28 VOLT INPUT - 15 WATT

FEATURES

- -55° to +125°C operation
- 16 to 50 VDC input
- · Fully Isolated
- Optocoupler feedback
- Fixed switching frequency 600 kHz typical,
- Topology –
 Dual Single Ended Flybacks
- 80 V / 120 ms transient protection (12 Vout single and dual to 75 V, 15 Vout single and dual to 60V)
- · Inhibit and sync functions
- · Trim on single output models
- · Up to 81% efficiency
- · Low output noise

MODELS											
VDC OUTPUT											
SINGLE	DUAL	TRIPLE									
3.3	±5	+5 & ±12									
5	±12	+5 & ±15									
12	±15										
15											

DESCRIPTION

Interpoint's MHV Series™ of DC/DC converters offers a wide input voltage range of 16 to 50 VDC and a choice of nine different output voltage configurations comprised of single, dual or triple outputs. The converters will withstand transients of up to 80 V for up to 120 milliseconds while maintaining output voltages (with the exception of the 12 volt single and dual outputs which will withstand transients up to 75 volts and the 15 volt single and dual outputs which will withstand up to 60 volts). The MHV Series operates at a full 15 watts of output power (10 watts for the 3.3 volt single output) over the military temperature range of −55°C to +125°C while maintaining low input and output noise.

CONVERTER DESIGN

MHV Series DC/DC converters are switching regulators that use continuous flyback conversion topology with a clock frequency of approximately 600 kHz. MHV Series converters incorporate two internal converters with one converter phase shifted 180° from the other to create a dual phase/phase-shifted operation. Each of the internal converters operates at approximately one-half of the clock frequency. This proprietary technology eliminates cross regulation, minimizes input ripple, greatly reduces output ripple and improves efficiency. On the triple output models, this design provides completely independent regulation with no cross regulation effect between the main and auxiliary outputs and no minimum loading required on the main output.

INHIBIT FUNCTION

Open collector TTL levels control the inhibit circuit. The converter is enabled when the inhibit terminal is left unconnected or when the inhibit terminal is connected to a voltage between 11.5 and 50 V.

When a low (0.8 V) is applied to the inhibit terminal the converter shuts down, typically drawing 8.4 mA of input current. Inhibit terminal resistance is 3.3 k ohms and draws 8.4 mA, typical.

SYNCHRONIZATION FUNCTION

Applying an external signal of 40% to 60% duty cycle and 500 to 700 kHz will synchronize the converter to your system requirements. Free run clock frequency is approximately 600 kHz. If not used, the sync terminal must be left unconnected.

TRIM

Single output converters feature a trim range of as low as 80% to as high as 110% of Vout nominal, depending on the model. To trim up, connect a resistor from output common (pin 4) to the trim terminal (pin 3). To trim down, connect a resistor from the positive output (pin 5) to the trim terminal (pin 3). See Figure 6 and trim tables for more information.

UNDERVOLTAGE LOCKOUT

An undervoltage lockout of approximately 7 VDC keeps system current levels low during startup.

SHORT CIRCUIT PROTECTION

Under short circuit conditions of 130% or more of full load current, the converter will protect itself by shutting down. Short circuit duration should be brief because power dissipation may cause internal temperatures to rise rapidly. Restart is automatic upon removal of the short circuit.

28 VOLT INPUT - 15 WATT

OPERATING CONDITIONS AND CHARACTERISTICS

Input Voltage Range

- 16 to 50 VDC continuous
- · Transient: see Electrical Characteristics tables

Output Power

15 watts (10 watts MHV283R3S)

Lead Soldering Temperature (10 sec per lead)

Storage Temperature Range (Case)

-65°C to +150°C

Case Operating Temperature (Tc)

- · -55°C to +125°C full power
- -55°C to +130°C absolute

Derating Output Power/Current

Linearly from 100% at 125°C to 0% at 130°C

Output Voltage Temperature Coefficient

• 100 ppm/°C typical

Current Limit

· 130% of full load typical at 25°C Isolation

• 100 megohm minimum at 500 V

Audio Rejection

· 30 dB typical

Conversion (Switching) Frequency

Free run mode 300 kHz typical 245 kHz. min, 355 kHz. max @ $Tc = -55^{\circ} to +125^{\circ}C$

Inhibit Pin Voltage (unit enabled)

11 V typical

Undervoltage Lockout

7 V input typical

Clock Frequency

External sync range 490 to 710 kHz.

Positive Input PWM CM Controller Input Common Sync Negative Output, Auxiliary FIGURE 1: MHV TRIPLE BLOCK DIAGRAM

MECHANICAL AND ENVIRONMENTAL

Size (maximum)

Non-flanged Single and dual output models

2.125 x 1.125 x 0.400 inches (53.98 x 28.58 x 10.16 mm) See case H2 for dimensions.

Triple output models

1.950 x 1.350 x 0.405 inches (49.53 x 34.29 x 10.29 mm) See case F1 for dimensions.

Flanged Single and dual output models

2.910 x 1.125 x 0.400 inches (73.91 x 28.58 x 10.16 mm) See case K3 for dimensions.

Triple output models

2.720 x 1.350 x 0.405 inches (69.09 x 34.29 x 10.29 mm) See case J1 for dimensions.

Weight (maximum)

60 grams typical

Screening

Standard, ES, or 883 (Class H). See "883, Class H, QML Products - Element Evaluation" and "883, Class H, QML Products – Environmental Screening" for more information.

SYNC AND INHIBIT

Sync In (490 to 710 kHz)

- · Duty cycle 40% min, 60% max
- Logic low 0.8 V max
- · Logic high 4.5 V min, 10 V max
- · Referenced to input common
- · If not used, leave unconnected

Sync Out - Referenced to input common

Inhibit (INH1, INH2): TTL Open Collector

 Logic low (output disabled) Logic low voltage ≤0.8 V

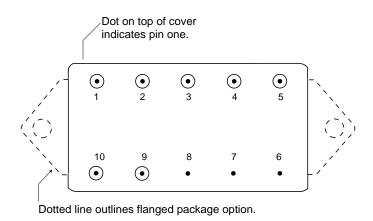
Inhibit pin current

8.4 mA typical, 10 mA maximum

- · Referenced to input common
- · Logic high (output enabled) Open collector

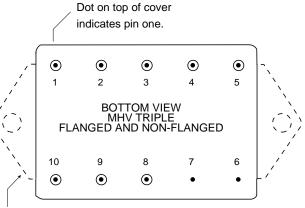
Unconnected or 11.5 to 50 V

28 VOLT INPUT - 15 WATT


PIN OUT

Pin	Single Output	Dual Output	Triple Output
1	Positive Input	Positive Input	Positive Input
2	Inhibit	Inhibit	Main (+5) Output
3	Trim	Positive Output	Output Common
4	Output Common	Output Common	Neg. Aux. Output
5	Positive Output	Negative Output	Pos. Aux. Output
6,7	Case Ground	Case Ground	Case Ground
8	Case Ground	Case Ground	Inhibit
9	Sync In	Sync In	Sync In
10	Input Common	Input Common	Input Common

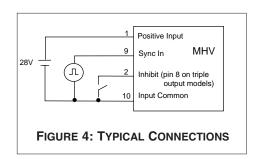
Leave sync pin (pin 9) unconnected if not used.

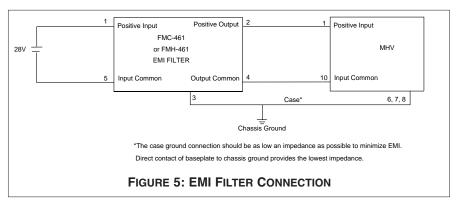

PINS NOT IN USE

Case	User's discretion
Inhibit (INH1, INH2)	Leave unconnected
Sync In	Leave unconnected

See cases H2 and K3 for dimensions.

FIGURE 2: PIN OUT SINGLES AND DUALS




Dotted line outlines flanged package option.

See cases F1 and J1 for dimensions.

FIGURE 3: PIN OUT TRIPLE

28 VOLT INPUT - 15 WATT

TRIM - SINGLE OUTPUT MODELS ONLY

Calculated Trim

$$\mbox{Trim down:} \ \ \mbox{R}_{\mbox{T}} \ (\mbox{k}\Omega) = \left(\hspace{-0.5cm} \frac{(\mbox{V}_{\mbox{\scriptsize 0}} - 2.5)}{\mbox{V}_{\mbox{\scriptsize 0} \ nominal} - \mbox{V}_{\mbox{\scriptsize 0}}} \right) \ \ \mbox{A} - \mbox{B}$$

Trim up:
$$R_T(k\Omega) = \left(\frac{2.5A}{V_{o-}V_{o \text{ nominal}}}\right) -B$$

V_o = desired output voltage

Formula Values by Model

	3.3V	5V	12V	15V
Α	3.7	3.7	14	18.2
В	10	10	30	30

Notes

If calculated result is a negative value, the desired output voltage is outside the allowed trim range. Calculated values of R_T are $\pm 15\%$.

When trimming up, do not exceed the maximum output power.

When trimming down, do not exceed the maximum output current.

Quick Reference Trim Table

MODEL		% \	OUT N	IOMIN	AL					
MODEL	110	106	102	95	90	80				
		R _{TRIM (} (R _T) k ohms								
MHV283R3S	18	36	128	4	n/a	n/a				
MHV2805S	8	20	81	23	5	n/a				
MHV2812S	n/a	19	116	177	67	11				
MHV2815S	0.3	21	122	255	104	28				

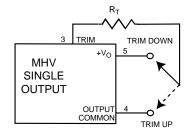
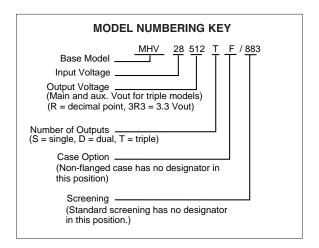



FIGURE 6: MHV SINGLE OUTPUTTRIM

28 VOLT INPUT - 15 WATT

SMD N	UMBERS
STANDARD MICROCIRCUIT DRAWING (SMD)	MHV SERIES SIMILAR PART
5962-9852801HXC	MHV283R3S/883
5962-9852201HXC	MHV2805S/883
5962-9852301HXC	MHV2812S/883
5962-9852401HXC	MHV2815S/883
5962-9852501HXC	MHV2805D/883
5962-9852601HXC	MHV2812D/883
5962-9852701HXC	MHV2815D/883
5962-9673001HXC	MHV28512T/883
5962-9673101HXC	MHV28515T/883
	· ·

Model Selection										
MHV28 Base model	 Vout value	number of outputs	case option	 screening						
Choose one from	each of the fol	lowing rows								
Vout value	for single	es or duals: 3R3, 5, 12, or 15	for triples*: 512 o	or 515						
	"R" = deci	imal point, 3R3 = 3.3VDC								
Number of output	ts S (single), D (dual) or T (triple)								
Case option	non-flang	ged case option, leave blank	F (flanged case of	option),						
Screening	standard	screening, leave blank	/ES (ES screenin	ng), /883 (Class H, QML)						
* for triple models "5" indicates the main voltage, "12" or "15" indicate the ± auxiliary voltages.										

28 VOLT INPUT - 15 WATT

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MOD	DELS	MHV283R3S		MHV2805S		MHV2812S		MHV2815S						
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		3.27	3.30	3.33	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
OUTPUT CURRENT	V _{IN} = 16 to 50 VDC	0	_	3.03	0	_	3.0	0	_	1.25	0	_	1.0	А
OUTPUT POWER	V _{IN} = 16 to 50 VDC	0	_	10	0	_	15	0	_	15	0	_	15	W
OUTPUT RIPPLE	10 kHz - 2 MHz													
VOLTAGE	$Tc = -55^{\circ}C \text{ to } +125^{\circ}C$	_	5	25	_	5	25	_	5	25	_	5	25	mV p-p
LINE REGULATION	V _{IN} = 16 to 50 VDC	_	0	8	_	0	8	_	1	10	_	4	13	mV
LOAD REGULATION	NO LOAD TO FULL	_	15	30	_	15	40	_	8	30	_	10	35	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	16	28	50	16	28	50	VDC
NO LOAD TO FULL ¹	TRANSIENT 120 ms	_	_	80	_	_	80	_	_	75	_	_	60	V
INPUT CURRENT	NO LOAD	_	34	42	_	44	52	_	43	55	_	45	62	mA
	INHIBITED	_	8.4	10	_	8.4	10	_	8.4	10	_	8.4	10	mA
INPUT RIPPLE	10 kHz - 20 MHz													
CURRENT	$Tc = -55^{\circ}C \text{ to } +125^{\circ}C$	_	10	45	_	10	40	_	10	40	_	10	40	mA pp
EFFICIENCY		69	72	_	74	77	_	79	81	_	78	81	_	%
LOAD FAULT ²	POWER DISSIPATION													
	SHORT CIRCUIT ²	_	_	7	_	_	8	_	_	7	_	_	7	W
	RECOVERY ¹	_	_	20	_	_	20	_	_	20	_	_	20	ms
STEP LOAD	50% - 100% - 50%													
RESPONSE ³	TRANSIENT	_	_	300	_	_	300	-	_	350	_	_	450	mV pk
	RECOVERY	_	_	1	_	_	1.5	_	_	1.3	_	_	1.3	mS
START-UP	DELAY	_	14	18	_	14	18	_	14	18	_	14	18	ms
0 TO 28 V _{IN}	OVERSHOOT	_	0	100	_	0	100	_	0	120	_	0	150	mV pk
STEP LINE	16-50-16 VDC ⁴													
RESPONSE ¹	TRANSIENT			175			550			550			650	mVpk
	RECOVERY ⁴			0.9			2			2.5			2.5	mS
CAPACITIVE LOAD ¹				200			200			200			200	μF

Notes

- 1. Guaranteed by design, not tested.
- 2. Load fault is a short circuit ($<50~\text{m}\Omega$). Recovery is into a resistive load.
- 3. Load step transition \geq 10 μ s. Recovery = time to settle to within 1% of Vout final value.
- 4. Input step transition \geq 10 μ s. Recovery = time to settle to within 1% of Vout final value.

28 VOLT INPUT - 15 WATT

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

DUAL OUTPUT MODELS		MHV2805D		MHV2812D			MHV2815D				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
	-V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDO
OUTPUT CURRENT	V _{IN} = 16 TO 50 VDC	_	_	±1.50	_	_	±0.625	_	_	±0.500	Α
OUTPUT POWER ²	V _{IN} = 16 TO 50 VDC	_	±7.5	15	_	±7.5	15	_	±7.5	15	W
OUTPUT RIPPLE	10 kHz- 2 MHz										
VOLTAGE	Tc = -55°C to +125°C										
	+V _{OUT} /-V _{OUT}	_	5	35	_	5	25	_	10	50	mVp-p
LINE REGULATION	V _{IN} = 16 TO 50 VDC ±V _{OUT}	_	0	10	_	0	10	_	0	10	mV
LOAD REGULATION	NO LOAD TO FULL ±V _{OUT}	_	5	15	_	2	15	_	2	15	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	16	28	50	VDC
NO LOAD TO FULL ¹	TRANSIENT 120 msec	_	_	80	_	_	75	_	_	60	V
INPUT CURRENT	NO LOAD	_	22	30	_	32	43	_	37	50	mA
	INHIBITED	_	8.4	10	_	8.4	10	_	8.4	10	
INPUT RIPPLE	10 kHz - 20 MHz										
CURRENT	Tc = -55°C to +125°C	_	5	40	_	5	40	_	10	45	mA p-p
EFFICIENCY		77	79	_	81	83	_	80	83	_	%
LOAD FAULT ^{1,3}	POWER DISSIPATION										
	SHORT CIRCUIT	_	_	7.5	_	_	9	_	_	9	W
	RECOVERY	_	_	20	_	_	25	_	_	30	ms
STEP LOAD	50% - 100% - 50%										
RESPONSE ⁴ ± V _{OUT}	TRANSIENT			180	_		200	_		250	mV pk
	RECOVERY			1500	_		800	_		80	
START UP ¹	+V _{OUT} DELAY		10	16		10	18		12	20	ms
	±V _{OUT} OVERSHOOT		0	50		0	100		0	100	mV pk
	-V _{OUT} DELAY		10	18		10	23		12	28	mS
STEP LINE ¹	16-50-16 VDC										
RESPONSE ^{1,5}	TRANSIENT			400			500			500	mV pk
	RECOVERY			4			3			3	mS
CAPACITIVE LOAD ¹				100			100			100	μF

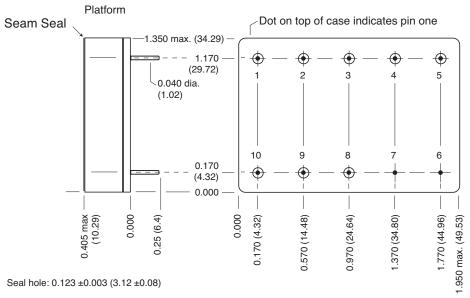
Notes

- 1. Guaranteed by design, not tested.
- 2. Up to 7.5 watts is available from either output.
- 3. Load fault is a short circuit (<50 m $\!\Omega\!$). Recovery is into a resistive load.
- 4. Load step transition \geq 10 $\mu s.$ Recovery = time to settle to within 1% of Vout final value.
- 5. Input step transition \geq 10 μ s. Recovery = time to settle to within 1% of Vout final value.

28 VOLT INPUT - 15 WATT

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

TRIPLE OUTPUT MODELS		N	/IHV28512		I N			
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	MAIN	4.95	5.0	5.05	4.95	5.0	5.05	
	+ AUXILIARY	11.88	12.0	12.12	14.85	15.0	15.15	VDC
	– AUXILIARY	11.82	12.0	12.18	14.77	15.0	15.23	
OUTPUT CURRENT ²	MAIN	0	_	2.0	0	_	2.0	
V _{IN} = 16 TO 50	+ AUXILIARY	_	0.208	0.333	_	0.167	0.267	
	– AUXILIARY	_	0.208	0.333	_	0.167	0.267	_ A
	TOTAL	_	_	2.416	_	_	2.333	
OUTPUT POWER ³	MAIN	_	_	10	_	_	10	
V _{IN} = 16 TO 50	+ AUXILIARY	_	_	4	_	_	4	w
	– AUXILIARY	_		4	_	_	4	- vv
	TOTAL	_	_	15	_	_	15	7
OUTPUT RIPPLE	10 kHz to 2 MHz MAIN	_	8	22	_	8	22	
VOLTAGE Tc= -55° to +125°C	10 kHz to 2 MHz ± AUXILIARY	_	9	22	_	9	22	mV p-p
LINE REGULATION	MAIN	_	0	5	_	0	5	
V _{IN} = MIN. TO MAX.	+AUXILIARY	_	5	35	_	7	35	mV
	– AUXILIARY	_	7	40		7	40	+
LOAD REGULATION	MAIN	_	10	20	_	10	20	
	+AUXILIARY	_	10	30	_	10	30	mV
	– AUXILIARY	_	40	70	_	40	80	7
CROSS REGULATION ⁴	- AUXILIARY CONDITION A & B	_	400	800	_	400	800	mV
INPUT VOLTAGE ¹	CONTINUOUS	16	28	50	16	28	50	\(\p\c)
	TRANSIENT 120 ms	_	_	80	T -	_	80	VDC
INPUT CURRENT	NO LOAD	_	30	37	_	34	41	
	INHIBITED	_	8.4	10	_	8.4	10	mA
INPUT RIPPLE CURRENT								
Tc= -55° to +125°C	10 kHz to 10 MHz	_	10	30	_	10	30	mA p-p
EFFICIENCY		76	78	_	75	78	_	%
LOAD FAULT /	POWER DISSIPATION MAIN	_	_	9	_	_	9	
SHORT CIRCUIT ⁴	± AUXILIARY	_	_	9	_	_	9	W
	RECOVERY - EACH OPUTPUT			25			25	mS
STEP LOAD RESPONSE ^{6, 7}	TRANSIENT MAIN	_	_	250	_	_	250	mV
	± AUXILIARY	_	_	550	_	_	550	IIIV
	RECOVERY MAIN	_	_	2.5	_	_	2.5	ms
7	± AUXILIARY			3.5			3.5	
START-UP ⁷	DELAY EACH OUTPUT		7	15		7	15	ms
	OVERSHOT MAIN ± AUXILIARY			100 240			100 300	m\/ nk
CAPACITIVE LOAD ¹	MAIN"			200			200	mV pk
ON NOTITE LOND	± AUXILIARY			100			100	μF
STEPLINE RESPONSE ⁷	TRANSIENT ¹ MAIN	_	_	400	_	_	400	
	± AUXILIARY	_	_	500	_	_	500	mV pk
	RECOVERY ¹ MAIN	_	_	3		_	3	mS
	± AUXILIARY	_	_	4	-	_	4	1113


- 1. Guaranteed by design, not tested.
- 2. The sum of the 12 volt auxiliary output currents may not exceed 416 mA.

 The sum of the 15 volt auxiliary output currents may not exceed 333 mA.
- 3. The sum of the auxiliary output power may not exceed 5 watts.
- Cross regulation occurs between the two auxiliaries and is measured on –aux. +5 is held constant at 2.0 A. Cross regulation is specified for two conditions:
- A. Positive aux. = 2.5 W; -(50%) negative aux. = 2.5 W to 0.5 W (50% to 10%). B. From +Po = 70% and -Po = 30% to + Po = 30% and -Po = 70%. Above conditions are referenced to 50%/50% balanced loads.

- 5. Load fault is a short circuit (<50 m Ω). Recovery is into a resistive load.
- 6. Load step transition \geq 10 μ s. Recovery = time to settle to within 1% of Vout final value. 7. Input step transition \geq 10 μ s. Recovery = time to settle to within 1% of Vout final value.

28 VOLT INPUT - 15 WATT

BOTTOM VIEW CASE F1

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

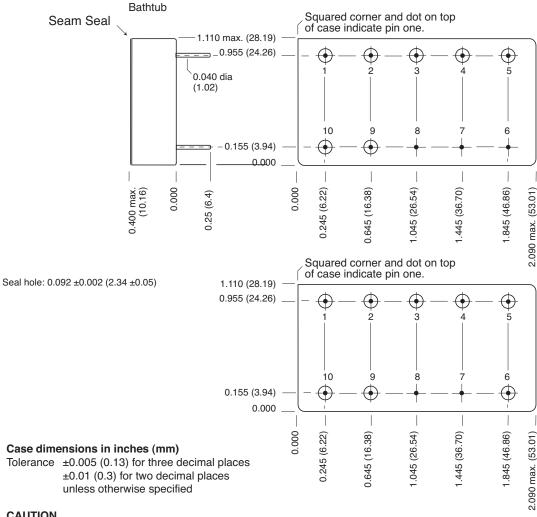
Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold ceramic seal

Case F1, Rev C, 20051216


Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice.

Copyright © 1999-2006 Interpoint Corp. All rights reserved.

FIGURE 7: CASE F1- MHV SINGLE AND DUAL

28 VOLT INPUT - 15 WATT

CASE H2 **BOTTOM VIEW**

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header Cold Rolled Steel/Nickel/Gold

Kovar/Nickel Cover

Pins #52 alloy/Gold compression glass seal

Case H2, Rev C - 20060109

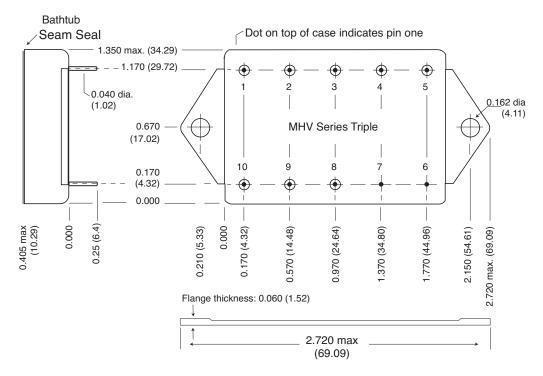

Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice. Copyright © 1999-2006 Interpoint Corp. All rights reserved.

FIGURE 8: CASE H2 - MHV TRIPLE

28 VOLT INPUT - 15 WATT

BOTTOM VIEW CASE J1

Flanged cases: Designator "F" required in Case Option position of model number.

Seal hole: 0.920 ±0.002

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold compression glass seal

Case J1, Rev D - 20060710

Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice.

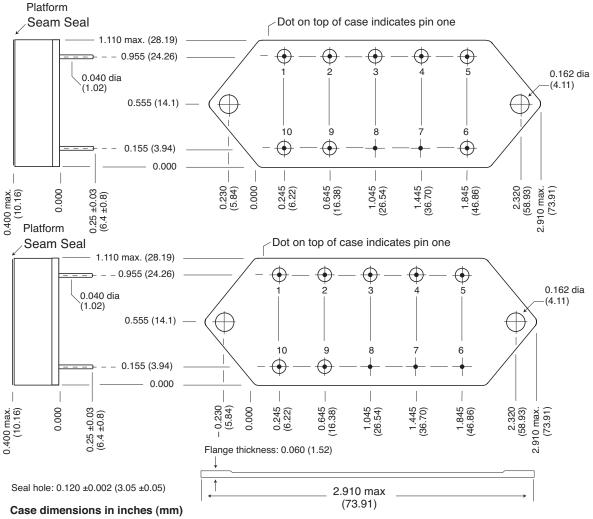

Copyright © 1999-2006 Interpoint Corp. All rights reserved.

FIGURE 9: CASE J1 - MHV TRIPLE

28 VOLT INPUT - 15 WATT

BOTTOM VIEW CASE K3

Flanged cases: Designator "F" required in Case Option position of model number.

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device.

Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold compression glass seal

Case K3, Rev C, 20060110

FIGURE 11: CASE K3 - MHV SINGLE AND DUAL

28 VOLT INPUT - 15 WATT

883, CLASS H, QML PRODUCTS - ELEMENT EVALUATION

TEST PERFORMED	STANDARD (NON-QML) ¹		CLAS QN	/L
(COMPONENT LEVEL)	M/S ²	P ³	M/S ²	P ³
Element Electrical (probe)	yes	no	yes	yes
Element Visual	no	no	yes	yes
Internal Visual	no	no	yes	no
Final Electrical	no	no	yes	yes
Wire Bond Evaluation ⁴	no	no	yes	yes
SLAM™/C-SAM: Input Capacitors only (Add'l test, not req. by H or K)	no	no	no	yes

Definitions:

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534

SLAM™: Scanning Laser Acoustic Microscopy C-SAM: C - Mode Scanning Acoustic Microscopy

Notes:

- 1. Non-QML products do no meet all of the requirements of MIL-PRF-38534
- 2. M/S = Active components (Microcircuit and Semiconductor Die)
- 3. P = Passive components
- 4. Not applicable to EMI filters that have no wire bonds

28 VOLT INPUT - 15 WATT

883, CLASS H, QML PRODUCTS – ENVIRONMENTAL SCREENING

TEST	125°C STANDARD non-QML	125°C /ES non-QML	Class H /883 QML
	HOH-GIVIL	HOH-GIVIL	GIVIL
Pre-cap Inspection			
Method 2017, 2032	yes	yes	yes
Temperature Cycle (10 times)			
Method 1010, Cond. C, -65°C to 150°C, ambient	no	no	ves
Method 1010, Cond. B, -55°C to 125°C, ambient	no	yes	no
		,,,,	
Constant Acceleration			
Method 2001, 3000 g	no	no	yes
Method 2001, 500g	no	yes	no
Burn-In			
Method 1015, 160 hours at 125°C case, typical	no	no	yes
96 hours at 125°C case, typical	no	yes	no
Final Electrical Test MIL-PRF-38534, Group A			
Subgroups 1 through 6: -55°C, +25°C, +125°C case	no	no	yes
Subgroups 1 and 4: +25°C case	yes	yes	no
Hermeticity Test			
Fine Leak, Method 1014, Cond. A	no	yes	yes
Gross Leak, Method 1014, Cond. C	no	yes	yes
Gross Leak, Dip (1 x 10 ⁻³)	yes	no	no
FirstNo. of the coeffee			
Final Visual Inspection			
Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

