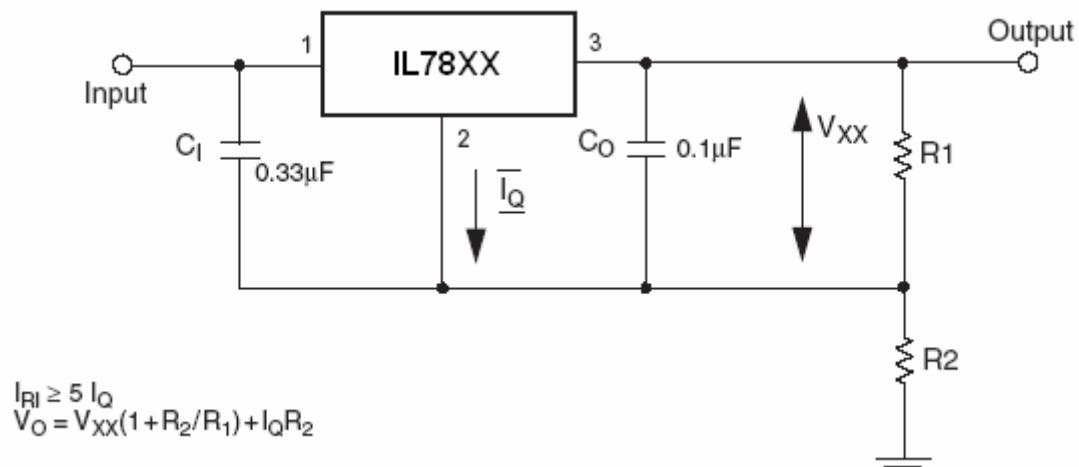


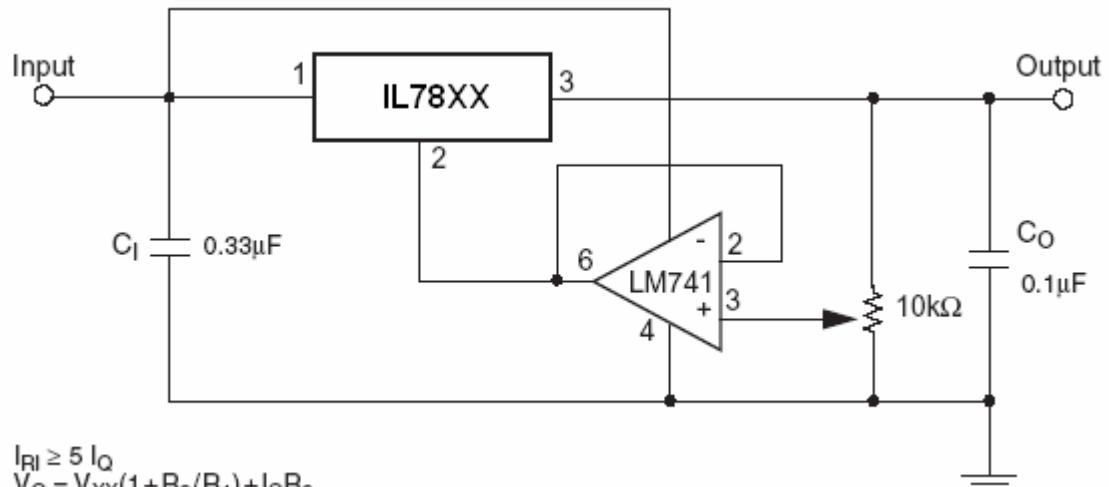
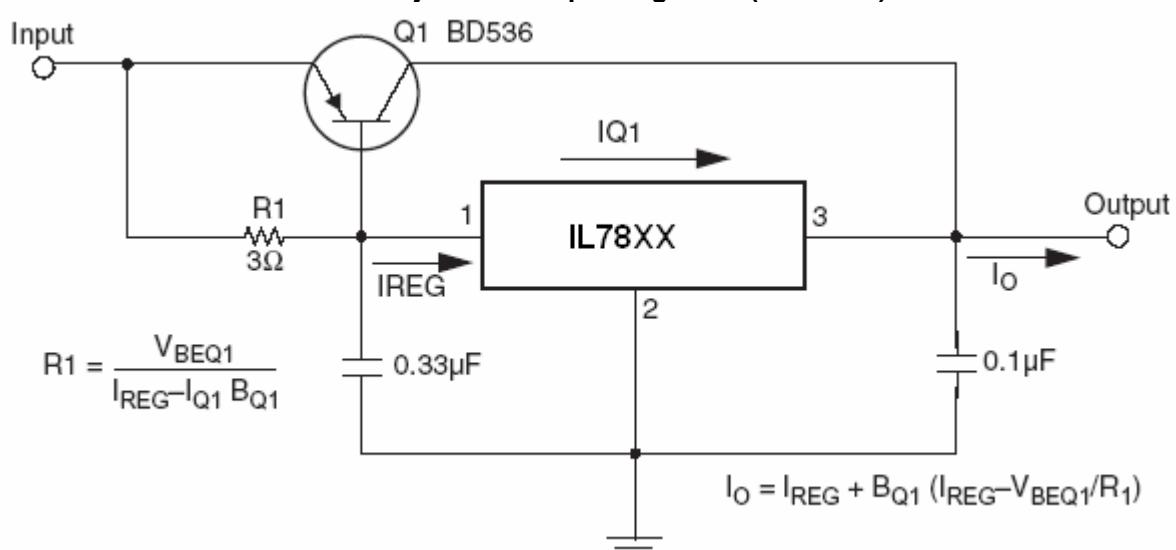
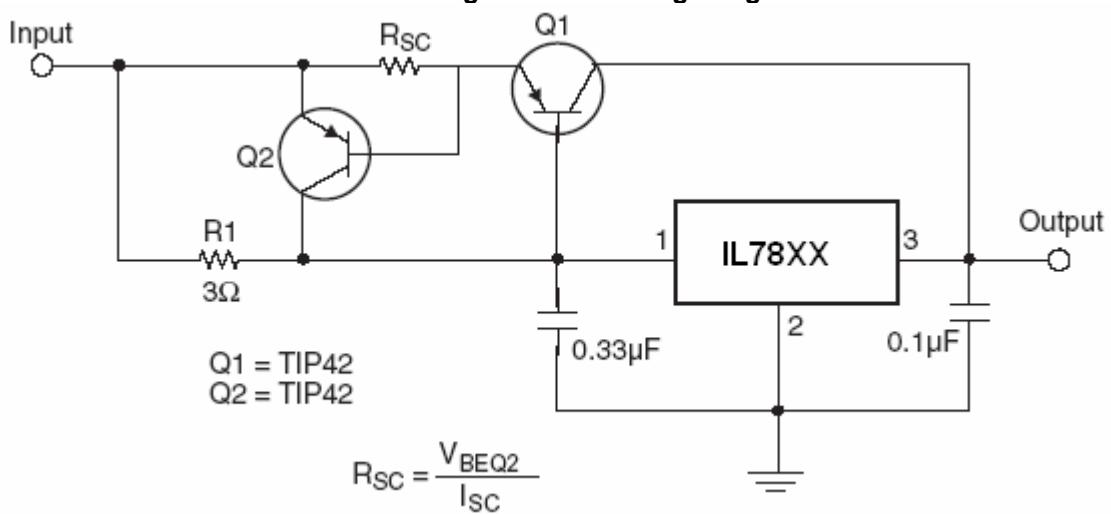
Over Temperature Protection

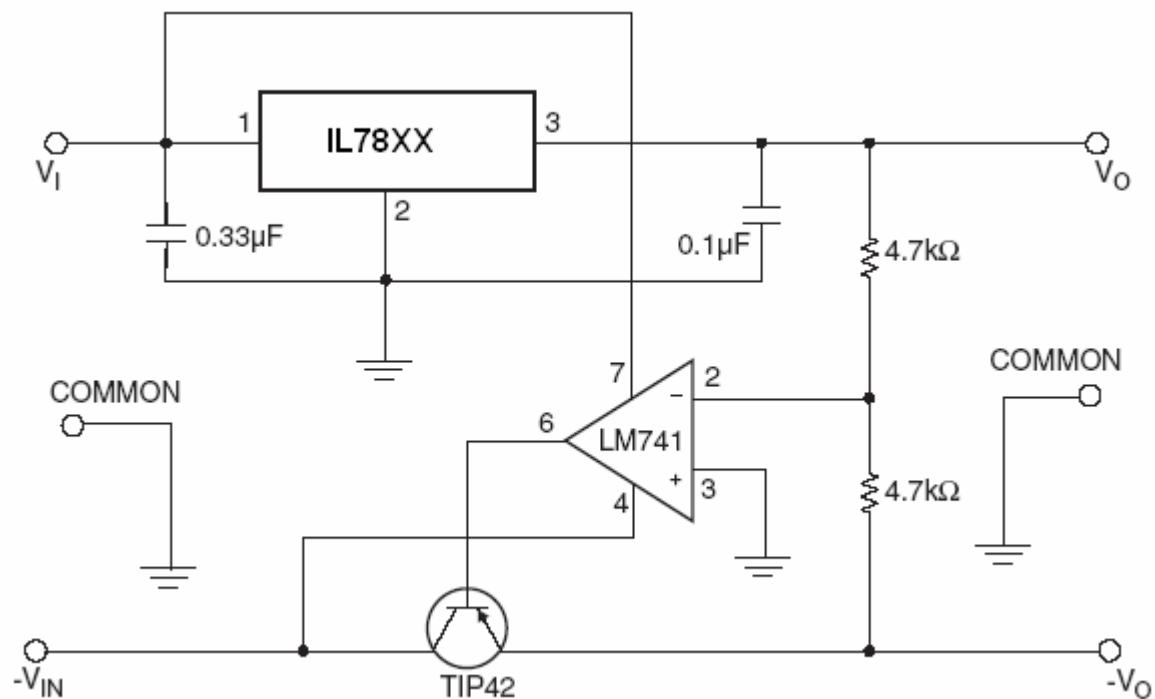






Power Dissipation

Output Voltage as a Function of Input Voltage

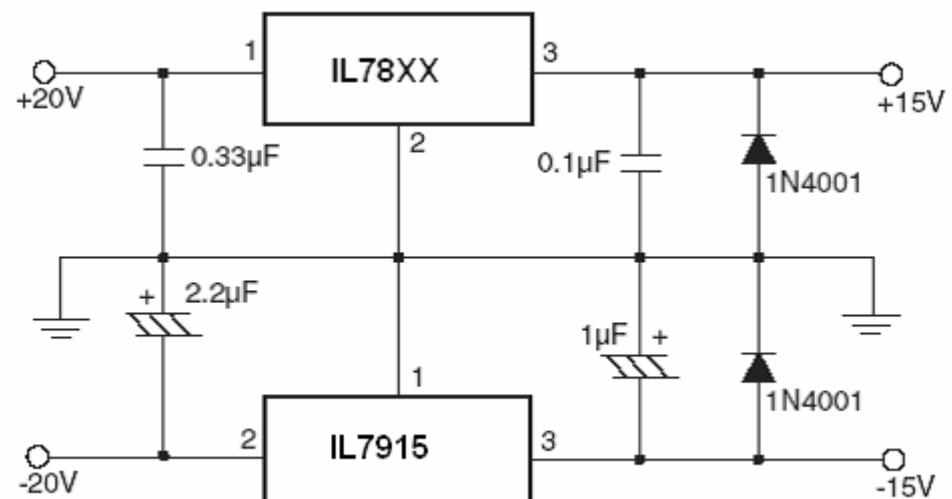





Over Voltage Protection

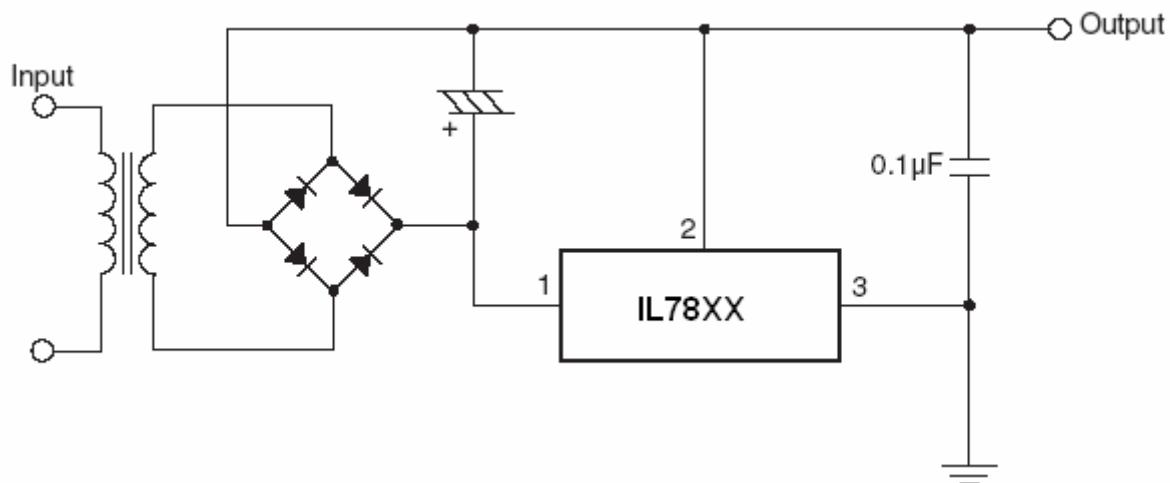
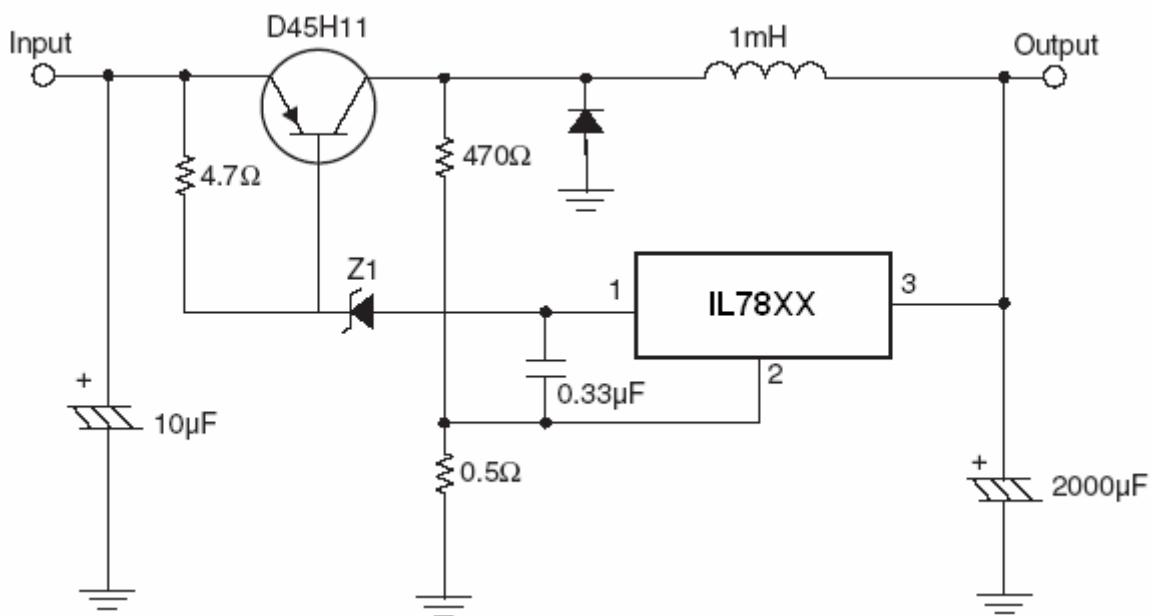

TYPICAL APPLICATIONS**DC Parameters****Load Regulation****Ripple Rejection**

Fixed Output Regulator

Notes:


1. To specify an output voltage, substitute voltage value for "XX." A common ground is required between the input and the output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
2. CI is required if regulator is located an appreciable distance from power supply filter.
3. CO improves stability and transient response.

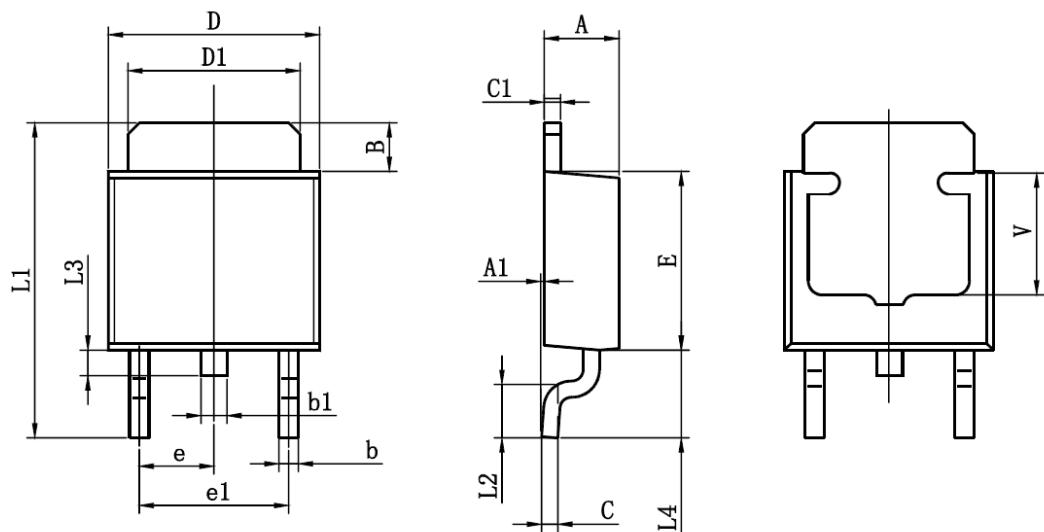
Circuit for Increasing Output Voltage

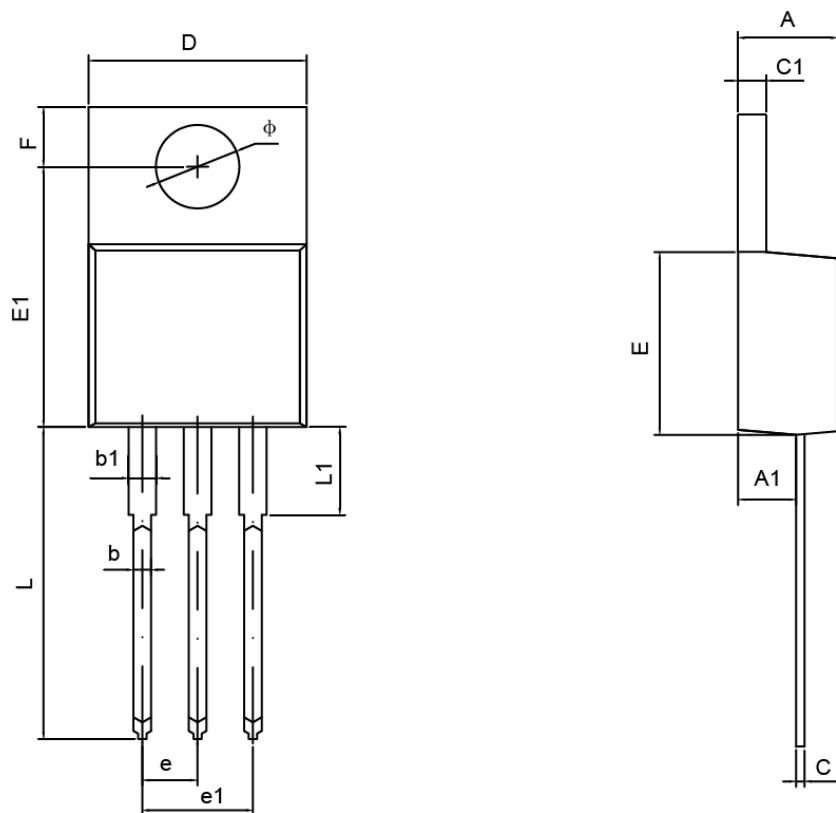
Adjustable Output Regulator (7V to 30V)

High Current Voltage Regulator

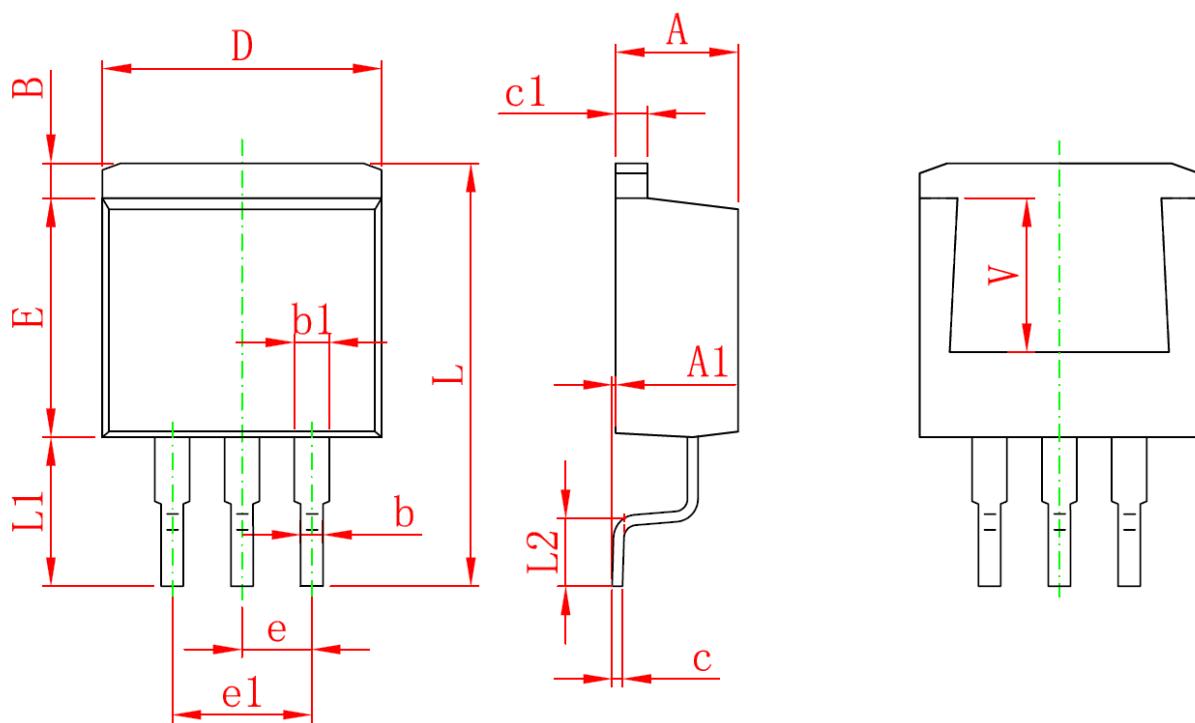
High Output Current with Short Circuit Protection


Tracking Voltage Regulator

Split Power Supply ($\pm 15V$ – 1A)


Negative Output Voltage Circuit**Switching Regulator**

TO-252-2L PACKAGE OUTLINE DIMENSIONS


Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
B	1.350	1.650	0.053	0.065
b	0.500	0.700	0.020	0.028
b1	0.700	0.900	0.028	0.035
c	0.430	0.580	0.017	0.023
c1	0.430	0.580	0.017	0.023
D	6.350	6.650	0.250	0.262
D1	5.200	5.400	0.205	0.213
E	5.400	5.700	0.213	0.224
e	2.300TYP		0.091TYP	
e1	4.500	4.700	0.177	0.185
L1	9.500	9.900	0.374	0.390
L2	1.400	1.780	0.055	0.070
L3	0.650	0.950	0.026	0.037
L4	2.550	2.900	0.100	0.114
V	3.80REF		0.150REF	

TO-220-3L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	4.470	4.670	1.176	0.184
A1	2.520	2.820	0.099	0.111
b	0.710	0.910	0.028	0.036
b1	1.170	1.370	0.046	0.054
c	0.310	0.530	0.012	0.021
c1	1.710	1.370	0.046	0.054
D	10.010	10.310	0.394	0.406
E	8.500	8.900	0.335	0.350
E1	12.060	12.460	0.475	0.491
e	2.540TYP		0.100TYP	
e1	4.980	5.180	0.196	0.204
F	2.590	2.890	0.102	0.114
L	13.400	13.800	0.528	0.543
L1	3.560	3.960	0.140	0.156
φ	3.790	3.890	0.149	0.153

TO-263-3L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	4.470	4.670	0.176	0.184
A1	0.000	0.150	0.000	0.006
B	1.170	1.370	0.046	0.054
b	0.710	0.910	0.028	0.036
b1	1.170	1.370	0.046	0.054
c	0.310	0.530	0.012	0.021
c1	1.170	1.370	0.046	0.054
D	10.010	10.310	0.394	0.406
E	8.500	8.900	0.335	0.350
e	2.540 TYP		0.100 TYP	
e1	4.980	5.180	0.196	0.204
L	15.050	15.450	0.593	0.608
L1	5.080	5.480	0.200	0.216
L2	2.340	2.740	0.092	0.108
V	5.600 REF		0.220 REF	