

# **YB1682**

### 2A 380KHz 20V PWM Buck DC/DC Converter

### **Description**

The YB1682 is a 380 KHz fixed frequency monolithic step down switch regulator with a built in internal Power MOSFET. It achieves 2A continuous output current over a wide input supply range with excellent load and line regulation. The device includes a voltage reference, oscillation circuit, error amplifier, internal PMOS and etc. The PWM control circuit is able to adjust the duty ratio linearly from 0 to 100%. An enable function, an over current protection function and a short circuit protection function are built inside. An internal compensation block is built in to minimize external component count. The YB1682 serves as ideal power supply units for portable devices.

#### **Features**

- 2A Constant Output Current
- 140mΩ R<sub>DSON</sub> Internal Power PMOSFET Switch
- Up to 92% Efficiency
- Fixed 380KHz Frequency
- Wide 3.6V to 20V Input Voltage Range
- Output Adjustable from 1.222V to 18V
- Output Current Protection
- Built in Frequency Compensation
- Built in Thermal Shutdown Function
- Built in Current Limit Function
- SOP8 Package is Available
- The Minimum Dropout up to 0.3V
- Pb-free Package

### **Applications**

- White LED Backlighting
- Handheld PCs and PDAs
- Mobile Phone
- DSC and DV Flash Light Application

## **Typical Application Circuit**

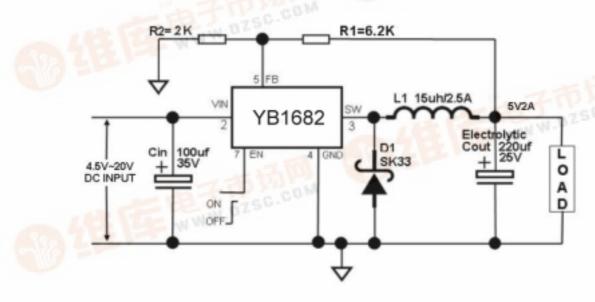



Figure 1: Typical Application Circuit



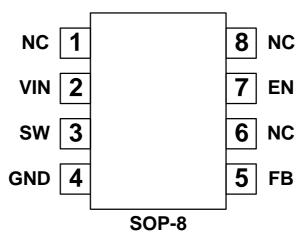



Figure 2: Pin Configuration

## **Pin Description**

Table 1

| Pin   | Name | Description                                                                                                                                                                                                    |  |
|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1,6,8 | NC   | Not Connect.                                                                                                                                                                                                   |  |
| 2     | VIN  | Supply Voltage Input Pin. YB1682 operates from a 3.6V to 20VDC voltage. Bypass $V_{\text{IN}}$ to GND with a suitably large capacitor to eliminate noise on the input.                                         |  |
| 3     | SW   | Power Switch Output Pin. SW is the switch node that supplies power to the output.                                                                                                                              |  |
| 4     | GND  | Ground Pin. Care must be taken in layout. This pin should be placed outside of the Schottky Diode to output capacitor ground path to prevent switching current spikes from inducing voltage noise into YB1682. |  |
| 5     | FB   | Feedback Pin. Through an external resistor divider network, FB senses the output voltage and regulates it. The feedback threshold voltage is 1.222V.                                                           |  |
| 7     | EN   | Enable Pin. EN is a digital input that turns the regulator on or off. Drive EN pin high to turn on the regulator, drive it low to turn it off.                                                                 |  |

# **Ordering Information**

| Order Number | Package Type | Supplied As            | Package Marking                     |
|--------------|--------------|------------------------|-------------------------------------|
| YB1682SPX8P  | SOP-8        | 2500 units Tape & Reel | Please contact sales representative |



# 2A 380KHz 20V PWM Buck DC/DC Converter

| Absolute Maximum Ratings                    | Recommended Operating Conditions            |  |  |
|---------------------------------------------|---------------------------------------------|--|--|
| Input Voltage0.3V to 20V                    | Input Voltage3.6V to 20V                    |  |  |
| Feedback Pin Voltage0.3V to V <sub>IN</sub> | Operating Junction Temperature40°C to 125°C |  |  |
| Enable Pin Voltage0.3V to 12V               | Operating Ambient Temperature40°C to 85°C   |  |  |
| Switch Pin Voltage0.3V to V <sub>IN</sub>   |                                             |  |  |
| Power Dissipation Internally Limited        |                                             |  |  |
| Operating Junction Temperature 150°C        | Lead Temperature (Soldering, 10 sec) 260°C  |  |  |
| Storage Temperature65°C to 150°C            | ESD (HBM)2000V                              |  |  |

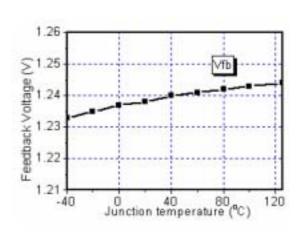
#### Note:

Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

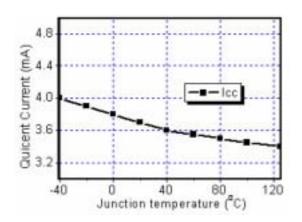
### **Electrical Characteristics**

Table 2  $(V_{IN} = V_{RUN} = 3.6V, T_A = 25^{\circ}C, Test Circuit Figure 1, unless otherwise noted.)$ 

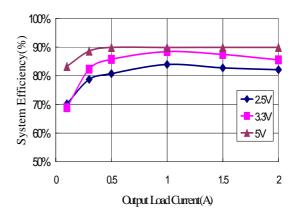
| Description                     | Symbol            | Test Conditions                                                                          | MIN  | TYP   | MAX  | Units |
|---------------------------------|-------------------|------------------------------------------------------------------------------------------|------|-------|------|-------|
| Input Voltage                   | V <sub>IN</sub>   |                                                                                          | 3.6  |       | 20   | V     |
| Shutdown Supply Current         | I <sub>STBY</sub> | V <sub>EN</sub> = 0V                                                                     |      | 30    | 90   | μA    |
| Supply Current                  | I <sub>cc</sub>   | V <sub>EN</sub> = 2V, V <sub>FB</sub> = 1.3V                                             |      | 3.6   | 4    | mA    |
| Feedback Voltage                | $V_{FB}$          | V <sub>IN</sub> = 3.6V to 23V                                                            | 1.21 | 1.222 | 1.26 | V     |
| Feedback Bias Current           | I <sub>FB</sub>   | V <sub>FB</sub> = 1.3V                                                                   |      | 0.1   | 0.5  | μA    |
| Switch Current Limit            | I <sub>LIM</sub>  |                                                                                          |      | 3     | 4    | Α     |
| Oscillator Frequency            | Fosc              |                                                                                          | 320  | 380   | 440  | KHz   |
| EN Pin Threshold                | V <sub>EN</sub>   |                                                                                          | 0.7  | 1.2   | 1.7  | V     |
| EN Pin Input Leakage            | I <sub>H</sub>    | V <sub>EN</sub> = 2.5V                                                                   |      | -0.1  | -1   | μA    |
| Current                         | IL                | V <sub>EN</sub> = 0.5V                                                                   |      | -3    | -10  | μΑ    |
| Internal PMOS R <sub>DSON</sub> | R <sub>DSON</sub> | V <sub>IN</sub> 12V, V <sub>FB</sub> =0V<br>V <sub>EN</sub> = 12V, I <sub>OUT</sub> = 2A |      | 140   |      | mΩ    |
| Max. Duty Cycle                 | D <sub>MAX</sub>  | $V_{FB} = 0V, I_{SW} = 0.1A$                                                             |      | 100   |      | %     |
| Efficiency                      | η                 | V <sub>IN</sub> = 12V, V <sub>OUT</sub> = 5V, I <sub>OUT</sub> = 2A                      |      | 92    |      | %     |
| Thermal Shutdown                | T <sub>OTSD</sub> |                                                                                          |      | 165   |      | °C    |




## **Typical Performance Characteristics**


Switching Frequency vs. Temperature




V<sub>FB</sub> vs. Temperature



Icc vs. Temperature



Efficiency V.S Load (Vin=12V)



4



### **Function Block**

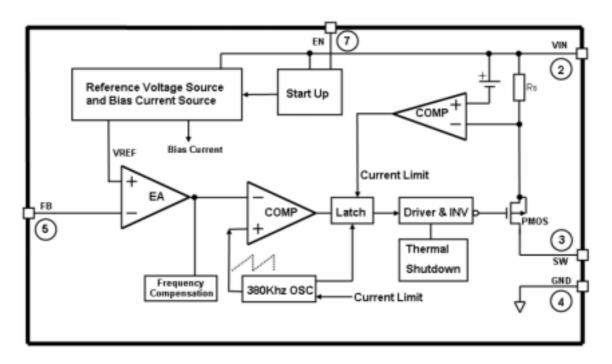



Figure 3: Function Block

### **Functional Description**

#### VIN

This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

#### **Gnd**

Circuit ground.

### **SW**

Internal switch. The voltage at this pin switches between  $(V_{\text{IN}} - V_{\text{GS}})$  and approximately - 0.5V, with a duty cycle of approximately  $V_{\text{OUT}}$  /  $V_{\text{IN}}$ . To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept a minimum.

#### FB

Senses the regulated output voltage to complete the feedback loop.

#### ΕN

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 30µA.

Pulling this pin below a threshold voltage of approximately 0.7V turns the regulator down, and pulling this pin above 1.3V (up to a maximum of 12V) shuts the regulator on. For automatic star up condition, can be implemented by the addition of a resistive voltage divider from  $V_{\text{IN}}$  to GND.



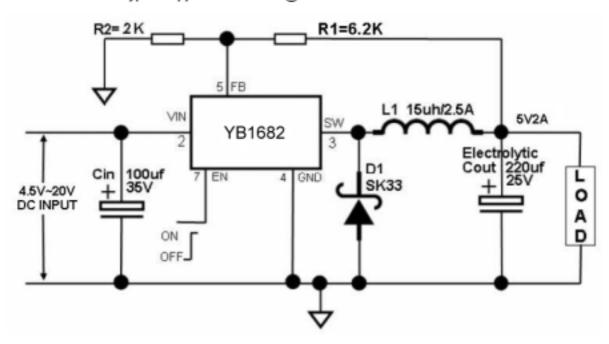
## 2A 380KHz 20V PWM Buck DC/DC Converter

#### **Thermal Considerations**

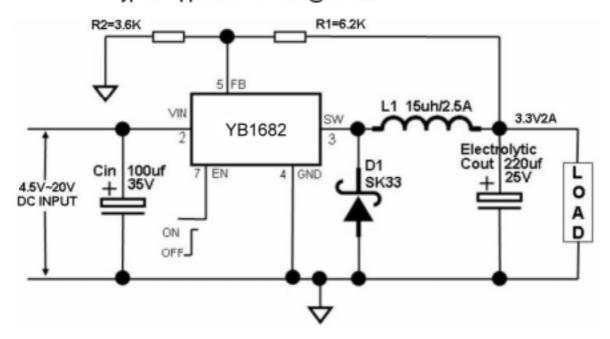
The SOP8 package needs a heat sink under most conditions. The size of the heat sink depends on the input voltage, the output voltage, the load current and the ambient temperature. The YB1682 junction rises above ambient temperature temperature for a 2A load and different input and output voltages. The data for these curves was taken with the YB1682 package) (SOP8 operating buck-switching regulator in an ambient temperature of 25 °C (still air). These temperature rise numbers are all approximate and there are many factors that can affect these temperatures. Higher ambient temperatures require more heat sinking.

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (Once exception to this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that will affect these numbers. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area,


copper Thick ness, single or double-sided, multi-layer board and the amount of solder on the board.

The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or movina. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.




### **Typical Application Circuit**

Typical Application Circuit @ 5V/2A



Typical Application Circuit @ 3.3V/2A



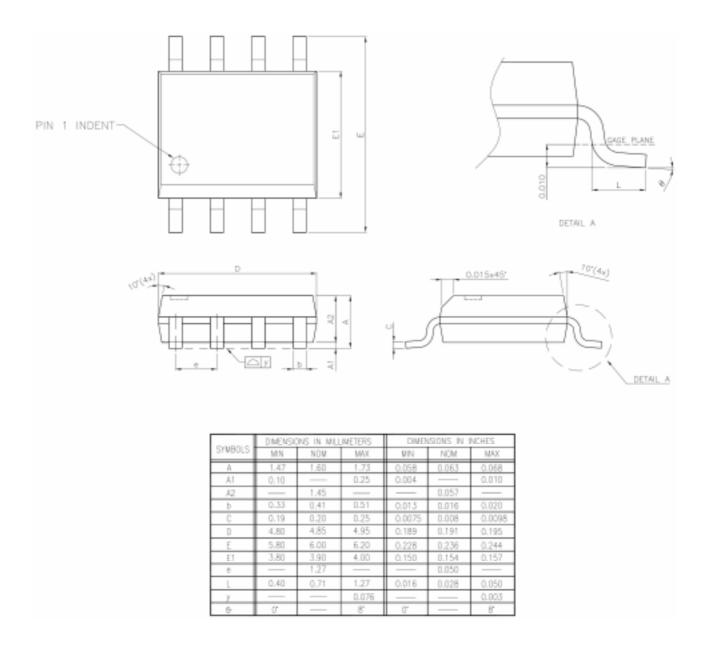


# 2A 380KHz 20V PWM Buck DC/DC Converter

## **Schottky Rectifier Selection Guide**

YB1682 Lists some rectifier manufacturers.

| V <sub>IN</sub> (Max) | 2A Load Current |                       |  |  |
|-----------------------|-----------------|-----------------------|--|--|
|                       | Part Number     | Vendor                |  |  |
|                       | B220            | Diodes, Inc.          |  |  |
| 20V                   | SK23            | Pan Jit International |  |  |
|                       | SR22            | Pan Jit International |  |  |


## Output Voltage vs. R1, R2 Resistor Selection Guide (Vout = (1 + R1 / R2) \* 1.222V)

YB1682 Vour vs. R1. R2 Select Table

| V <sub>OUT</sub> | R1   | R2   |
|------------------|------|------|
| 1.8V             | 3.9K | 8.2K |
| 2.5V             | 3.2K | 3K   |
| 3.3V             | 6.2K | 3.6K |
| 5V               | 6.2K | 2K   |
| 9V               | 13K  | 2K   |
| 12V              | 16K  | 1.8K |



### **Package Information (SOP-8)**



#### NOTICE:

- The information described herein is subject to change without notice.
- Yobon does not assume any responsibility for use of any circuitry or applications described herein, nor does it convey any patent license.

YB1682 Rev.1.0 www.yobon.com.tw 9