Contents

Introduction

Thermal Overcurrent Circuit Breakers

Thermal-Magnetic
 Overcurrent Circuit Breakers

Hydraulic-Magnetic and
Magnetic Overcurrent Circuit Breakers

Circuit Breakers and Control Products

Door Locking, Time Delay and Motor Protection Controls

Solid State Remote
Power Controllers (SSRPCs)

Electronic Products

7

Approvals
Worldwide Service Network

Introduction	0
E-T-A circuit protection pages 3-10	
Thermal Overcurrent Circuit Breakers	1
Product overview pages	11-22
104-... / 105-... / 106-... pages	23-26
110-P10 / 111-P10 pages	27-28
120-... / 124-... pages	29-30
127-... .. pages	31-33
129-L11-... pages	35-36
157-... / 158-... pages	37-39
1110-.. pages	41-42
1140-... pages	43-46
1160-.. pages	47-48
1170-.. pages	49-51
1410-.. pages	53-56
1610-... pages	57-59
1658-.. pages	61-63
3120-.. pages	65-76
3130-.. pages	77-80
2-4100-... .. pages	81-82
2-5000-... / 2-5700-... pages	83-86
2-5200-... ... pages	87-88
2-6200-... / 2-6400-... pages	89-92

Thermal-Magnetic Overcurrent Circuit Breakers	
Product overview pages 93	... pages 93-100
201 / 201-WA pages 101	pages 101-103
2210-S2.. .. pages 105	... pages 105-108
E2210-... ... pages 109	... pages 109-112
19"-rack .. pages 113	... pages 113-114
19BGT2 Rack................................... pages 115	pages 115-116
2210-S2.. for Distribution rail pages 117	... pages 117-122
X2210-S06... Distribution rail pages 123	... pages 123-124
X2210-K... Distribution rail.................. pages 125	... pages 125-129
2210-T2 ... pages 131	.. pages 131-134
2215-L1.. / 2215-G1.. pages 135	... pages 135-137
E2215-... ... pages 139 pages 139-140
2215-F1... pages 14 pages 141-143
3120-...-..M1-.................................. pages 145	... pages 145-148
3200 ... pages 149	... pages 149-151
3300-... / 3400-... pages 153	... pages 153-155
3500-... / 4000-... pages 157	... pages 157-160
3600-... / 3900-... pages 161	... pages 161-164

High Performance Circuit Breakers 4
Product overview pages 195-204
402- pages 205-206
410- pages 207-210
412-K. pages 211-212
413-K. pages 213-214
428- pages 215-217
433-... / 434 pages 219-222
437-K pages 223-224
446 / 447 / 449 pages 225-226
452- pages 227-229
482- pages 231-233
483 pages 235-238
4120- pages 239-240
4201- pages 241-242
4910-... (RCCB) pages 261-262
520-... / 530- pages 207-210
583- pages 243-246
911 / 912 / 913 / 914- pages 247-249
921/922 pages 251-252
E-1032- pages 253-256
E-1073-437 /- 921 / -922- pages 257-260
Door Locking, Time Delay and Motor Protection Controls 5

Solid State Remove Power Controllers (SSRPCs) 6
Product overview pages 283-286
E-1048-600 pages 287-289
E-1071-073 pages 291-293
E-1071-128 pages 295-297
E-1071-343 pages 299-301
E-1071-353 pages 303-305
E-1071-603/607 pages 307-309
E-1071-803 pages 311-313
Electronic Products 7
Flow meters, flow monitors pages 315-322
Level sensors pages 323-326
Digital panel instruments pages 327-332
Sensors pages 333-334
Current/voltage monitors,combi safety protectionpages 335-340
Miscellaneous8
Approvals pages 341-342
Worldwide Service Networkpages 343-346

E-T-A Protection and Safety

E-T-A were pioneers in the development of precision performance circuit breakers with characteristics specifically designed to protect equipment, sub-systems and components against the potentially catastrophic effects of electrical overload and short circuits.

Today we offer one of the widest product ranges of its type on the market including high performance models for aerospace, defence, and other applications whose requirements for performance, safety and reliability are uncompromising.

We also manufacture battery isolation switches; door lock relays; solid state controllers with current limiting characteristics for use in electronic power management systems; and a comprehensive range of electronic control products and instrumentation.

Older methods of protecting electrical and electronic systems from overloads and short circuits are no longer sufficient. Problems of large current rating steps, wide performance bands and premature ageing can cause serious difficulties in safety critical systems and equipment; furthermore, multi-phase circuitry requires disconnection of all poles. If fuses are used, comprehensive stocks of replacements are required to cover every eventuality.

Professionals have long recognised the advantages of circuit breaker technology. Overcurrent protection ensures safe performance of all components, while circuit breakers offer convenience in operation and can confidently be reset by inexperienced personnel.

E-T-A circuit breakers are far and away the preferred choice.

E-T-A Total Quality

Circuit breakers are safety-critical items. The same E-T-A products may be required to operate just occasionally or very often during the life of the equipment they are protecting. Either way, operation must be totally dependable immediately a fault occurs. Any failure to perform could have disastrous consequences-endangering people and property.
We have been designing and manufacturing circuit protection products since 1948 and have responded to the performance requirements across a wide range of industries. Most importantly, we have gained expertise on the long term needs of circuit protection; the impact of ageing equipment, corrosion, deterioration of wiring insulation and loosening of connectors. All these place additional demands on circuit protection devices.

Meeting these needs, E-T-A products are designed and manufactured for world class quality, to the most stringent standards. Quality is builtin at every stage of the manufacturing process and is verified by the latest automatic test equipment and SPC techniques.

Our quality management system is accredited to ISO 9001/EN29001 and has been independently audited by many of the world's leading manufacturers.

E-T-A Support

Our test laboratories are equipped to conduct comprehensive electrical and environmental qualification programmes and are approved for low voltage switchgear to EN 45000 requirements.

Our substantial investment in research and development ensures that we remain at the forefront of technology. Our international standards committee work, covering many different industries, enables us to give up-to-the-minute advice on legislative demands and safety trends worldwide.

E-T-A Approvals

E-T-A circuit protection products are designed according to IEC requirements for CBEs (IEC 934, EN 60934) - defined as circuit breakers for equipment where unrestricted short circuits either cannot occur or are limited by back-up protection elsewhere in the system.

Most E-T-A models are fully approved by leading authorities including VDE, CSA and UL (supplementary protectors in accordance with UL 1077). Furthermore approvals are also held from specialised agencies such as the UK Civil Aviation Authority, Lloyds Register of Shipping, Bureau Veritas and the American Bureau of Shipping.

CE Mark

Those products from the E-T-A programme which are subject to the European Union EMC Directive have been CE marked since early 1996 to demonstrate compliance. Declarations of conformity contain the necessary supporting evidence.

In addition, from January 1997, models covered by the Low Voltage Directive have also been CE marked.

CE marking is the responsibility of individual manufacturers and should not be confused with formal approval logos, the use of which is administered by recognised test authorities.

E-T-A Reliable Protection for Demanding Applications

E-T-A circuit breakers are designed for equipment, component and low voltage wiring protection. Their precision performance characteristics are ideally suited to applications for which other methods of protection are generally inadequate. These include:
motors
transformers
solenoids
printed circuit boards power supplies test equipment control instrumentation computers
communications systems factory automation

aircraft

automotive systems
military vehicles
boats
semi-conductors
domestic/household appliances commercial equipment
business machines
medical equipment
... and many others

Current Ratings and Time/Current Characteristic Curves

Key selection criteria are the trip time zones determined at $23^{\circ} \mathrm{C}$ which are shown graphically for each E-T-A product on the relevant data sheet. Upper and lower curves show minimum and maximum adjustment tolerances. Unless otherwise stated, all thermal and thermal-magnetic
circuit breakers will carry 100 \% rated current continuously and trip within one hour at 140% rating. Adjustment to closer tolerances is available to special order.
thermal

current
magnetic (no delay)
(delayed magnetic curves available)

current
thermal/magnetic

current
magnetic-hydraulic

current

E-T-A Catalogue

The E-T-A catalogue describes the largest product range of its type, providing solutions to almost any requirement. It is divided into the following sections:

Introduction
Thermal circuit breakers
Thermal-magnetic circuit breakers
Hydraulic-magnetic and magnetic circuit breakers
High performance circuit breakers and battery switches
Door lock, time delay and motor protection controls
Solid State Remote Power Controllers (SSRPCs)
Electronic products
Approvals
Each product section includes a quick selector chart and short form presentation of the range, followed by detailed specifications for individual product types or groups.

Please contact us if you have any difficulty in matching a product to your requirements or have a special application - we have the flexibility to develop custom solutions tailored to specific needs: products that are both solution-oriented and cost effective.

A separate catalogue fully describes E-T-A electronic sensors, control products and instrumentation.

E-T-A Choice -
 Circuit Breakers to Ensure the Best Protection

A number of factors arise in choosing a circuit breaker to protect against overloads and short circuits. E-T-A specialists can advise on your requirement, according to the specific field application.

Four types of tripping operation cover most situations.
1.Thermal Circuit Breakers (TO)

The tripping mechanism comprises a thermal actuator and mechanical latch, designed to discriminate between in-rush/temporary current surges and prolonged overloads to ensure effective overcurrent protection. Applications include motors, transformers, solenoids and low voltage wiring.

2. Thermal-Magnetic Circuit Breakers (TM)

Combining a solenoid in series with a bimetal thermal actuator, these provide time current characteristics with two distinct steps. A high overcurrent value causes the solenoid to trigger the release mechanism rapidly, the thermal mechanism responds to prolonged low value overloads. These circuit breakers are well suited to telecommunications, process control, and similar applications requiring precision performance.

3. Magnetic Circuit breakers (MO or HM)

A well-proven design of solenoid coil with optional hydraulic delay provides tripping that is highly tolerant of changes in ambient temperature. A wide range of performance characteristics is available in single, double and three pole configurations.

Series 808 and 809 are fast acting magnetic devices sensitive to small overload currents. Typical applications include printed circuit board and power semi-conductor protection.
4. High Performance Circuit Breakers

Where ultimate operation under adverse conditions is required, E-T-A high performance circuit breakers provide high interrupting capacity and excellent environmental specifications. Available in thermal and thermal-magnetic versions, they offer current ratings up to 500 A. Special models are designed for aerospace, defence and similar heavy-duty applications.

Interrupting Capacity $\mathbf{I}_{\mathbf{c n}}$

Overload and maximum interrupting capacities are specified for each series, defined as the maximum current levels that can be switched safely for a minimum of 40 operations, and a minimum of 3 operations respectively. For thermal circuit breakers back-up protection is advised if higher currents are possible. Please contact us for further advice on specific applications.
IEC 934/EN 60934 defines interrupting capacity as the rated conditional short circuit current performance. According to category PC1, this is the value of rated conditional short circuit current (interrupting capacity) for which the prescribed conditions do not include fitness of the CBE for its further use. PC2 is defined as the value of rated conditional short circuit current for which the prescribed conditions do include fitness of the CBE for its further use.

Switching Sequence

The switching sequence for short circuit tests is normally abbreviated as follows, according to relevant international CBE standards.

o: Break operation (open)

The circuit breaker in the closed position is caused to open through a short circuit current applied by means of a separate switch. Referenced as co (closed open) in earlier specifications.
co: Make operation with subsequent break operation (close open) The circuit breaker in the open condition is closed onto a sustained short circuit and must immediately re-open. This operating mode requires the circuit breaker to be fail-safe as the actuator cannot be released as quickly as the circuit breaker mechanism will open. Referenced as oco (open close open) in earlier specifications.
t: Time period between switching operations
Normally 3 minutes, or the period required before the circuit breaker can be re-set.

Solderability of Silver-Plated Terminals

E-T-A products with silver-plated terminals will not be adversely affected (e.g. by sulphur induced corrosion) by the packaging material. However, the solderability of silver-plated terminals can deteriorate with time. Provided these products are stored, solderability will be guaranteed for a period of six months from the date of delivery. If they are not required immediately, it is recommended that these products are packed and stored in polythene bags. No drying agents should be used as they may contain silicate gel which can impair solderability. Flux should be nonhalogenous.

E-T-A Advantages

Snap-Action Mechanism

The snap-action mechanism featured in many E-T-A models ensures that the contact closing speed is independent of the speed of operation of the actuator (push button, rocker, toggle etc.). The moving contact is retained until the actuator causes a defined force to act in the closing direction of the contacts. Once this force is exceeded, the mechanical retention is overcome allowing the contacts to snap closed (tease free mechanism.) The closing speed is a function of this force alone.
Snap-action mechanisms eliminate contact welding upon switching on to sustained short-circuits and minimise the risk of contact wear over the circuit breakers' life.

Trip Free Mechanism

E-T-A circuit breakers cannot be held closed against an overload. This is achieved through the use of positively trip free designs in accordance with IEC 934/EN 60934 (with the exception of models 1610, 1658, 808 and 809 which are designed for specialised applications).

Manual Trip／On－Off Switches

Many models are available with a manual trip feature，either standard or as an option．
Others are specifically designed as combined switch／circuit breakers with rocker，push button，or toggle actuation，styled for front panel mounting．Rocker types are available with illumination as an option． According to IEC 934／EN 60934：
$R=$ manual reset only
$M=$ with manual release but not intended for frequent use as a switch $S=$ combined switch／CBE function

Terminals

Most models are offered with either quick connect（also suitable for soldering）or screw terminals．Models with printed circuit board pins are also available．

Auxiliary Contacts

Electrically separate low current contacts can be included for use with alarm and control switching circuits．
$\mathrm{N} / \mathrm{C}(\mathrm{Si} 1)=$ Normally closed contacts are open when the main contacts are closed（break or b－contact）．
N／O（Si 2）$=$ Normally open contacts are closed when the main contacts are closed（make or a－contact）．

Shunt Terminal

Also available on some models：an additional，unprotected circuit tap， switched through the main contacts．

Relay Trip

An overload sensing circuit electrically separate from the switching contacts is a further possibility on some models．

Dual Control

Thermal－magnetic circuit breakers inherently have two separate protection elements：the thermal circuit for overload sensing and the magnetic coil for abnormal conditions such as short circuits．The main contacts are in series．Electrical separation of the thermal and the magnetic elements enables independent monitoring of two separate signals－Dual Control－by just one single pole circuit breaker．

E－T－A Circuit Breakers with Advanced Features

－Nuisance－free operation when subject to high in－rush currents or transients，allowing ratings to be closely matched to the needs of the system and enabling the most efficient sizing of wiring and components．
－Wide selection of time／current operating characteristics ensure tailoring to many different applications．
－Quality design ensures resistance to premature failure through corrosion，fatigue，shock or vibration．
－Unlike fuses，no need for spares．Risks of using temporary inappropriate substitutes are eliminated，and warranty costs are reduced．
－Convenient resetting reduces down－time and service repair costs．
－Many types also function as on／off switches，simplifying installation －fewer components result in higher overall reliability．
－Internationally approved，avoiding the need for different models for different national standards．
－Positive physical interruption of the circuit is ensured．There is no risk of equipment remaining live．Low leakage currents are eliminated．
－Fail－safe if operated beyond specified performance limits．Unlike PTC devices，such as resettable fuses，which may arc and flame； also they require power to be removed before they can be reset．

E－T－A International

E－T－A is an international company，successful in world markets and with offices and support personnel strategically placed around the globe．Our product specialists will be happy to assist with the selection of suitable products based upon a thorough evaluation of your engineering and commercial objectives．

Ambient Temperature Influence

To ensure optimum matching of circuit breaker performance to the system requirements, E-T-A thermal and thermal-magnetic circuit breakers are not normally compensated for fluctuations in ambient temperature. The circuit breaker is usually subjected to the same heat source as the system so will automatically track its protective requirements.

However, some applications require the circuit breaker to operate continuously in either high or low temperatures. The following table shows the correction factors that typically should be applied. The performance of magnetic circuit breakers and type 1410 is not affected significantly within this temperature range.

Ambient temperature ${ }^{\circ} \mathrm{C}$	Multiplication factor
-20	0.76
-10	0.84
0	0.92
+23	1.00
+40	1.08
+50	1.16
+60	1.24

Specification Notes

Close Mounting of CBEs

When several devices are mounted together, an air gap between each is recommended. If this is not possible, each device should carry only 80% of its rating.

Horizontal installation is preferable.

Plug-in Mounted E-T-A Devices

The continuous rating capability of E-T-A sockets for plug-in circuit breakers is a function of the total number of circuit breakers fitted and the individual ratings of each. Please enquire with details of your application.

Degrees of Environmental Protection for Electrical Equipment

Terms such as drip-proof, water splash protection, waterproof and dustproof are all in common usage but may be misleading unless standard definitions are applied. The IEC has developed a standard coding system defined in IEC 529.

Protection categories are identified by the prefix letters „IP" followed by 2 digits, the first of which refers to the level of protection provided against access by solid foreign objects and to hazardous parts; the second digit shows the level of protection against water ingress.

Degrees of protection of electrical equipment according to IEC 529

First characteristic digit: Degree of protection against access to hazardous parts and against solid foreign objects		
	Designation	Description
0	Non-protected	No specific protection of persons against accidental access to live or moving parts. No protection of the equipment against solid foreign objects.
1	Protected against solid foreign objects of $\geq 50 \mathrm{~mm}$	Protection against accidental access to live or internal moving parts, e.g. with the back of a hand, but no protection against intended access to these parts. Protection against the ingress of solid foreign objects of 50 mm dia. and greater.
2	Protected against medium-sized foreign objects $\geq 12 \mathrm{~mm}$	Protection against finger access to live or internal moving parts. Protection against the ingress of solid foreign objects of 12 mm dia. and greater.
3	Protected against small solid foreign objects $\geq 2.5 \mathrm{~mm}$	Protection against access to live or internal moving parts with a tool, or wires etc. of a thickness of $>2.5 \mathrm{~mm}$. Protection against the ingress of solid foreign objects of 2.5 mm dia. and greater.
4	Protected against granular foreign objects $\geq 1 \mathrm{~mm}$	Protection against access of live or internal moving parts with a tool, or wires etc. of a thickness of $>1 \mathrm{~mm}$. Protection against the ingress of solid foreign objects of 1 mm dia. and greater.
5	Dust-protected	Protection against access to live or internal moving parts. Protection against harmful dust deposits. Ingress of dust is not totally prevented, but dust shall not penetrate in a quantity to interfere with satisfactory operation of the equipment.
6	Dust-proof	Full protection against access to live or internal moving parts. No ingress of dust.

Second characteristic digit:Degrees of protection against ingress of water		
	Designation	Description
0	non-protected	No specific protection
1	Protected against water drops falling vertically	Drops falling vertically shall have no harmful effects.
2	Protected against water drops falling vertically when enclosure is tilted up to 15	Drops falling vertically shall have no harmful effects when the enclosure is tilted at any angle up to 15° on either side of the vertical.
3	Protected against water spray	Water sprayed at an angle up to 60॰ on either side of the vertical shall have no harmful effects.
4	Protected against splashing water	Water splashed against the enclosure from any direction shall have no harmful effects.
5	Protected against water jets	Water projected in jets against the enclosure from any direction shall have no harmful effects.
6	Protected against high-pressure water jets	Water protected in powerful jets against the enclosure from any direction shall have no harmful effects. *)
7	Protected against the effects of temporary immersion in water	Ingress of water in quantities causing harmful effects shall not be possible when the enclosure is is temporarily immersed in water under specified conditions of pressure and time. *)
8	Protected against the effects of continuous immersion in water	Ingress of water in quantities causing harmful effects shall not be possible when the enclosure is continuously immersed in water under specified conditions of pressure and time. *)
*)Certain equipment does not allow any ingress of water. If applicable, this is included in the relevant equipment specification.		

Preferred degrees of protection

Protection against access to hazardous parts and against solid foreign objects	Protection against ingress of water						
Code letters and first characteristic digit	Second characteristic digit						
	0	1	2	3	4	5	6
IP 0	IP 00						
IP 2	IP 20	IP 21	IP 22	IP 23			
IP 3	IP 30	IP 31	IP 32	IP 33			
IP 5					IP 54		
IP6						IP 65	IP 66

Protection degree IP 54 may apply to products with a splashcover, for example for front of panel protection whereas the terminals (IP 00) will be in an enclosed area.

Cable ratings to EN 60934

EN 60934:1994 + A1 : issue 1994
Standard current ratings as assigned to different cable cross sectional areas (stranded copper cable).

Size mm^{2}	1	1.5	2.5	4	6	10	16	25	35	50		
Current rating (A)	to 6											>6
:---:												
to 13		>13										
:---:												
to 20		>20										
:---:												
to 25		>25										
:---:												
to 32		>32										
:---:												
to 50		>50										
:---:												
to 63		>63										
:---												
to 80		>80										
:---												
to 100		>100										
:---												
to 125												

Cable ratings and sizes for aerospace applications

Current rating (A)	AWG cable sizes			
	EN 2350	MS 3320	Airbus	Boeing BPS-C-144
0.5	20	22	24	
1	20	22	24	20
2	18	22	24	18
2.5	18	22	24	18
3	18	22	24	18
4	18	22	24	18
5	18	22	24	18
7.5	16	22	22	16
10	16	20	20	16
15	14	18	16	14
20	12	16	14	12
25	10		12	10

AWG	mm^{2}	
24	0.21	
22	0.33	
20	0.52	
18	0.82	
16	1.31	
14	2.08	
12	3.31	
10	5.26	
AWG	American	
Gauge		

Representation of operating status

In accordance with DIN 40719, part 3, issue April 1997, the operating status of switching elements should be represented as follows:

- Telecommunications

The representation of the ready status as used by the telecommunications industry - Fuses and circuit breakers are shown in the closed position.

- Power engineering

The representation of the open position is used by the power, installation, control and data processing industries.
Equipment is represented in the de-energized condition and without the effect of an operating force.
Power switches, disconnectors, circuit breakers etc. are shown in the open condition, which is the normal position.

Following these definitions, E-T-A products are generally shown in the de-energized condition.

Definition of make contact and break contact

The definition of IEC Publication 50 (441), 1974 issue, applies.
make contact a-contact N/O (Si2) contact

A control or auxiliary contact which is closed when the main contacts of the mechanical switching device are closed and open when they are open.
Example:

break contact b-contact N/C (Si1) contact when the main contacts of the mechanical switching device are closed and closed when they are open.
Example:

Note:

The common terminal of change over contacts is often shown as C (common).

Terminal identification

The following identifications are in conformance with DIN EN 5005 July 1977. However, the diagrams for the examples have been adjusted to DIN 409001988 (equivalent to IEC 617 of 1983).

Main circuit
One-digit numerals - one pair of subsequent numerals per main switching element

Example

2 main switching elements

Auxilairy circuits

Two-digit numbers
Second digit
function numeral
b-contact 1 and 2
a-contact 3 and 4
change over contact 1,2 and 4
b-contact 7 and 8, delayed
change over contact
with special functions 5,6 and 8
First digit, ordinal number
switching elements with identical function and belonging together

Examples:

b-contact

a-contact

change over contact

Description	DIN 40900/IEC 617	AINSI/CSA	Description	DIN 40900/IEC 617	AINSI/CSA
Operated by electromagnetic actuator	02-13-23		Make contact	$\text { 07-02-01 \|07-02-02 } \mid$	\circ
Operated by electromagnetic overcurrent protection	$02-13-24$		Break contact	07-02-03	$!$
Operated by thermal actuator, for example thermal relay, thermal overcurrent protection	02-13-25	$\frac{1}{T}$	Change-over break before make contact	07-02-04	$\circ 0$
Manually operated control, general case	$02-13-01$		Two-way contact with centre-off position	07-02-05 \|	
Operated by pulling	02-13-03		Circuit breaker	$07-13-05$	1
Operated by pushing	$02-13-05$	[------	Disconnector (isolator)	07-13-06	
Operated by turning	02-13-04		Switch-disconnector (on-load isolating switch)	07-13-08	
Operated by stored mechanical energy	02-13-20		Manually operated switch, general symbol	$\begin{array}{r} 07-07-01 \\ r---\left.\right\|^{1} \end{array}$	
Latching mechanism with mechanical release	102-05-04		Push-button switch with detent, non-automatic return (push/push)	$\left[-\cdots,-\left.\right\|^{1}\right.$	
Control by fluid level	02-14-01		Three-position switch, manually operated, positions 2 and 3 are locked positions		
Control by flow	02-14-03		Pull-switch (non locking)		---\%
Pressure sensor, making	$p>---\mid$	$p-\emptyset^{\circ}$	Turn-switch (locking)	$\begin{gathered} \text { 07-07-04 } \\ z---\left.\right\|^{1} \end{gathered}$	
Operating device, general symbol, relay coil	$07-15-01$ \square		Contactor (contact open in the unoperated position)	$07-13-02$	$\stackrel{1}{1}$
Operating device with one effective winding			Contactor or relay with three make contacts		$\times \underset{\mp}{\perp}=$ x with code
Relay coil of a slow-operating relay	07-15-08		3 pole contactor with three electrothermal overcurrent releases		$\text { © } \underset{\text { oL }}{\frac{1}{5}} \frac{1}{5} \frac{1}{5}$
Relay coil of a slow-releasing relay	07-15-07		3 pole disconnector		$)^{1}-1-1^{\text {IIIsc }}$
Actuating device of a thermal relay	$07-15-21$	$\square 乌 \zeta^{\circ \mathrm{L}}$	Single pole disconnector with detent, manually operated, 1 break contact and 1 make contact		
Electro-magnetic overcurrent protection		\sum^{SOL}	Single pole disconnector with 2 parallel contacts, manually operated, with detent and remote trip coil (FA) - type 921		$\begin{gathered} \text { Disc } \frac{1}{2} \\ +\frac{1}{\delta} \end{gathered}$
Electro-magnetic undervoltage release (undervoltage release module)	$\begin{gathered} 1 \\ \square \\ \hline 1 \\ \hline \end{gathered}$		3 pole circuit breaker		
Relay coil of a polarized relay	$07-15-15$		3 pole circuit breaker with latching mechanism, electrothermal and electromagnetic overcurrent releases	+	$\begin{array}{lll} 1 & 1 \\ \{ & 1 \\ \} & \} \\ \xi & \} \\ \xi \end{array}$

Single and multi pole thermal circuit breakers (CBEs) with and without auxiliary contacts

Max. voltage ratings 3 AC 415 V, AC 250 V, DC 50 V
Current ratings 0.05 ... 30 A

With simple operation through the heating effect of current, thermal circuit breakers offer one of the most reliable and cost effective forms of protection device available. As a result they are ideally suited to the protection of a broad range of components and systems - from motors and transformer windings, through printed circuit boards, to the low voltage power distribution circuits of road vehicles, boats, and battery powered machines.

Such applications all require the ability to discriminate between safe switch-on surges or transients on the one hand, and harmful sustained overloads on the other. Thermal circuit breakers can withstand high level surges, which arise from lamp loads or motor starting, for example. At the same time they afford protection against the effects of genuine failure such as motor locked rotors. The characteristics of thermal CBE's can be matched closely to the ratings of the component or system they are protecting, eliminating the need for over-sizing of wiring and connectors, whilst offering dependable protection even under low level overcurrent conditions which cannot be adequately provided for by other methods of circuit protection.

E-T-A thermal circuit breakers utilise one of three different mechanisms optimised for their range of operation

- a snap action disc type bimetal and contact assembly
- a bimetal with a mechanical latch and separate spring loaded contact
- a hot wire design with extremely fast switching time

All are individually calibrated in the factory to ensure safe, predictable performance under a wide range of conditions.

The E-T-A thermal circuit breakers in this catalogue section are manually resettable enabling the power supply to be restored after operation. Several models combine the functions of circuit breaker protection and on/off switching in a single component. There is a choice of rocker, toggle or push button actuation according to user preference.

E-T-A's wide range of models enables the designer to make optimal selections according to specific performance, installation and styling needs.

106-...	110/111-P10-G10..	120-...	124-...
threadneck panel mounting	toggle switch/circuit breaker	rocker switch/circuit breaker	push/push switch/circuit breaker
AC 250 V ; DC 48 V	AC 250 V ; DC 28 V	DC 28 V	DC 28 V
0.05...10 A	$\begin{aligned} & 0.1 . . .20 \mathrm{~A}(\text { (type 110) } \\ & 0.1 \ldots .16 \text { A (type 111) } \end{aligned}$	3...20 A	3... 20 A
$\begin{aligned} & 0.05 \ldots 5 \mathrm{~A} 3000 \text { operations at } 2 \times I_{N} \\ & 6 \\ & 10 \mathrm{~A} \\ & 10 \mathrm{~A} \quad 500 \text { operations at } 2 \times I_{N} \\ & 50 \text { operations at } 2 \times I_{N} \end{aligned}$	30,000 operations at $1 \times I_{N}$ 5,000 operations at $2 \times I_{N}$	10,000 operations at $1 \times I_{N}$	10,000 operations at $1 \times I_{N}$
0.05... 2 A $6 x$ rated current 2.5...10 A 5 x rated current	$10 \times$ rated current	160 A	160 A

VDE, Demko, SEV, ÖVE, CSA, UL,
Semko, Nemko, Fimko, Kema

Aux. contact rating

Typical life / contact rating	5,000 operations at $2 \times I_{N}$	5,000 operations at $2 \times I_{N}$	5,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Interrupting capacity $\mathbf{I}_{\text {cn }}$		3...5 A $20 x$ rated current 6... 25 A 400 A	$$
Approvals	VDE, CSA, UL, LRoS, Semko	CSA, LRoS, BWB (VG 95345 part 9)	VDE, CSA, UL, LRoS, Semko
Available options	see pages 31-33	see pages 35-36	see pages 37-39

Dimensions

Internal connection diagrams

1110-...
snap-in panel mounting,
integral type
snap-in panel mounting
threadneck panel mounting
push/push
switch/circuit breaker

VDE, CSA, UL, BV, LRoS,
VDE, CSA, UL, Semko, Kema
VDE, CSA, UL, Semko, Kema
VDE, CSA, UL, Semko, Kema Semko

Approvals

VDE, CSA, UL, Kema

Available options
see pages 45-46
see pages 47-48
see pages 49-51

Dimensions

Internal connection diagrams

CSA, UL, SEV
VDE, CSA, UL
VDE, CSA, UL
VDE, CSA, UL

LINE

Aux. contact rating

Typical life / contact rating	300 operations at $\leq 50 \mathrm{~A}$	500 operations at $\leq 50 \mathrm{~A}$	1,000 operations at $\leq 50 \mathrm{~A}$
Interrupting capacity I_{cn}	≥ 3 operations at $\leq 150 \mathrm{~A}$	≥ 3 operations at $\leq 200 \mathrm{~A}$	200 A
	≥ 1 operation at $\leq 2000 \mathrm{~A}$	≥ 1 operation at $\leq 2000 \mathrm{~A}$	

Approvals
VDE, CSA, UL
Available options see pages $57-59$ see pages $57-59$

50,000 operations at $I_{N} \leq 16 \mathrm{~A} 2$ pole
30,000 operations at $I_{N} \leq 16 \mathrm{~A} 1$ pole 10,000 operations at $I_{N}>16 \mathrm{~A}$

$0.1 \ldots 2$	A
$10 \times$ rated current	
$2.5 \ldots 20 \mathrm{~A}$	$150 \mathrm{~A}(1$ pole $)$

$0.1 \ldots 2 \mathrm{~A} \quad 10 \mathrm{x}$ rated current

50,000 operations at $I_{N} \leq 16 \mathrm{~A} 2$ pole 30,000 operations at $I_{N} \leq 16 \mathrm{~A} 1$ pole 10,000 operations at $I_{N}>16 \mathrm{~A}$ 2.5... 20 A 250 A (2 pole)
$0.1 \ldots 2 \mathrm{~A} \quad 10 \times$ rated current 2.5... 20 A 150 A (1 pole) 2.5... 20 A 250 A (2 pole)

30,000 operations 1 and 3 pole
2,000 operations at $2 \times I_{N}$ 50,000 operations 2 pole
$0.1 \ldots 2$ A $10 \times$ rated current 2.5... 20 A 150 A (1 pole) 2.5...16 A 250 A (2 pole) 2.5... $12 \mathrm{~A} \quad 150 \mathrm{~A}(3$ pole) $14+16$ A 130 A (3 pole)
0.05...2 A $10 \times$ rated current 2.5 ... 6 A $8 \times$ rated current 7 ... 10 A $6 \times$ rated current

VDE, CSA, UL, LRoS, BV,
Semko

VDE, CSA, UL, LRoS, BV, Semko

2 pole
thermally
thermally protected

2 pole

thermally protected

VDE, UL, CSA, Semko
-

Type No.

Aux. contact rating

Typical life / contact rating	5,000 operations at $2 \times I_{N}$	5,000 operations at $2 \times I_{N}$	5,000 operations at $2 \times I_{N}$
Interrupting capacity $\mathbf{I}_{\text {cn }}$	$\begin{aligned} & 0.05 \ldots 2.5 \text { A } 8 \times \text { rated current } \\ & 3 \\ & \end{aligned} \ldots 5 \text { A } 20 \times \text { rated current }$	0.05...2.5 A $8 \times$ rated current 3 ... 5 A $20 \times$ rated current 6 ... 16 A 400 A	$\begin{aligned} & 0.05 \ldots 2.5 \text { A } 8 \times \text { rated current } \\ & 3 \\ & \\ & \hline . .5 \\ & \text { A } 20 \times \text { rated current } \\ & 6 \\ & \hline \end{aligned} \ldots 12 \text { A } 200 \text { A }$
Approvals	VDE, CSA, UL, Semko, SEV, LRoS, Nemko	Semko, LRoS	VDE, CSA, UL, Semko, SEV, LRoS, BV, Nemko
Available options	see pages 83-86	see pages $87-88$	see pages 83-86
Dimensions			
Internal connection diagrams			

flange mounting, with auxiliary contacts, with manual release option
threadneck panel mounting, with auxiliary contacts

flange mounting, with auxiliary contacts, with manual release option
AC 250 V ; DC 28 V
threadneck panel mounting,
with auxiliary contacts

局冨习ぱ Thermal Overcurrent Circuit Breakers

Thermal Overcurrent Circuit Breakers－Selector Chart

Type	Mounting method			Main terminal design							Number of poles			Max．ratings		
		® ¢ 矿	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{o}} \\ & \stackrel{\circ}{\circ} \end{aligned}$											$\begin{aligned} & \Sigma \\ & 0 \\ & \mathbb{Q} \end{aligned}$	$\begin{aligned} & \Sigma \\ & 0 \end{aligned}$	® z z x ¢
104				－	－		\bigcirc	\bigcirc			－			250	48	10
105		\bullet		－			\bigcirc				－			250	48	10
106	\bullet			\bullet			\bigcirc			\bigcirc	\bullet			250	48	10
110／111	\bullet			\bullet			\bigcirc		\bullet	O	\bullet		\bigcirc	250	28	20
120		\bullet		－			\bigcirc		\bullet		\bullet				28	20
124		\bullet		－			\bigcirc		－		\bullet				28	20
127		\bullet	\bullet	\bullet		\bullet			\bigcirc		\bullet			250	28	25
129			\bullet			\bullet			－		\bullet				28	25
157	\bullet			\bullet		\bullet					\bullet			250	28	25
158			\bullet	\bullet		\bullet					－			250	28	25
1110		\bullet		－					－	\bigcirc	－			250	28（50）	16
1140	－	\bullet		－						\bigcirc	－	\bigcirc		240	48	16
1160			\bullet	\bullet							\bullet				12	30
1170			\bullet	\bullet					\bullet		\bullet				28	25
1410	\bullet	\bullet		－	\bullet			\bullet	－		\bullet		\bigcirc	250	28（48）	10
1610			\bullet	－					\bigcirc		－				24	25
1658	－			－		O					－			250	28	25
3120		\bullet		\bullet		O	\bigcirc	\bigcirc	－	\bigcirc	\bullet	\bullet	\bigcirc	250	50	20
3130		\bullet		－		O	\bigcirc		－	\bigcirc	－	－	\bigcirc	415	50	20
2－4100	\bullet			\bullet	\bullet		\bigcirc			\bigcirc	\bullet			250	28	10
2－5000		\bullet		\bullet		\bullet	\bigcirc		\bigcirc	\bigcirc	\bullet			250	28	25
2－5200			\bullet	plug-in pins					\bigcirc		\bullet			250	28	25
2－5700	\bullet			\bullet		\bullet	\bigcirc		\bigcirc	\bigcirc	\bullet			250	28	25
2－6200		\bullet		－	\bullet		\bigcirc	－	\bigcirc		－			250	28	16
2－6400	\bullet			－	\bullet		O	－		O	－			250	28	16

－＝standard
$O=$ optional

Description

Miniaturised single pole thermal circuit breaker with push－to－reset tease free，trip－free，snap action mechanism（R－type TO CBE to EN 60934）．Available in versions for PCB or panel mounting，snap－in or threadneck，or as an integral type．Approved to CBE standard EN 60934 （IEC 934）．For higher current ratings see type 1140.

Typical applications

Motors，transformers，solenoids，printed circuit boards，hand－held machines and appliances．

Accessories

X 20128501 Water splashcover／knurled nut assembly for type 106.

Ordering information

The exact part number required can be built up from the table of choices shown above．Ordering references for optional features should be omitted if not required．
＊mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current rating（A）	Internal resistance (Ω)	Current rating（A）	Internal resistance (Ω)
0.05	285	1.8	0.28
0.08	134	2	0.25
0.1	81	2.5	0.18
0.2	22	3	0.11
0.3	8.7	3.5	0.076
0.4	5.5	4	0.067
0.5	3.3	4.5	0.051
0.6	2.45	5	≤ 0.05
0.7	1.6	6	≤ 0.05
0.8	1.45	7	≤ 0.05
1	0.9	8	≤ 0.05
1.2	0.6	10	≤ 0.05
1.5	0.4		

Approvals

Authority	Voltage ratings	Current ratings
VDE，Demko，	AC 250 V ，DC 28 V	0．05．．．10 A
SEV，ÖVE	AC 250 V ，DC 28 V	0．05．．．10 A
CSA，UL	AC 250 V ，DC 48 V	0．05．．．10 A
Semko	AC $250 \mathrm{~V}, \mathrm{DC} 48 \mathrm{~V}$	0．1．．10 A
Nemko	AC 250 V	0．05．．．10 A
Fimko	AC 250 V	0．1．．10 A
Kema（EN 60934）	AC 240 V ，DC 48 V	0．05．．．10 A
Circuit breakers with－Si51 not approved		

Technical data

Voltage rating	AC 250 V ；DC 48 V		
Current ratings	0．05．．． 10 A		
Auxiliary circuit	0．5 A，AC 250 V，DC 28 V		
Typical life	$0.05 \ldots 5 \mathrm{~A}: 3000$ operations at $2 \times \mathrm{I}_{\mathrm{N}}$ $6 \ldots 8 \mathrm{~A}: \quad 500$ operations at $2 \times \mathrm{I}_{\mathrm{N}}$ $10 \mathrm{~A} \quad 50$ operations at $2 \times \mathrm{I}_{\mathrm{N}}$		
Ambient temperature	$-20 . . .+60^{\circ} \mathrm{C}$（T 60）		
Insulation co－ordination （IEC 664 and 664 A）	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area		
Dielectric strength （IEC 664 and 664A） operating area	Test voltage		
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ ）		
Interrupting capacity I_{cn}	$\begin{array}{ll} 0.05 \ldots 2 \mathrm{~A} & 6 \times \mathrm{I}_{\mathrm{N}} \\ 2.5 \ldots 10 \mathrm{~A} & 5 \times \mathrm{I}_{\mathrm{N}} \\ \hline \end{array}$		
Interrupting capacity	I_{N}	U_{N}	
（UL 1077）	$\begin{aligned} & 0.05 \ldots 4.5 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 6 \ldots 10 \mathrm{~A} \\ & 0.05 \ldots 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { AC } 250 \mathrm{~V} \\ & \text { AC } 250 \mathrm{~V} \\ & \text { AC } 250 \mathrm{~V} \\ & \text { DC } 48 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \mathrm{~A} \\ 1000 \mathrm{~A} \\ 2000 \mathrm{~A} \\ 200 \mathrm{~A} \\ \hline \end{array}$
Degree of protection （IEC 529／DIN 40050）	$\begin{array}{ll} \hline \text { operating area } & \text { IP } 40 \\ \text { terminal area } & \text { IP } 00 \end{array}$		
Vibration	$10 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$ ， to IEC 68－2－6，test Fc， 10 frequency cycles／axis		
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$		
Corrosion	96 hours at 5 \％salt mist， to IEC 68－2－11，test Ka		
Humidity	240 hours at 95 \％RH， to IEC 68－2－3，test Ca		
Mass	approx． 10 g		

屋冨『A․ Thermal Overcurrent Circuit Breakers 104／105／106－．．．

104－PR

104－PR－（A3－）Si51

104－P30

105－P30

Dimensions

106-P30

blade terminals
DIN 46244-A2.8-0.

106-M1

Installation drawing for type 106

Internal connection diagrams

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication	0.76	0.84	0.92	1	1.08	1.16	1.24

屋冨『A․ Thermal Overcurrent Circuit Breakers 104／105／106－．．．

Terminal design

104／105／106－P10
0．05．．． 6 A

104／105／106－P10－A3
$0.05 . . .6$ A

104／105／106－P30－A3
$0.05 \ldots . .6$ A

7．．． 10 A

Accessories

Water splash cover（transparent）／knurled nut assembly （type 106－．．．only）
X 20128501
Degree of protection IP 64

Description

Single pole toggle switch/thermal circuit breakers (S-type TO CBE to EN 60934) for threadneck panel mounting. Available with optional neon illumination (filament bulb for low voltages) to indicate the ON position. Fitted with toggle or baton style actuator in a range of colours translucent for illuminated version. Under overload the actuator returns to the OFF position.

Typical applications

Motors, transformers, solenoids, extra-low voltage wiring systems, power supplies.

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required
*mounting hardware bulk shipped
Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.1	97.6	2.5	0.2
0.2	22.4	3	0.1
0.3	10.9	3.5	0.09
0.4	6.1	4	0.05
0.5	4.0	5	0.04
0.6	2.7	6	0.03
0.7	1.8	8	<0.02
0.8	1.6	10	<0.02
1	1.07	12	<0.02
1.2	0.66	15	<0.02
1.5	0.50	16	<0.02
1.8	0.33	18	<0.02
2	0.27	20	<0.02

110-P10-G10 111-P10-G10 (illuminated)

Technical data

Voltage rating	AC 250 V; DC 28 V		
Current ratings	$\begin{aligned} & 0.1 \ldots 20 \text { A (type 110) } \\ & 0.1 \ldots .16 \text { A (type 111) } \end{aligned}$		
Typical life	30,000 operations at $1 x_{N}$ or 5,000 operations at $2 x 1_{N}$		
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}$		
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area		
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V		
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$		
Interrupting capacity I_{cn}	$10 \times \mathrm{I}_{\mathrm{N}}$		
Interrupting capacity	I_{N}	U_{N}	
(UL 1077)	$\begin{aligned} & \hline 0.1 \ldots 16 \mathrm{~A} \\ & 18 \mathrm{O} 0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { AC } 250 \mathrm{~V} \\ & \text { AC } 115 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 2,000 \mathrm{~A} \\ & 2,000 \mathrm{~A} \end{aligned}$
Degree of protection (IEC 529/DIN 40 050)	operating area IP 40 terminal area IP 00		
Vibration	$4 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.3 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 68-2-6, Test Fc, 10 frequency cycles/axis		
Shock	$\begin{aligned} & 30 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 68-2-27 \text {, test Ea } \end{aligned}$		
Corrosion	48 hours at 5 \% salt mist, to IEC 68-2-11, test Ka		
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca		
Mass	approx. 30 g		

Approvals

Authority	Voltage ratings	Current ratings
VDE	AC 250 V, DC 28 V	$0.1 \ldots .20 \mathrm{~A}$
LRoS	AC 250 V, DC 28 V	$0.1 \ldots 16 \mathrm{~A}$
CSA / UL	AC 250 V, DC 28 V	$0.1 \ldots . .16 \mathrm{~A}$
	AC 115 V, DC 28 V	$18 \ldots 20 \mathrm{~A}$

RE马A゚ Thermal Overcurrent Circuit Breakers 110／111－P10－G10

Dimensions 110／111－P10－G10－．．．

Typical time／current characteristics at $23^{\circ} \mathrm{C}$

Time／current characteristics are calibrated at $23^{\circ} \mathrm{C}$（see page 8）．For operation at other temperatures please apply the factors below to determine the circuit breaker rating required．

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

Installation drawings

110－P10－G10－OB．．／WB．．／－OT．．／WT－．．．

110－P10－A3－G10－OB．．／WB．．／－OT．．／WT－．．．

111－P10－G10－OB．．／WB．．／－OT．．／WT－．．．

111－P10－A3－G10－OB．．／WB．．／－OT．．／WT－．．．

Internal connection diagrams

110－P10－．．．

Description

Single pole switch／thermal circuit breaker（S－type TO CBE to EN 60934） for snap－in panel mounting．Available in rocker（120－P50）or push／push （124－P50）switch versions．Under overload the actuator returns to the OFF position．

Typical applications

Extra low voltage automotive and marine wiring systems．

Ordering information

The exact part number required can be built up from the table of choices shown above．Ordering references for optional features should be omitted if not required．

Standard current ratings and typical internal resistance values

Current rating（A）	Internal resistance $(\Omega) \times 10^{-3}$	Current rating（A）	Internal resistance $(\Omega) \times 10^{-3}$
3	67	10	<20
3.5	67	12	<20
4	67	15	<20
4.5	49	16	<20
5	38	20	<20
7.5	26		

Technical data

Voltage rating	DC 28 V	
Current ratings	$3 \ldots .20 \mathrm{~A}$	
Typical life	10,000 operations at I_{N}	
Ambient temperature	$-30 \ldots+80^{\circ} \mathrm{C}$	
Insulation co－ordination	Rated impulse	Pollution
（IEC 664 and 664 A）	withstand voltage 2.5 kV	degree
		2

Dielectric strength （IEC 664 and 664A） operating area	Test voltage AC 500 V
Interrupting capacity I_{cn}	160 A
Vibration	$\begin{aligned} & \text { 120: } 10 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { 124: } 8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC 68-2-6, test Fc, } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 40 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	168 hours at 5% salt mist， to IEC 68－2－11，test Ka
Humidity	144 hours at 95 \％RH to IEC 68－2－3，test Ca
Mass	$\begin{aligned} & \text { 120: approx. } 23 \mathrm{~g} \\ & \text { 124: approx. } 27 \mathrm{~g} \end{aligned}$

Approvals（type 120）

Authority	Voltage ratings	Current ratings
CSA	DC 28 V	$3 . .15 \mathrm{~A}$

屋居『A゚ Thermal Overcurrent Circuit Breakers 120－P50／124－．．．

Dimensions 120－P50

Internal connection diagram

Typical time／current characteristics

Time／current characteristics are calibrated at $23^{\circ} \mathrm{C}$（see page 8）．For operation at other temperatures please apply the factors below to determine the circuit breaker rating required．
Ambient temperature ${ }^{\circ} \mathrm{C}$
Multiplication factor

Dimensions 124－．．．

124－F10－P50

124－F20－P50

mounting cut－out

Description

Single pole thermal circuit breaker with push-to-reset, tease-free, trip-free, snap action mechanism (R-type TO CBE to EN 60934: M-type when fitted with optional manual release feature). Available in versions for plug-in or integral mounting, track mounting, or with a frame for snap-in panel mounting. The optional -KF housing is particularly suited to high humidity and other damp conditions Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, battery chargers, extra low voltage systems.

Accessories

10F-P10 Modular snap-together surface mounted sockets, each
10-F-K10
10F-A10 Y 30116602 As above but with screw terminals.

Y 3011660
Four-way brass connecting/bus bar links
$\times 21058902$ type 10F-K10/-A10 sockets.
X $21058801 \quad 100$-way $1.5 \mathrm{~mm}^{2}$ cable links with pre-fitted push-on connectors
00-w
X 21058802 As above, but with $2.5 \mathrm{~mm}^{2}$ cable links, black.
X 21058803 As above, but with $2.5 \mathrm{~mm}^{2}$ cable links, red.
$\times 21058804$ As above, but with $2.5 \mathrm{~mm}^{2}$ cable links, blue

Ordering information

Type No.

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.05	280	1.5	0.6
0.08	100	1.8	0.4
0.1	110	2	0.3
0.15	56	2.5	0.2
0.2	29	3	0.1
0.25	18	3.5	0.06
0.3	14	4	0.06
0.35	9.8	4.5	0.05
0.4	7	5	0.05
0.45	5.9	6	0.02
0.5	4.9	7	0.02
0.6	3.4	8	0.02
0.7	2.5	10	< 0.02
0.8	1.8	15	<0.02
0.9	1.5	16	< 0.02
1	1.2	20	<0.02
1.2	0.8	25	< 0.02

127-F-..

127-T11-...

Technical data

Voltage rating	AC 250 V ; DC 28 V (type -F) DC 28 V (type -T)
Current ratings	0.05... 25 A
Typical life	5,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-20 . . .+60^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$)
Interrupting capacity I_{cn}	type -F: $0.05 \ldots 2.5 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ $3 \ldots 5 \mathrm{~A}$ $20 \times \mathrm{I}_{\mathrm{N}}$ $6 \ldots 12 \mathrm{~A}$ 200 A $13 \ldots . .25 \mathrm{~A}$ 400 A type $-\mathrm{T}:$ $0.05 \ldots .2 .5 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ $3 \ldots 5 \mathrm{~A}$ $20 \times \mathrm{I}_{\mathrm{N}}$ $6 \ldots 25 \mathrm{~A}$ 400 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$\begin{aligned} & 8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC 68-2-6, Test Fc, } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, test Ka
Humidity	240 hours at 95% RH to IEC 68-2-3, test Db
Mass	$\begin{aligned} & \text { 127-F-..: approx. } 24 \mathrm{~g} \\ & 127-\mathrm{T} . .-: \text { approx. } 35 \mathrm{~g} \end{aligned}$

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC $250 \mathrm{~V} ;$ DC 28 V	$0.05 \ldots 25 \mathrm{~A}$
CSA, UL	AC 250 V	$0.1 \ldots 16 \mathrm{~A}$
LRoS	AC 250 V ; DC 28 V	$0.2 \ldots 25 \mathrm{~A}$
Semko (EN 60934)	AC 250 V ; DC 28 V	$0.05 \ldots 25 \mathrm{~A}$
Type 127-T..-		

Dimensions

27-F-P10-H

	I	II
a	38 ± 0.1	38.4 ± 0.1
b	$1-2.5$	$2.6-4$

Installation drawings

mounting area

127-T11
operating area

127-T12

Terminal design 127-F-K10

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

Accessories for sockets
2-way bus bar Y 30116602 4-way bus bar Y 30116601

Connector bus links -K10

X 210589 01/2.5mm² (black)
X 210589 02/1.5mm² (brown)
50 pin lugs
to DIN 46230
tinned copper

Connector bus links -P10
X 210588 01/1.5 mm² (brown)
X 210588 02/2.5 mm² (black)
X 210588 03/2.5 mm² (red)
X 210588 04/2.5 mm² (blue)

DIN 46247 tinned brass,
insulated

Description

Single pole thermal circuit breaker with push－to－reset，tease－free，trip－ free，snap action mechanism and separate manual release（M－type TO CBE to EN 60934）．Designed for bolt－on mounting with terminal block type 83－P10．The special housing（－KF）supplied as standard，is particularly suited to high humidity and other damp conditions．

Typical applications

Extra low voltage wiring systems on all types of vehicles and marine craft．

Accessories

83－P10 Surface mounted terminal blocks，each accommodating six bolt－on circuit breakers．Fitted with terminals for push－on connectors

Ordering information

129－L11－H－KF

Technical data

Voltage rating	DC 28 V
Current ratings	3．．． 25 A
Typical life	5，000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-40 \ldots+75^{\circ} \mathrm{C}$
Insulation co－ordination （IEC 664 and 664 A）	Rated impulse Pollution withstand voltage degree 2.5 kV 2
Dielectric strength （IEC 664 and 664A） operating area	Test voltage AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ ）
Interrupting capacity I_{N}	3．．． $5 \mathrm{~A} \quad 20 \times I_{\mathrm{N}}$ 6．．． 25 A 400 A
Degree of protection （IEC 529／DIN 40050）	operating area IP 32 terminal area IP 00
Vibration	$10 \mathrm{~g}(55-2000 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz})$ to VG 95210 part 28
Shock	$\begin{aligned} & 50 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to VG } 95210 \text { part } 28 \end{aligned}$
Corrosion	96 hours at 5 \％salt mist， to VG 95210 Part 2
Humidity	240 hours at 95 \％RH to VG 95210 Part 7
Mass	approx． 25 g

Approvals

Authority	Voltage rating	Current rating
CSA	DC 28 V	$3 \ldots 25 \mathrm{~A}$
LRoS	DC 28 V	$3 \ldots 25 \mathrm{~A}$
BWB（VG 95345 part 9）	DC 28 V	$6 \ldots 25 \mathrm{~A}$

屋居『A゚ Thermal Automotive Circuit Breaker 129－L11－H－KF

Dimensions

Accessories

Mounting block 83－P10

Internal connection diagram

Typical time／current characteristics at $23^{\circ} \mathrm{C}$

Time／current characteristics are calibrated at $23^{\circ} \mathrm{C}$（see page 8）．For operation at other temperatures please apply the factors below to determine the circuit breaker rating required．

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60

Multiplication factor

Description

Single pole thermal circuit breaker with push-to-reset, tease-free, tripfree, snap action mechanism (R-type TO CBE to EN 60934). Available in versions for threadneck panel mounting, plug-in or integral mounting. The optional -KF housing is particularly suited to high humidity and other damp conditions. Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, extra low voltage wiring systems.

Accessories

See series 127

- Also

X 20079902 Water splash cover/knurled nut assembly for type 157.

X 20079901 As above with the cover bonded to the nut for extra retention.
X 200798 01/02 As X 20079902 and 01 above but featuring a slotted knurled ring for wrench front of panel tightening.
X 21073901 Water splashcover/hex nut assembly for type 157. The concertina design is extended when the button trips to the OFF position.

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.
*mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resisance (Ω)
0.05	280	3	0.1
0.08	100	3.5	0.06
0.1	110	4	0.06
0.2	29	4.5	0.05
0.3	14	5	0.05
0.4	7	6	0.02
0.5	4.9	7	0.02
0.6	3.4	8	0.02
0.7	2.5	10	<0.02
0.8	1.8	12	<0.02
1	1.2	13	<0.02
1.2	0.8	15	<0.02
1.5	0.6	16	<0.02
1.8	0.4	20	<0.02
2	0.3	22	<0.02
2.5	0.2	25	<0.02

157-...

158-...

Technical data

Voltage rating	AC $250 \mathrm{~V} ; \mathrm{DC} \mathrm{28} \mathrm{V}$
Current ratings	$0.05 \ldots 25 \mathrm{~A}$
Typical life	5,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-20 \ldots+60{ }^{\circ} \mathrm{C}$
Insulation co-ordination	Rated impulse Pollution withstand voltage degree (IEC 664 and 664 A) 2.5 kV reinforced insulation in operating area
Dielectric strength	Test voltage (IEC 664 and 664A) operating area
AC 3000 V	

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 250 V; DC 28 V	$0.05 \ldots . .25 \mathrm{~A}$
CSA, UL	AC 250 V	$0.1 \ldots 16 \mathrm{~A}$
LRoS	AC 250 V; DC 28 V	$0.2 \ldots . .25 \mathrm{~A}$
Semko (EN 60934)	AC 250 V ; DC 28 V	$0.05 \ldots 25 \mathrm{~A}$

冨㢄可•A゚ Thermal Overcurrent Circuit Breakers 157／158－．．．

Dimensions

157－P10

158－P10

157／158－K10

Internal connection diagram

Typical time／current characteristics at $23^{\circ} \mathrm{C}$

Time／current characteristics are calibrated at $23^{\circ} \mathrm{C}$（see page 8）．For operation at other temperatures please apply the factors below to determine the circuit breaker rating required．

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

Installation drawings

Accessories

Mounting sockets

10F-P10

10F-K10

10F-A10
blade terminals DIN 46244-A6.3-0.8

Accessories for sockets

2-way bus bar Y 30116602
4-way bus bar Y 30116601

Connector bus links -K10
X 210589 01/2.5mm² (black)
X 210589 02/1.5mm² (brown)
50 pin lugs
to DIN 46230
tinned copper

Connector bus links -P10
X 210588 01/1.5 mm² (brown)
X 210588 02/2.5 mm² (black)
X 210588 03/2.5 mm ${ }^{2}$ (red)
X 210588 04/2.5 mm ${ }^{2}$ (blue)
100 quick-connect tabs 6.3
DIN 46247 tinned brass, insulated

Accessories for type 157-...

Front panel water splash cover, transparent, Y 30053801 and knurled nut Y 30062801
X 20079902 (IP64)
X 20079901 (bonded to nut) (IP64)

Front panel water splash cover, transparent

X 20079801 (IP64)
X 20079802 (bonded to nut) (IP64)

3/8-27 UNS-2B

Splash cover (black) with hex nut, without O-ring (IP64)
X 21073901

Description

Single pole switch/thermal circuit breaker (M-type TO CBE to EN 60934) with tease-free, trip-free, snap action mechanism. Designed for snap-in panel mounting utilising keyed round hole or industry standard fuse-holder cut-out dimensions. Featuring an ergonomically styled two colour actuator with indicator band clearly showing the tripped/OFF
position. Available with square or circular bezels.
Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, extra low voltage systems, household and office machines, instrumentation, marine applications.

Accessories

Y 30474501 Water splash cover for use with square bezels Y 30560201 Terminal shroud, for insulation or dust protection

Ordering information

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance ($\Omega)$
0.05	442	2	0.25
0.08	123	2.5	0.19
0.1	110	3	0.12
0.2	27.8	3.5	0.09
0.3	12.4	5	0.07
0.4	7.0	6	0.05
0.5	4.5	7	0.04
0.6	3.1	8	≤ 0.02
0.7	2.3	10	≤ 0.02
0.8	1.7	12	≤ 0.02
1	1.1	15	≤ 0.02
1.2	0.71	16	≤ 0.02
1.5	0.41		
1.8	0.38		

1110-F1.

Technical data

Voltage rating	AC 250 V ; DC 28 V (DC 50 V to special order)		
Current ratings	0.05...16 A		
Typical life	0.05... 4 A: 10,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$ $5 \ldots 16$ A: 6,000 operations at $1 \times I_{N}$		
Ambient temperature	$-20 . .+60{ }^{\circ} \mathrm{C}$		
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area		
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V		
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$)		
Interrupting capacity $\mathrm{I}_{\text {cn }}$	AC $250 \mathrm{~V}:$ $0.05 \ldots 16 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ DC $28 \mathrm{~V}:$ $0.05 \ldots 6 \mathrm{~A}$ $10 \times \mathrm{I}_{\mathrm{N}}$ 7 $\ldots 10 \mathrm{~A}$ 200 A 12 $\ldots 16 \mathrm{~A}$ 300 A		
Interrupting capacity	I_{N}	U_{N}	
(UL 1077/EN60934 PC 1)	$\begin{aligned} & 0.05 \ldots 6 \mathrm{~A} \\ & 7 \ldots .16 \mathrm{~A} \\ & 0.05 \ldots 16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { AC } 250 \mathrm{~V} \\ & \text { AC } 125 \mathrm{~V} \\ & \text { DC } 50 \mathrm{~V} \end{aligned}$	1000 A 1000 A 200 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00		
Vibration	$\begin{aligned} & 8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}), \\ & \text { to IEC } 68-2-6, \text { Test } \mathrm{Fc}, \\ & 10 \text { frequency cycles/axis } \end{aligned}$		
Shock	30 g (11 ms) to IEC 68-2-27, test Ea		
Corrosion	96 hours at 5% salt mist, to IEC 68-2-11, test Ka		
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca		
Mass	approx. 12 g		

Approvals

Authority	Voltage ratings	Current ratings
VDE	AC $250 \mathrm{~V} ;$ DC 28 V	$0.05 \ldots 16 \mathrm{~A}$
UL	AC 250 V	$0.05 \ldots 6 \mathrm{~A}$
	AC 125 V	$7 \ldots 16 \mathrm{~A}$
	DC 50 V	$0.05 \ldots 16 \mathrm{~A}$
CSA	AC $250 \mathrm{~V} ;$ DC 50 V	$0.05 \ldots 16 \mathrm{~A}$
LRoS, BV	AC 250 V ; DC 28 V	$0.5 \ldots 16 \mathrm{~A}$
Semko (EN 60934)	AC 250 V	$0.05 \ldots 10 \mathrm{~A}$

冨巨可『A゚ Thermal Overcurrent Circuit Breaker 1110－．．．

Dimensions

1110－F1．．／－F2．．／－F3．．／－F4．．

Panel cut out
1110－F1．．－P．M1－．．．A
1110－F2．．－P．M1－．．．A

insertion force $\leq 20 \mathrm{~N}$ ，removal force $\geq 120 \mathrm{~N}$ insertion force $\leq 20 \mathrm{~N}$ ，removal force $\geq 120 \mathrm{~N}$
1110－F3．．－P．M1－．．．A
1110－F4．．－P．M1－．．．A

Installation drawing

Internal connection diagram

Typical time／current characteristics at $23{ }^{\circ} \mathrm{C}$

Time／current characteristics are calibrated at $23^{\circ} \mathrm{C}$（see page 8）．For operation at other temperatures please apply the factors below to determine the circuit breaker rating required．

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

Accessories－Water splashcovers（transparent）

Push button splash cover Y 30474501 （IP 54）

When using splashcover please note that the max． panel thick－ ness is redu－ ced by 0.5 mm

Terminal shroud Y 30560201

Description

Miniaturised single pole thermal circuit breaker with push-to-reset tease-free, trip-free, snap action mechanism (R-type TO CBE to EN 60934). Available in versions for panel mounting, snap-in or threadneck, or as an integral type. For lower current ratings see types 104, 105, 106. Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, hand-held machines and appliances.

Accessories

X 20128501 Water splash cover/knurled nut assembly for type 1140-G.

Ordering information

*mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
3.5	0.06	10	<0.02
4	0.04	12	<0.02
5	0.03	13	<0.02
6	0.02	15	<0.02
7	<0.02	16	<0.02
8	<0.02		

Approvals

Authority	Voltage ratings	Current ratings	
VDE	AC 240 V ; DC 28 V	7 ...16 A	
CSA	AC 250 V , DC 50 V	3.5... 16 A	UL
AC 250 V ; DC 50 V	3.5..16 A		
Semko	AC 240 V	7 ...16 A	
Kema (EN 60934)	AC 240 V ; DC 48 V	3.5...16 A	

Kena (EN 60934) $3.5 \ldots 16 \mathrm{~A}$

Technical data

Voltage rating	AC 240 V ; DC 48 V (DC 50 V UL/CSA)		
Current ratings	3.5..16 A		
Typical life	3.5... 8 A 1000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$ 10... $16 \mathrm{~A} \quad 50$ operations at $2 \times \mathrm{I}_{\mathrm{N}}$		
Ambient temperature	-20... $60{ }^{\circ} \mathrm{C}$ (T 60)		
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area		
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V		
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$		
Interrupting capacity I ${ }_{\text {cn }}$	$\begin{array}{ll} \hline 3.5 \ldots 8 \mathrm{~A} & 8 \times \mathrm{I}_{\mathrm{N}} \\ 10 \ldots 16 \mathrm{~A} & 120 \mathrm{~A} \end{array}$		
Interrupting capacity	I_{N}	U_{N}	
(UL 10777)	3.5..16 A	DC 50 V	200 A
	3.5 ... 7A	AC 250 V	1000 A
	8 ... 16 A	AC 250 V	2000 A

Degree of protection (IEC 529/DIN 40 050)	operating area IP 40 terminal area IP 00
Vibration	$10 \mathrm{~g} \mathrm{(57-500} \mathrm{~Hz}) \pm 0.76 \mathrm{~mm} \mathrm{(10-57} \mathrm{Hz)}$, to IEC 68-2-6, Test Fc, 10 frequency cycles/axis
Shock	$25 \mathrm{~g} \mathrm{(11} \mathrm{ms)}$ to IEC 68-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 10 g

Mass
approx. 10 g

Dimensions

1140-E211-P1M1

1140-F111-P1M1

1140-G111-P1M1

Internal connection diagram

Accessory

Water splash cover/knurled nut assembly, transparent X 20128501 (IP 64)

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

Installation drawings

1140-F...

1140-E...

1140-G...

Description

Miniaturised double pole thermal circuit breaker with push-to-reset teasefree, trip-free, snap action mechanism (R-type TO CBE to EN 60934). Threadneck panel mounting. Suitable for line and neutral switching - the thermal actuator operating on one pole simultaneously opens both poles under overload conditions. Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, hand-held machines and appliances. Especially suited to AC duties where the correct orientation of line/ neutral is not known/cannot be guaranteed.

Accessories

X 20128501 Water splash cover/knurled nut assembly.

Ordering information

Type No.

1140 double pole threadneck panel mounting

Mounting

G0 threadneck panel mounting without mounting hardware
G1 threadneck panel mounting with hex nut and knurled nut * G2 threadneck panel mounting for standard fuseholder cut-out *
G4 threadneck panel mounting with metal knurled nut*
Number of poles
5 double pole, 1 pole protected
Actuator style
1 black push button
Terminal design
P7 blade terminals DIN 46244-C
Characteristic curve
M1 medium delay
Current ratings
0.05... 16 A

\qquad
 ordering example
 1140
 G1 51
 \qquad
 16 A

*mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.05	345	1.8	0.3
0.06	240	2	0.3
0.08	142	2.5	0.2
0.1	88	3	0.1
0.2	24	3.5	0.06
0.3	9.9	4	0.04
0.4	5.9	5	0.03
0.5	3.7	6	0.02
0.6	2.2	7	<0.02
0.7	1.9	8	<0.02
0.8	1.4	10	<0.02
1	0.9	12	<0.02
1.2	0.6	15	<0.02
1.5	0.5	16	<0.02

Approvals

Authority	Voltage ratings	Current ratings
VDE	AC 240 V; DC 28 V	$0.05 \ldots 16 \mathrm{~A}$
UL, CSA	AC 250 V ; DC 50 V	$0.05 \ldots 16 \mathrm{~A}$
Kema (EN 60934)	AC $240 \mathrm{~V} ;$ DC 48 V	$0.05 \ldots 16 \mathrm{~A}$

1140-G.5.

Technical data

Dimensions

1140-G15...

$$
\text { tightening moment max. } 1 \mathrm{Nm}
$$

1140-G25...
tightening torque max. 0.5 Nm

blade terminal DIN 46244-C

Installation drawing

Internal connection diagram

Typical time/current characteristics

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

Accessories

Water splash cover/knurled nut assembly, transparent X 20128501 (IP 64)

Description

Thermal circuit breaker, with controlled self-resetting mechanism, specially suited to installation in inaccessible locations. Under overload conditions the circuit breaker contacts will open to protect the load circuit. A low current excitation circuit ensures that the contacts remain open thereby avoiding the hazards of automatic reset operation. The circuit breaker is reset by switching off the supply circuit for a short period.

Typical applications

Automotive and marine extra low voltage wiring systems and components.

Ordering information

Standard current ratings and typical voltage drop values

Current rating (A)	Voltage drop (mV)
12	<150
15	<150
20	<150
30	<150

Technical data

Voltage rating	DC 12 V
Current ratings	$12 \ldots 30 \mathrm{~A}$
Typical life	300 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}$
Holding current	$<0.6 \mathrm{~A}$
Reset time at $23^{\circ} \mathrm{C}$ after	
5 s of load with U_{N}	

Dimensions

Accessories

Sockets available to special order.

Internal connection diagram

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required
Ambient temperature ${ }^{\circ} \mathrm{C}$
Multiplication factor

Description

Compact single pole thermal circuit breaker with push-to-reset, tease free, trip free, snap action mechanism and separate (colour coded) manual release. Combining full feature circuit breaker protection and convenience with low cost of ownership benefits. Fitted with blade terminals for plug-in mounting.

Typical applications

Extra low voltage wiring systems on all types of vehicles and marine craft.

Accessories

12-J20 single mounting socket with screw terminals for DIN rail mounting 12-P10 single mounting socket with . 250 quick connect terminals for DIN rail mounting
12-P10-20 2-way mounting socket
12-P10-30 3 -way mounting socket
12-P10-40 4-way mounting socket
12-P10-60 6 -way mounting socket
X 21058801 100-way $1.5 \mathrm{~mm}^{2} /$ AWG 16 cable links with pre-fitted push-on connectors for type 12-P10 mounting socket
X 21058802 as above, but with $2.5 \mathrm{~mm}^{2} /$ AWG 14 cable links
X 21115701 Bus bar with terminal
X 21115702 Bus bar without terminal

Ordering information

Type No.

plug-in
Design standard

01 blade terminals for automotive fuse blocks (standard) with retaining clips
02 blade terminals for automotive fuse blocks, without retaining clips 21 as design 01 but with higher interrupting capacity
22 as design 02 but with higher interrupting capacity
31 blade terminals for automotive fuse blocks
with retaining clips and ribs for higher pull-out force Current ratings
5... 25 A
$01-15 \mathrm{~A}$
ordering example

Standard current ratings, typical voltage drop values and actuator colours (manual release)

Current rating (A)	Voltage drop (mV)	Actuator colour	
5	<150	orange-brown	(approximating RAL 8023)
6	<150	mossy-green	(approximating RAL 6005)
7.5	<150	hazel	(approximating RAL 8011)
8	<150	honey	(approximating RAL 1005)
10	<150	red	(approximating RAL 3020)
15	<150	blue	(approximating RAL 5012)
20	<150	yellow	(approximating RAL 1018)
25	pearl	(approximating RAL 1013)	
	*= off-white (without dye) with ultradur		

Technical data

Voltage rating	DC 28 V (AC to special order)
Current ratings	5... 25 A
Typical life	6,000 operations at I_{N} 3,000 operations at $2 \times I_{N} \leq 20 \mathrm{~A}$ 1,000 operations at $2 \times I_{N} \quad 25 \mathrm{~A}$
Ambient temperature	$-30 . .+60^{\circ} \mathrm{C}$
Interrupting capacity I_{cn}	5... 15 A 200 A (1170-01/-02/-31) 5... 15 A 400 A (1170-21/-22) (higher capacity to special order) $20 . . .25 \text { A } 400 \text { A }$
Ultimate short-circuit breaking capacity	≥ 1 break operation at 2000 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$10 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 68-2-6, Test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 50 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 68-2-27, \text { test Ea } \end{aligned}$
Corrosion	96 hours at 5% salt mist, to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 13 g

Dimensions

1170-01/-21

current rating without A
1170-02/-22

current rating without A
1170-31

Internal connection diagram

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.84	0.88	0.92	1	1.08	1.16	1.24

Multiplication factor

Accessories

Socket 12－P10

Socket 12－J20

Socket 12－A10

Dimensions for surface mounting

Other sockets available to special order
Labels：Weidmüller，D－33102 Paderborn

Ordering information Mounting socket 12

12－P10－20 ordering example

Accessories for mounting socket 12

Connector bus links－P10
X 210588 01／1．5 mm²（brown）
X 210588 02／2．5 mm²（black）

Bus bar
X 21115701 with terminal X 21115702 without terminal

Description

Miniaturised single pole rocker switch/thermal circuit breaker combining ON/OFF switching and extremely fast overload performance in a single component (S-type TO CBE to EN 60934/IEC 934). Under overload conditions an internal neon (filament bulb for low voltages) illuminates to give a clear signal of the tripped status of the mechanism and thereby the cause of power interruption, suffix -B. Alternatively the illumination can be conventionally wired to indicate the ON status of the device, suffix -E. Returning the rocker switch through the OFF position and back ON will reset the mechanism and restore the supply. Largely temperature-insensitive. Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, PCBs, hand-held machines, appliances, instrumentation.

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.63	1.05	3.15	<0.1
0.8	1.0	4	<0.1
1	<1	5	<0.1
1.5	<1	6.3	<0.1
1.8	<0.8	8	<0.1
2	<0.8	10	<0.1
2.5	<0.12		

1410-F1.

Technical data

Voltage rating	AC 240 V ; DC 28 V (DC 48 UL/CSA)
Current rating range	0.63... 10 A
Typical life circuit 1-3 protection circuit 1-2	30,000 operations for $I_{N} \leq 6.3$ A AC/DC 10,000 operations for $I_{N}>6,3$ A AC 3,000 operations for $I_{N}>6,3$ A DC 300 operations at $2 \times I_{N}$
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$\begin{aligned} & 0.63 \ldots 2.5 \mathrm{~A} 12 \times \mathrm{I}_{N} \\ & 3.15 \ldots 10 \mathrm{~A} \quad 8 \times \mathrm{I}_{N} \mathrm{AC}, \max .70 \mathrm{~A} \\ & 3.15 \ldots 10 \mathrm{~A} 10 \times \mathrm{I}_{N} \mathrm{DC} \\ & \text { or to UL } 1077 \text { at } \mathrm{AC} 125 / \mathrm{DC} 48 \mathrm{~V}: 200 \mathrm{~A} \end{aligned}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 30 terminal area IP 00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \text {, }$ to IEC 68-2-6, Test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 20 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	48 hours at 5 \% salt mist, to IEC 68-2-11, test Ka
Humidity	96 hours at 95% RH to IEC 68-2-3, test Ca
Mass	approx. 9 g

Approvals

Authority	Voltage ratings	Current ratings
SEV (EN 60934)	AC 240 V	$0.63 \ldots 4 \mathrm{~A}$
	DC 28 V	$0.63 \ldots 8 \mathrm{~A}$
CSA, UL	AC 125 V	$0.63 \ldots 10 \mathrm{~A}$
	DC 48 V	$0.63 \ldots 8 \mathrm{~A}$

Dimensions

1410-F...-...-....B.

Internal connection diagram
1410-F \qquad
B.
1410-F...-...--...E.

LINE

N.B.
When the circuit breaker trips electrically terminal 2 (and 3) remain live (illumination voltage).

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Installation drawing

Description

Single pole press-to-reset thermal circuit breaker with extremely fast overload switching performance (R-type TO CBE to EN 60934). Single hole threadneck, PCB or integral mounting with a choice of designs. Miniaturised construction minimises PCB real estate required. Type 1410-L2 and 1410-G1 versions feature changeover contacts suitable for providing status output signals. Largely temperature-insensitive.

Typical applications

Motors, transformers, solenoids, PCBs, hand-held machines, appliances, instrumentation.

Ordering information

1410-L1... 1410-L2...
1410-G1...

Technical data

Voltage rating	AC 240 V ; DC 28 V (DC 48 V UL/CSA)
Current rating range 1-2	0.63... 10 A
Auxiliary circuit 1-3	$0.2 \times \mathrm{I}_{\mathrm{N}}$ max. $1 \mathrm{~A}, \mathrm{AC} 250 \mathrm{~V}$ style -L2 and -G1 only
Typical life	$\begin{aligned} & 300 \text { operations at } 2 \times \mathrm{I}_{N}(-\mathrm{L} 2 \ldots) \\ & 500 \text { operations at } 2 \times \mathrm{I}_{N}(-\mathrm{L} 1 . . /-\mathrm{G} 1 . .) \end{aligned}$
Ambient temperature	$-20 \ldots+100^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area

Dielectric strength

(IEC 664 and 664A) operating area	Test voltage AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity (0-0-०)	$\begin{array}{ll} 0.63 \ldots 2.5 \mathrm{~A} & 12 \times I_{N} \\ 3.15 \ldots 10 \mathrm{~A} & 8 \times \mathrm{I}_{\mathrm{N}} \mathrm{AC}, \max .70 \\ 3.15 \ldots 10 \mathrm{~A} & 10 \times \mathrm{I}_{\mathrm{N}} \mathrm{DC} \\ \text { or to UL } 1077 \text { at } A C & 125 / D C 48 \mathrm{~V}: 200 \mathrm{~A} \end{array}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 68-2-6, Test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 20 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	48 hours at 5% salt mist, to IEC 68-2-11, test Ka
Humidity	96 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 5 g

Approvals

Authority	Voltage rating	Current ratings
VDE	AC $250 \mathrm{~V} ; \mathrm{DC} \mathrm{28V}$	$0.63 \ldots 8 \mathrm{~A}$
UL, CSA	AC 125 V ; DC 48 V	$0.63 \ldots 8$ A (-L2/-G1)
	DC 50 V	$0.63 \ldots 10$ A (-L1)

Dimensions

1410-L110-L1F1-S01

1410-L210-L2F1-S02

1410-G111-L2F1-S01

1410-G111-P2F1-S01

Internal connection diagrams

1410-L11..
1410-L21...
1410-G11..

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Installation drawings

1410-L11...

1410-G...
operating area
wall made of insulating material

Description

Miniaturised single pole press-to-reset thermal circuit breaker designed for automotive fuse block installation. Extends the benefits of circuit breaker performance and convenience to applications which are cost critical.

Typical applications

Extra low voltage wiring systems on all types of vehicles and marine craft.

Accessories

12-J20	single mounting socket with screw terminals for DIN rail mounting
12-P10	single mounting socket with .250 quick connect terminals for DIN rail mounting
12-P10-20	2-way mounting socket
12-P10-30	3-way mounting socket
12-P10-40	4-way mounting socket
12-P10-60	6-way mounting socket
X 210 588 01	100-way 1.5mm²/AWG 16 cable links with pre-fitted
Ppush-on connectors for type 12-P10 mounting socket	
X 210 588 02	as above, but with 2.5mm²/AWG 14 cable links
X 211 157 01	Bus bar with terminal
X 211 157 02	Bus bar without terminal

Ordering information

Current ratings,typical voltage drop values and actuator colours

Current rating (A)	Voltage drop (mV)	Actuator colour (manual release)	
6	<200	mossy-green	(approximating RAL 6005)
8	<200	honey	(approximating RAL 1005)
10	<200	red	(approximating RAL 3020)
15	<200	blue	(approximating RAL 5012)
20	<200	yellow	(approximating RAL 1018)
25	<200	pearl	(approximating RAL 1013)*
		*= off-white (without dye) with ultradur	

1610-21

1610-22

Technical data

Voltage rating	$\begin{aligned} & \text { 1610-21: DC } 24 \mathrm{~V} \\ & \text { 1610-22: DC } 12 \mathrm{~V} \end{aligned}$
Current ratings	6...25 A
Service short-circuit breaking capacity	1610-21: 300 operations at $\leq 50 \mathrm{~A}$ 1610-22: 500 operations at $\leq 50 \mathrm{~A}$
Ambient temperature	$-30 . .+60^{\circ} \mathrm{C}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 30 terminal area IP 00
Ultimate short-circuit breaking capacity	```1610-21: \geq3 break operations at 150 A, or \geq1 break operation at 2000 A 1610-22: \geq3 break operations at 200 A, or \geq1 break operation at 2000 A```
Vibration (with mounting socket)	$\begin{aligned} & 5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC 68-2-6, Test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock (with mounting socket)	$\begin{aligned} & 25 \mathrm{~g}(\mathrm{II} \mathrm{~ms}) \\ & \text { to IEC 68-2-27, Test Ea } \end{aligned}$
Corrosion	96 hours at 5% salt mist, to IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH, to IEC 68-2-3, Test Ca
Mass	approx. 5 g

N.B.

It is good practice to switch off the vehicle's ignition system before resetting the circuit breaker
Free travel of the actuator must be ensured.

Dimensions

1610-21

1610-22
0.6
-3.3
3.9

Internal connection diagram

Typical time/current characteristic curve

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.
Ambient temperature ${ }^{\circ} \mathrm{C}$
Multiplication factor

1610-H1

Rerado Thermal Automotive Circuit Breaker 1610-...

Accessories

Socket 12-P10

Socket 12-J20

Socket 12-A10

Dimensions for surface mounting

Other sockets available to special order

Labels: Weidmüller, D-33102 Paderborn

Ordering information Mounting socket 12

12-P10-20 ordering example

Accessories for mounting socket 12

Connector bus links -P10
X 210588 01/1.5 mm² (brown)
X 210588 02/2.5 mm² (black)

Bus bar
X 21115701 with terminal X 21115702 without terminal

Description

Very cost effective design to meet international requirements. No exposed metal parts which are, or could become, current-carrying except for terminals.

- Manual reset, trip free mechanism
- Extremely small and lightweight
- UL, CSA, VDE approved

Typical applications

Battery chargers, consumer products, power supplies, motors.

Accessories

Y 30667101
Y 30320001
Y 30019003
Y 30229403
Y 30019201
Y 30229501
Y 30105902
Y 30273201
Y 30305101
X 20079901
X 20128501

Mounting nut 3/8", 27-thread
Mounting nut 7/16", 28-thread
Knurled nut 3/8", 27-thread
Knurled nut 7/16" - 28-thread
Hex nut 3/8", 27-thread
Hex nut 7/16", 28-thread
Press to Reset Plate for 3/8", 27-thread, aluminium Press to Reset Plate for $7 / 16^{\prime \prime}$ ", 28-thread, aluminium Black Plastic Knurled Nut for 3/8", 27-thread Reset Button Seal - long
Reset Button Seal - short

Ordering information

Type No.

1658 single pole thermal circuit breaker
Threadneck design
G21 manual reset type, 3/8"-27 threadneck
G41 manual reset type, $7 / 16$ "-32 threadneck
A21 auto reset type, 3/8"-27 threadneck
A41 auto reset type, 7/16"-32 threadneck
A00 auto reset type, without threadneck

1658 - G21-02-P10-5 A Ordering example

* Screws and lock washers bulk shipped

Standard current ratings and typical voltage drop values

Current rating (A)	Voltage drop (mV)	Current rating (A)	Voltage drop $(\mathrm{mV}))$
5	≤ 150	10	≤ 140
6	≤ 150	12	≤ 140
7	≤ 150	15	≤ 240
8	≤ 150	20	≤ 240
9	≤ 150	25	≤ 240

1658-...

Technical data

Voltage rating	AC 250 V ; DC 28 V
Current ratings	5...25 A
Typical life	1000 operations at $2 \times I_{N}$
Ambient temperature	$-20 . . .+60^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$)
Interrupting capacity I_{cn}	200 A
Interrupting capacity (UL 1077/EN 60934 PC1)	I_{N} U_{N} $5 \ldots 15 \mathrm{~A}$ $A C 250 \mathrm{~V}$ 2000 A $20 \ldots 25 \mathrm{~A}$ AC 125 V 2000 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$\begin{aligned} & 8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \text {, } \\ & \text { to IEC 68-2-6, Test Fc, } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 30 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 16 g

Approvals

Authority	Voltage rating	Current ratings	
VDE	AC 250 V ; DC 28 V	$5 \ldots 25 \mathrm{~A}$	
UL, CSA	AC 250 V	$5 \ldots 15 \mathrm{~A}$	$1658-\mathrm{G} .$.
	AC 125 V	$20 . .25 \mathrm{~A}$	$1658-\mathrm{G} .$.
	AC 125 V	$5 \ldots 25 \mathrm{~A}$	$1658-\mathrm{A} .$.

Dimensions

See ordering information for mounting hardware

Installation drawing

Internal connection diagram

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

Terminal design

Accessories

Mounting nut 3／8＂，27－thread
Y 30667101

Knurled nut 3／8＂，27－thread nickel－plated brass
Y 30019003

3／8－27UNS－2B
Hex nut 3／8＂，27－thread nickel－plated brass Y 30019201

Press to Reset Plate for 3／8＂， 27－thread，aluminium Y 30105902

Mounting nut 7／16＂，28－thread Y 30320001

Knurled nut 7／16＂，28－thread nickel－plated brass
Y 30229403

Hex nut 7／16＂，28－thread nickel－plated brass Y 30229501

Press to Reset Plate for 7／16＂， 28－thread，aluminium Y 30273201

Press to Reset Plate for 3／8＂，27－thread
plastic
Y 30305101

Reset button seal for 3／8＂，27－thread
short
X 20128501

3／8－27 UNS－2B
long
X 20079901

[^0]
Description

An extremely versatile range of rocker switch/thermal circuit breakers (S-type TO CBE to EN 60934) offering the choice of single pole, double pole with single pole protection, and double pole with protection on both poles. Designed for snap-in panel mounting with versions available for three different panel cut-out sizes. Neon illumination is optional (filament bulb for low voltages) and there is a range of colours and markings for the rocker. Under overload conditions the rocker returns to the OFF position
Any one of the following additional function modules can be supplied factory fitted to the rear of the switch/circuit breaker.

- Under voltage release coil (for double pole versions only).
- Magnetic trip coil for short circuit protection.
- Magnetic trip coil for remote relay trip.
- Auxiliary contacts for status signalling.
- Mechanical slide interlock.

Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, extra low voltage wiring systems, office machines, electro-medical equipment, power supplies, communications systems.

Accessories

Y 30306801
Insulated cover, snap-fitted to the exposed areas of the two incoming terminals (when terminal screws are not specified) to provide brush contact protection.
Y 30386201 Terminal adapter to convert screw terminals to push on connections when factory fitted under voltage release module is specified (two adapters required per unit).
Y 30367501 Retaining clip for -F3 mounting frame for panel thickness under 2 mm .
As above for panel thickness under 4 mm .
Y 30367601 As above, for -F5 mounting frame.
Y 30388531 Blanking piece in -F3 size mounting frame.
Y 30427501 Rear terminal shroud.
X 22161901 Separate water splash cover for use with -F4 and -F5 size mounting frames.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance per pole (Ω)	Current rating (A)	Internal resistance per pole (Ω)
0.1	94	3.5	0.0565
0.2	24	4	0.0435
0.3	12	4.5	0.0435
0.4	5.30	5	0.0325
0.5	4.20	6	0.0215
0.6	2.90	7	0.0165
0.8	1.50	8	0.0165
1	0.9	10	<0.02
1.2	0.80	12	<0.02
1.5	0.45	14	<0.02
2	0.27	18	<0.02
2.5	0.0785	20	<0.02
3	0.0595		0.02

Approvals

Authority	Voltage ratings	Current ratings
VDE, Semko	AC 240 V, DC 28 V	$0.1 \ldots 20 \mathrm{~A}$
(EN 60934)	DC 50 V	$0.1 \ldots 20 \mathrm{~A}$ double pole
	DC 50 V	$0.1 \ldots 10 \mathrm{~A}$ single pole
BV, LRoS	AC 250 V, DC 28 V	$0.1 \ldots 20 \mathrm{~A}$
UL, CSA	AC 250 V, DC 50 V	$0.1 \ldots 20 \mathrm{~A}$

3120-F...

Technical data

Voltage rating	AC 250 V ; DC 50 V
Current ratings	0.1...20 A (up to 30 A to special order)
Typical life	50,000 operations for $I_{N} \leq 16$ A double pole 30,000 operations for $\mathrm{I}_{\mathrm{N}} \leq 16 \mathrm{~A}$ single pole, 10,000 operations for $\mathrm{I}_{\mathrm{N}}>16 \mathrm{~A}$
Ambient temperature	$-30 \ldots+60{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area between poles (2 pole)	Test voltage AC 3000 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V)
Interrupting capacity $\mathrm{I}_{\text {cn }}$	$0.1 \ldots 2 \mathrm{~A}$ $10 \times \mathrm{I}_{\mathrm{N}}$ $2.5 \ldots 20 \mathrm{~A}$ 250 A 2 pole, or 150 A 1 pole
Interrupting capacity	$\mathrm{I}_{\mathrm{N}} \quad \mathrm{U}_{\mathrm{N}} \quad 2$ pole
(UL 1077)	0.1..2 A AC 250 V 200 A
	2.5.. 3 A AC 250 V - 1000 A
	3.5... 8 A AC 250 V 2000 A
	$9 \ldots 16 \mathrm{~A}$ AC 250 V 3500 A
	18... 20 A AC 250 V - 5000 A
	0.1.. 20 A DC 50 V 1000 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 (IP 54 with water splash protection) terminal area IP 00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 68-2-6, Test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 30 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 68-2-27, \text { Test Ea } \end{aligned}$
Corrosion	96 hours at 5% salt mist, to IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH, to IEC 68-2-3, Test Ca
Mass	approx. 33 g (double pole) approx. 27 g (single pole)

Ordering information

Type No.

3120 rocker switch/circuit breaker

\section*{	Mounting
F snap in frame	}

Size of frame	panel thickness
3 to fit mounting cut-out $50.5 \times 21.5 \mathrm{~mm}$	$1-6.35 \mathrm{~mm}$
4 to fit mounting cut-out $44.5 \times 22 \mathrm{~mm}$	$1-2.5 \mathrm{~mm}$
5 to fit mounting cut-out $44.5 \times 22 \mathrm{~mm}$	$2.6-4 \mathrm{~mm}$
6 to fit mounting cut-out $45 \times 33.7 \mathrm{~mm}$	$1.2-2.4 \mathrm{~mm}$

Number of poles

02 pole, unprotected, switch only 1 1 pole, thermally protected	2	2 pole, thermally protected

52 pole, thermally protected on one pole only (terminals 11, 12k, 12i) 61 pole, unprotected, switch only

Mounting frame design
 1 collar height 1 mm

3 collar height 9 mm
4 collar height 2 mm with water splash protection (IP 54), not with -F6.
Terminal configuration
P7 blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (terminals $12(\mathrm{k}), 22(\mathrm{k})$, 11,. 21), not for under voltage module, not for switch
H7 12(k), 22(k): blade terminals $2 \times 2.8-0.8$
11, 21: terminal screws, not for switch
N7 as P7, but including shunt terminals 12(i) and 22 (i) as blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ not for under voltage module
G7 as H7, but including shunt terminals 12(i) and 22 (i) as blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$

Q1 switch only
Actuator style
W rocker

Switch colour designation	
opaque	translucent (for illuminated versions)
01 black	12 white
02 white	14 red
04 red	15 orange
	19 green

X = without marking

Rocker illumination (optional)		
B filament/neon AC/DC		
G green LED, AC/DC		
Y yellow LED, AC/DC		
R red LED, AC/DC		
Illumination voltage range/ power consumption		
	-	$4-7 \mathrm{~V}$ marked $6 \mathrm{~V} 80 \mathrm{~mA}(\mathrm{~B}, \mathrm{G}, \mathrm{Y}, \mathrm{R})$
	1	$10-14 \mathrm{~V}$ marked $12 \mathrm{~V} 75 \mathrm{~mA}(\mathrm{~B}, \mathrm{G}, \mathrm{Y}, \mathrm{R})$
		$20-28 \mathrm{~V}$ marked $24 \mathrm{~V} 35 \mathrm{~mA}(\mathrm{~B}, \mathrm{G}, \mathrm{Y}, \mathrm{R})$
	3	$90-140 \mathrm{~V}$ marked $115 \mathrm{~V}<1 \mathrm{~mA}$ (B)
		$185-275 \mathrm{~V}$ marked $230 \mathrm{~V}<1 \mathrm{~mA}$ (B)
		$42-54 \mathrm{~V}$ marked 48 V 35 mA (B,Y,R)
		Current ratings
		0.1... 20 A

\section*{$3120-F \quad 3 \quad 2$ | N7 T1 | W | 14 A | B |
| :--- | :--- | :--- | :--- | :--- |
 \qquad
 ordering example}

3120 - F W (switch only)
N.B.

Switch only versions must be specified with -N7 or -G7 terminals.
Terminals 12(k) and 22(k) are not fitted.
Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+40	+50	+60

Internal connection diagrams

2 pole,

thermally protected on both poles | 2 pole, |
| :--- |
| thermally protected on one pole only |

Typical time/current characteristics

Single or double pole load
$0.1 . . .2$ A

2.5... 20 A

屋屄习／A゚ Thermal Overcurrent Circuit Breaker 3120－F．．．

Dimensions

Style F3．1
collar height 1 mm
optional ilumination

Installation drawing

Cut－out dimensions

Panel cut－out F3

Panel cut－out F6

Panel cut－out F4／F5

Mounting style variants

Style F3．3 collar height 9 mm

Style F3． 4
collar height 2 mm ，with water splash protection

Style F 4.1

Style F 5.1

Dimension diagram for style F6 is available on request．

Insulated cover
Y 30306801

Terminal adapter
Y $303 \mathbf{8 6 2} 01$

Retaining clip for 3120－F3．．．
Ref．Y 303675 01／02

Retaining clip for 3120－F5．．．
Ref．Y 30367601

Blanking piece in－F3 frame
Y $303 \mathbf{8 8 5} \mathbf{3 1}$

Rear terminal shroud black
Y 30427501 （IP64）

Water splash cover，transparent（IP66） for styles－F4．．／－F5．．．
X 22161901

Description

Switch/thermal circuit breaker (S-type TO CBE to EN 60934) with standard isolator style two button operation. Single button press-toreset version also available. Both types can be supplied in single pole configuration only, in double pole with single pole protection, and in double pole with protection on both poles. Designed for snap-in pane mounting. There is a choice of push button colour combinations and neon illumination (filament bulb for low voltages) is optional.
Any one of the following additional function modules can be supplied
factory fitted to the rear of the switch/circuit breaker.

- Under voltage release coil (for double pole versions only).
- Magnetic trip coil for short circuit protection - see page 113.
- Magnetic trip coil for remote relay trip.
- Auxiliary contacts for status signalling.
- Mechanical slide interlock

Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, extra low voltage wiring systems, office machines, electro-medical equipment, power supplies, communications systems, industrial controls.

Accessories

Y 30306801 Insulated cover, snap-fitted to the exposed areas of the two incoming terminals (when terminal screws are not specified) to provide brush contact protection.
Y 30386201 Terminal adapter to convert screw terminals to push on connections when factory fitted under voltage release module is specified (two adapters required per unit).
Y 30367501 Retaining clip for -F3 mounting frame for panel thickness under 2 mm .
Y 30367502 As above for panel thickness under 4 mm.
Y 30388531 Blanking piece in -F3 size mounting frame.
Y 30427501 Rear terminal shroud.
Y 30600101 Water splash cover for use with -F2 size mounting frame.
Y 30655101 Retaining clip for -F2 mounting frame.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance per pole (Ω)	Current rating (A)	Internal resistance per pole (Ω)
0.1	94	3.5	0.0565
0.2	24	4	0.0435
0.3	12	4.5	0.0435
0.4	5.30	5	0.0325
0.5	4.20	6	0.0215
0.6	2.90	7	0.0165
0.8	1.50	8	0.0165
1	0.9	10	<0.02
1.2	0.80	12	<0.02
1.5	0.45	16	<0.02
2	0.27	18	<0.02
2.5	0.0785	20	<0.02
3	0.0595		

Approvals

Authority	Voltage ratings	Current ratings
VDE, Semko	AC 250 V, DC 28 V	$0.1 \ldots . .20 \mathrm{~A}$
(EN 60934)	DC 50 V	$0.1 \ldots 20 \mathrm{~A}$ double pole
	DC 50 V	$0.1 \ldots 10 \mathrm{~A}$ single pole
BV, LRoS	AC 250 V, DC 28 V	$0.1 \ldots 20 \mathrm{~A}$
UL, CSA	AC 250 V, DC 50 V	$0.1 \ldots 20 \mathrm{~A}$

Technical data

Voltage rating	AC 250 V ; DC 50 V
Current ratings	0.1...20 A (up to 30 A to special order)
Typical life	50,000 operations for $I_{N} \leq 16$ A double pole 30,000 operations for $I_{N} \leq 16 \mathrm{~A}$ single pole, 10,000 operations for $I_{N}>16 \mathrm{~A}$
Ambient temperature	-30... $+60{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area between poles (2 pole)	Test voltage AC 3000 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{n}	$0.1 \ldots 2 \mathrm{~A}$ $10 \times \mathrm{I}_{\mathrm{N}}$ $2.5 \ldots 20 \mathrm{~A}$ 250 A 2 pole, or 150 A 1 pole
Interrupting capacity (UL 1077)	$\mathrm{I}_{\mathrm{N}} \quad \mathrm{U}_{\mathrm{N}} \quad 2$ pole
	0.1... 2 A AC 250 V 200 A
	2.5... 3 A AC 250 V - 1000 A
	3.5.. 8 A AC 250 V 2000 A
	9...16 A AC 250 V 3500 A
	18... 20 A AC 250 V - 5000 A
	0.1...20 A DC 50 V 1000 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$\begin{aligned} & 8 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6 \text {, Test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 30 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, Test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH, to IEC 68-2-3, Test Ca
Mass	approx. 33 g (double pole) approx. 27 g (single pole)

Ordering information

Type No.

3120 push button switch/circuit breaker

	Mounting
F	snap in frame

Size of frame

2 special frame for fitting splash cover

| 3 | to fit mounting cut-out $50.5 \times 21.5 \mathrm{~mm}$, panel thickness $1-6.35 \mathrm{~mm}$ |
| :--- | :--- | Number of poles

02 pole, unprotected, switch only
1 1 pole, thermally protected
22 pole, thermally protected
52 pole, thermally protected on one pole only (terminals $11,12 \mathrm{k}, 12 \mathrm{i})$ 61 pole, unprotected, switch only

Mounting frame design

F with 2 push buttons
G with 1 push button (switch-on only)
Terminal configuration
P7 blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (terminals 12(k), 22(k), 11,. 21), not for under voltage module, not for switch
H7 12(k), 22(k): blade terminals $2 \times 2.8-0.8$ 11, 21: terminal screws, not for switch
N7 as P7, but including shunt terminals 12(i) and 22 (i) as blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$
not for under voltage module
G7 as H7, but including shunt terminals 12(i) and 22 (i) as blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$
Characteristic curve
T1 thermal, 1.01-1.4 I_{N}
Q1 switch only, only for N7 or G7 terminal

| Switch style/colour |
| :--- | :--- |
| D 1 push button |

N.B.

Switch only versions must be specified with -N7 or -G7 terminals
Terminals $12(\mathrm{k})$ and $22(\mathrm{k})$ are not fitted.

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+40	+50	+60

Internal connection diagrams

2 pole,
thermally protected
thermally protected on one pole only
thermally protected

Typical time/current characteristics

1 or 2 pole load
0.1... 2 A

2.5... 20 A

Dimensions

3120-F3.F-...-S...

Installation drawing

Panel cut-out

3120-F3...

3120-F2...

Edges of working parts: DIN 6784

Insulated cover
Y 30306801

Terminal adapter

Y $303 \mathbf{8 6 2} 01$

Retaining clip for 3120-F3...
Ref. Y 303675 01/02

Blanking piece in -F3 frame
Y 30388531

Rear terminal shroud black
Y 30427501 (IP64)

Water splash cover, transparent (IP66) for style 3120-F2.F-...
X 22161901
Consisting of

- retaining clip Y 30655101
- cover Y 30600101

Description

A module supplied factory fitted to type 3120 to provide electrically separate changeover contacts which operate as the main contacts open/close. Ideally suited to status signalling and sequence switching.

Typical applications

Monitoring of the switching position of the circuit breaker or any connected load.

Dimensions

blade terminals
DIN 46244-A2.8-0.5-Ms-silver plated

Internal connection diagram

Technical data

Voltage rating	AC 250 V ; DC 220 V
Current rating	4 (1) A
Typical life	50,000 operations
Ambient temperature	$-30 . .+60^{\circ} \mathrm{C}$
Dielectric strength (IEC 664 and 664A) between main and auxiliary circuit	Test voltage AC 3000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$)
Vibration	$\begin{aligned} & 6 \mathrm{~g} \text { (type X3120-S...A) } \\ & 8 \mathrm{~g} \text { (type X3120-S...B) } \\ & (57-500 \mathrm{~Hz}), \pm 0.46 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6 \text {, test Fc } \\ & 10 \text { frequency cycles/axis } \\ & \hline \end{aligned}$
Shock	15 g (11 ms), type X3120-S...A 20 g (11 ms), type X3120-S...B to IEC 68-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-30, test Ca
Mass	approx. 38 g (complete assembly)

冨弜込 Undervoltage Release Module X3120－U．．．for circuit breaker 3120－F．．．

Description

A module suitable for all double pole versions of type 3120 to trip the main switch／circuit breaker mechanism in the event of loss of voltage． When the voltage is restored the rocker switch must be reset to reconnect the load，thereby avoiding the safety hazards associated with automatic re－starting of machinery．
Note：Basic unit 3120－．．．－H7 or－G7 screw terminals necessary．

Typical applications

Machines such as power tools，industrial equipment and domestic appliances where automatic restart after restoration of power could be dangerous（EU Machinery Directive）

Ordering information

Type No．	
X3120 Module for type 3120	
	Function
	U undervoltage release module
	Terminal design
	00 standard（without separate connections）
	011 blade terminal 2.8×0.8
	022 blade terminals 2.8×0.8
	Voltage ratings
	00 230／240 V AC 50／60 Hz
	01120 V AC $50 / 60 \mathrm{~Hz}$
	02100 V AC $50 / 60 \mathrm{~Hz}$
	$03 \quad 24 \mathrm{~V}$ DC
	M module mounted to the circuit breaker
$\times 3120$	100 M ordering example

Approvals（complete circuit breaker／module assembly）

Authority	Voltage ratings
VDE（EN 60934）	AC 100．．． 240 V ；DC 24 V
UL，CSA	AC 100．．． 240 V ；DC 24 V

Voltage ratings	AC 100， $120 \mathrm{~V}, 230 / 240 \mathrm{~V} \mathrm{50/60} \mathrm{~Hz}$ DC 24 V
Release values	20 to $70 \% \mathrm{U}_{\mathrm{N}}$ （at a rated voltage of AC 100 V the device may release at 70 V and must release at 20 V ）
Release delay	$\mathrm{t}<20 \mathrm{~ms}$
Latch－in values	$>85 \% \mathrm{U}_{\mathrm{N}}$
Ambient temperature	$-30 \ldots+60{ }^{\circ} \mathrm{C}$
Vibration	$8 \mathrm{~g} \mathrm{(57-500} \mathrm{Hz)} \pm 0.61 \mathrm{~mm} \mathrm{(10-57} \mathrm{Hz)}$ to IEC 68－2－6，test Fc 10 frequency cycles／axis
Shock	$30 \mathrm{~g} \mathrm{(11} \mathrm{ms)}$ to IEC 68－2－27，test Ea
Corrosion	48 hours at 5 \％salt mist， to IEC 68－2－11，test Ka
Humidity	240 hours at 95\％RH to IEC $68-2-30$, test Ca
Mass	approx． $53 \mathrm{~g} \mathrm{(complete} \mathrm{assembly)}$

Description

A module which adds remote trip capability to all versions of type 3120. A voltage applied across the coil, by means of an external sensor for example, will cause disconnection of the main switch/circuit breaker mechanism.

Typical applications

Electrical monitoring of safety sytems, remote trip.

Ordering information

Approvals (complete circuit breaker/module assembly)

Authority	Voltage ratings
VDE (EN 60934)	AC $12 \ldots . .240 \mathrm{~V} ;$ DC 12...24 V
UL, CSA	AC $12 \ldots 240 \mathrm{~V} ;$ DC $12 \ldots .24 \mathrm{~V}$

Dimensions

Internal connection diagram

Technical data

Voltage ratings	AC 12... 240 V ; DC 12... 24 V
Power consumption	approx. 200 W
Pulse operation	$20 \mathrm{~ms}<\mathrm{t}_{\text {ON }}<100 \mathrm{~ms} /$ toff $>10 \mathrm{sec}$
Release delay	$\mathrm{t}<20 \mathrm{~ms}$
Typical life	50,000 operations at U_{N}
Ambient temperature	$-30 \ldots+60{ }^{\circ} \mathrm{C}$
Dielectric strength (IEC 664 and 664A) between main circuit and trip coil circuit	Test voltage AC 3000 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V)
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 68-2-6, test Fc 10 frequency cycles/axis
Shock	30 g (II ms) to IEC 68-2-27, test Ea
Corrosion	96 hours at 5% salt mist, to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-30, test Ca
Mass	approx. 53 g (complete assembly)

둘回込 Mechanical Slide Interlock Module X3120-V...for circuit breaker 3120-F...

Description

Suitable for use with all type 3120 versions, this module provides a mechanical safety interlock which, according to the option specified, prevents the main switch/circuit breaker mechanism from being reset/ switched on. The actuator is intended for use with interlock systems to ensure that machinery cannot be operated without covers and safety guards in place, for instance.

Typical applications

Mechanical monitoring of safety systems, e.g. for garden shredders

Dimensions

interlock version 01

interlock may be moved in either direction min. 8.5 mm max. 10.5 mm

Ordering information

Description

Single, two and three pole rocker switch/thermal circuit breakers (Stype TO CBE to EN 60934) of compact design for snap-in pane mounting. Available either with protection on one/both/all poles or, in the case of the double pole version, protection on one pole only. Neon illumination is optional (filament bulb for low voltages) and there is a choice of rocker colours.
Approved to CBE standard EN 60934 (IEC 934)

Typical applications

Motors, transformers, solenoids, household and office machines, hand tools.

Ordering information

Technical data

Voltage rating	AC 240 V ; 3 AC 415 V ; DC 50 V
Current ratings	$0.1 \ldots 20 \mathrm{~A} 1$ pole 0.1... $16 \mathrm{~A} \quad 2$ and 3 pole
Typical life	30,000 operations at $I_{N}, 1$ and 3 pole 50,000 operations at $I_{N}, 2$ pole
Ambient temperature	$-30 . .+60{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area current path/current path	Test voltage AC 3000 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$)
Interrupting capacity I_{cn}	$0.1 \ldots 2 \mathrm{~A}$ $10 \times \mathrm{I}_{\mathrm{N}}$ $2.5 \ldots 20 \mathrm{~A}$ 150 A 1 pole $2.5 \ldots 16 \mathrm{~A}$ 250 A 2 pole $2.5 \ldots 12 \mathrm{~A}$ 150 A 3 pole $14+16 \mathrm{~A}$ 130 A 3 pole
Interrupting capacity (UL 1077)	I_{N} $0.1 \ldots 12 \mathrm{~A}$ $14 \ldots 16 \mathrm{~A}$ $1+2$ pole AC $250 \mathrm{~V} / 3500 \mathrm{~A}$ AC $250 \mathrm{~V} / 3500 \mathrm{~A}$ 3 pole $3 A C 250 \mathrm{~V} / 5000 \mathrm{~A}$ $1+2$ pole DC $50 \mathrm{~V} / 2000 \mathrm{~A}$ DC $50 \mathrm{~V} / 2000 \mathrm{~A}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$\begin{aligned} & 5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6, \text { Test Fc } \\ & 10 \text { frequency cycles/axis } \\ & \hline \end{aligned}$
Shock	1 pole: 25 g (11 ms) $2+3$ pole: 20 g (11 ms) to IEC 68-2-27, Test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH, to IEC 68-2-3, Test Ca
Mass	approx. 45 g (three pole) approx. 31 g (double pole) approx. 17 g (single pole)

Approvals

Authority	Voltage rating	Current rating	
VDE (EN 60934)	AC $240 / 415 \mathrm{VDC} \mathrm{50} \mathrm{V}$	$0.1 \ldots 20 \mathrm{~A}$	single pole
		$0.1 \ldots 16 \mathrm{~A}$	multi pole
	DC 50 V	$0.1 \ldots 8 \mathrm{~A}$	single pole
		$0.1 \ldots .16 \mathrm{~A}$	multi pole
	DC 28 V	$0.1 \ldots 20 \mathrm{~A}$	single pole
UL, CSA	AC 250 V, DC 50 V	$0.1 \ldots 16 \mathrm{~A}$	1 and 2 pole
	3 AC 250 V	$0.1 \ldots . .2 \mathrm{~A}$	3 pole
Semko	AC 240 V, DC 28 V	$0.1 \ldots 16 \mathrm{~A}$	1 and 2 pole
	3 AC 415 V	$0.1 \ldots 12 \mathrm{~A}$	3 pole

1

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance per pole (Ω)	Current rating (A)	Internal resistance per pole (Ω)
0.1	94	3.5	0.0565
0.2	24	4	0.0435
0.3	12	5	0.0325
0.4	5.30	6	0.0215
0.5	4.20	7	0.0165
0.8	1.50	8	0.0165
1	0.9	10	<0.02
1.2	0.80	12	<0.02
1.5	0.45	14	<0.02
2	0.27	16	<0.02
2.5	0.0785	18	<0.02
3	0.0595	20	<0.02

Internal connection diagrams
1 pole

3 pole

2 pole

switch

Typical time/current characteristics

Multi-pole types: all poles symmetrically loaded With single pole overload, thermal
tripping will be at approx. $1.54 \times \mathrm{I}_{\mathrm{N}}$ with 2 pole devices and at approx. $1.6 \times \mathrm{I}_{\mathrm{N}}$ with 3 pole devices.

2.5... 20 A 1 pole
2.5... 16 A 2 and 3 pole

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.8	0.84	0.88	0.92	1	1.08	1.14	1.23

Dimensions 3130-F110-...

Dimensions 3130-F120-...

Dimensions 3130-F130-...

Side view

flat head screw M3.5x5 -MS ISO1580
tightening torque max. 0.8 Nm

Optional illumination

Dimensions 3130-F310-..

flat head screw M3.5x5 -MS ISO1580

Optional illumination

A	B
1.50	$35^{+0.15}$
2.35	$36^{+0.15}$
3.20	$37^{+0.15}$

Edges of working parts: DIN 6784

Installation drawing

Accessories

Splash cover, transparent, for 3 pole version X 22125801 (IP 54)

Description

Single pole thermal circuit breaker with push-to-reset, tease-free, trip-free, snap action mechanism (R-type TO CBE to EN 60934). Options include an additional unprotected circuit tap (-A3) and -KF housing particularly suited to high humidity and other damp conditions. Designed for threadneck panel mounting. Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, hand tools, appliances.

Accessories

X 20079902 Water splash cover/knurled nut assembly for type 2-4100.
X 20079901 As above with the cover bonded to the nut for extra retention.
X 200798 01/02 As X 20079902 and 01 above but featuring a slotted knurled ring for wrench front of panel tightening.
X 21073901 Water splash cover/hex nut assembly for type $2-4100$. The concertina design is extended when the button trips to the OFF position.
X 20129603 Water splash cover transparent, with hex nut, without O ring

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Currrent rating (A)	Internal resistance ($\Omega)$	Current rating (A)	Internal resistance (Ω)
0.05	322	1.8	0.34
0.08	125	2	0.29
0.1	101	2.5	0.18
0.2	25	3	0.14
0.3	11	3.5	0.1
0.4	6.3	4	0.08
0.5	4.1	4.5	0.069
0.6	2.8	5	0.053
0.7	2.1	6	<0.05
0.8	1.6	7	<0.05
1	0.97	8	<0.05
1.2	0.66	10	<0.05
1.5	0.45		

2-4100-..

Technical data

Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$10 \mathrm{~g} \mathrm{(57-500} \mathrm{Hz)} \pm 0.76 \mathrm{~mm} \mathrm{(10-57} \mathrm{Hz)}$, to IEC 68-2-6, Test Fc, 10 frequency cycles/axis
Shock	$25 \mathrm{~g} \mathrm{(11} \mathrm{ms)}$ to IEC 68-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 15 g

Approvals

Authority	Voltage rating	Current rating
VDE (EN 60934)	AC 250 V; DC 28 V	$0.05 \ldots . .10 \mathrm{~A}$
CSA	AC 250 V	$0.05 \ldots 3,5 \mathrm{~A}$
UL	AC 250 V	$0.05 \ldots 5 \mathrm{~A}$
Semko (EN 60934)		AC 250 V; DC 28 V
-A3 versions are not UL approved	$0.1 \ldots 10 \mathrm{~A}$	

Dimensions

Internal connection diagram

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

Accessories

Water splash cover, transparent Y 30053801 and knurled nut Y 30062801
X 20079902 (IP64)
X 20079901 bonded to nut (IP64)

Water splash cover, transparent with special knurled nut
X 20079801 (IP64)
X 20079802 bonded to nut (IP64)

Hex nut with splash cover, black X 21073901 (IP64) Water splash cover, transparent, with hex nut, without O ring X 20129603 (IP64)

Description

Single pole thermal circuit breaker with press-to-reset, tease-free, tripfree, snap action mechanism. Type 2-5000 is available with optiona manual release (-H), type 2-5700 can be supplied as a push-push switch/circuit breaker (R-type TO CBE to EN 60934 in press-to-reset configuration: M-type when fitted with manual release -H; S-type with push-push operation). Fitted with flange or threadneck for panel mounting. Options include an additional unprotected circuit tap (-A3) and -KF housing particularly suited to high humidity and other damp conditions. Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, battery chargers, power supplies, appliances, machinery, extra low voltage systems.

Accessories

For types 2-5000 and 2-5700

Y 30356301 Ten-way connecting/bus bar for use with circuit breakers with screw terminals.

For type 2-5000

Y $30072801 \quad$ Water splash cover for type 2-5000.
Y $30105602 \quad$ Fixing plate for Y 30072801.
Y 30047601 Rear terminal shroud.

For type 2-5700 with IG1 threadneck

X 20079902 Water splash cover/knurled nut assembly.
X 20079901 As above with the cover bonded to the nut for extra retention.
X 200798 01/02 As X200 79902 and 01 above but featuring a slotted knurled ring for wrench front of panel tightening.
X 21073901 Water splash cover/hex nut. The concertina design is extended when the button trips to the OFF position.

For type 2-5700 with IG2 threadneck

X 21066301 Water splash cover/knurled nut assembly.
X 20129601 Water splash cover/hex nut assembly - without 'O'ring.
X 20080103 Water splash cover/hex nut assembly - with 'O'ring.
Separate hardware
Y $300192013 / 8^{\prime \prime}$ hex nut.
Y 30028402 3/8" knurled nut.
Y $30011602 \quad 12 \mathrm{~mm}$ hex nut.
Y $30006501 \quad 12$ mm knurled nut.
X 20080108 Water splash cover, transparent, with hex nut, with O ring

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

2-5000-...

2-5700-...

Technical data

Voltage rating	AC 250 V ; DC 28 V		
Current rating range	0.05... 25 A		
Typical life	5,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$		
Ambient temperature	$-20 . .+60^{\circ} \mathrm{C}$		
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area		
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V		
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$)		
Interrupting capacity I_{cn}	$0.05 \ldots . .2 .5 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ $3 \ldots 5 \mathrm{~A}$ $20 \times \mathrm{I}_{\mathrm{N}}$ $6 \ldots . .12 \mathrm{~A}$ 200 A (higher interrupting capacity available to special order) $13 . .25 \mathrm{~A}$ 400 A		
Interrupting capacity (UL 1077)	I_{N}	U_{N}	
	$\begin{aligned} & 0.05 \ldots 4.5 \mathrm{~A} \\ & 5 \ldots 7 \mathrm{~A} \\ & 8 \ldots 16 \mathrm{~A} \\ & 0.05 \ldots 16 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AC } 250 \mathrm{~V} \\ & \text { AC } 250 \mathrm{~V} \\ & \text { AC } 250 \mathrm{~V} \\ & \text { DC } 28 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \mathrm{~A} \\ 1000 \mathrm{~A} \\ 2000 \mathrm{~A} \\ 200 \mathrm{~A} \\ \hline \end{array}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00		
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 68-2-6, Test Fc, 10 frequency cycles/axis		
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$		
Corrosion	96 hours at 5% salt mist, to IEC 68-2-11, test Ka		
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca		
Mass	approx. 29 g		

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.05	280	3	0.1
0.08	100	3.5	0.065
0.1	110	4	0.065
0.2	29	4.5	0.05
0.3	14	5	0.05
0.4	7	6	0.02
0.5	4.9	7	0.02
0.6	3.4	8	<0.02
0.7	2.5	10	<0.02
0.8	1.8	12	<0.02
1	1.2	13	<0.02
1.2	0.85	15	<0.02
1.5	0.6	16	<0.02
1.8	0.4	20	<0.02
2	0.3	22	<0.02
2.5	0.2	25	<0.02

Approvals

Authority	Voltage ratings	Current ratings
VDE, Semko (EN 60934)	AC 250 V; DC 28 V	$0.05 \ldots 25 \mathrm{~A}$
CSA UL	AC 250 V; DC 28 V	$0.05 \ldots 16 \mathrm{~A}$
SEV, Nemko	AC $250 \mathrm{~V} ;$ DC 28 V	$0.05 \ldots 25 \mathrm{~A}$
LRoS	AC 250 V ; DC 28 V	$0.1 \ldots 25 \mathrm{~A}$
BV (type 2-5700 only)	AC $250 \mathrm{~V} ;$ DC 28 V	$0.2 \ldots 25 \mathrm{~A}$

Dimensions

2-5700-P10

IG1=3/8-27UNS-2A tightening torque max. 1 Nm

D-shaped threadneck

Terminal design

-P10-A3

0.05...2.5 A

Installation drawings

2-5000-...

2-5700-...

Internal connection diagrams

0.05...2.5 A

(with or without shunt terminal)

3... 25 A
(without shunt terminal)

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

Accessories for types 2-5000 and 2-5700 with screw terminals -K10

Bus bar
Y 3035630

Accessories for type 2-5000-...

Water splash cover, transparent for push button (IP64) Y 30072801

Fixing plate
Y 30105602

Rear terminal shroud, transparent (IP64)
Y 30047601

Accessories for type 2-5700-...

With 3/8" threadneck (-IG1)
Water splash cover, transparent Y 30053801
and knurled nut Y $\mathbf{3 0 0} 62801$
X 20079902 (IP64)
X 20079901 bonded to nut (IP64)

Water splash cover, transparent with special knurled nut
X 20079801 (IP64)
X 20079802 bonded to nut (IP64)

Hex nut with splash cover black X 21073901 (IP64) transparent splas cover X 20129603 (IP64)

Separate hardware
Hex nut
Knurled nut
Y 30028402

With M12 threadneck (-IG2)
Hex nut with splash cover, black X 20129601 without O ring (IP64) X 20080103 with 0 ring (IP66) X 20080108 transparent with O ring (IP66)

Separate hardware

Hex nut
Y 30011602

Water splash cover, transparent, with knurled nut X 21066301 (IP64)

Knurled nut Y 30206501

Description

Single pole thermal circuit breaker with push-to-reset, tease-free, tripfree, snap action mechanism (R-type TO CBE to EN 60934; M-type when fitted with optional manual release feature). Designed for plug-in mounting with E-T-A sockets 10 and 16. The optional -KF housing is particularly suited to high humidity and other damp conditions.

Typical applications

Extra low voltage wiring systems and components.

Accessories

10R-K10 Modular snap-together surface mounted sockets, each accommodating two plug-in circuit breakers. With screw terminals 10R-A10 As above but with a combination of screw and push-on terminals. Y 30116602 Two-way brass connecting/bus bar links for type 10 sockets. Y 30116601 Four-way brass connecting/bus bar links for type 10 sockets. $16 \quad$ Single socket for symmetric EN rail mounting.
X 20040901 Adapter for mounting socket type 16 to asymmetric rail (G-profile).
Y 30147701 Blanking plug with insulated pins, for sockets 10, 20, 40, 60.

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.05	280	2.5	0.2
0.08	100	3	0.1
0.1	110	3.5	0.065
0.2	29	4	0.065
0.3	14	4.5	0.05
0.4	7	5	0.05
0.5	4.9	6	0.02
0.6	3.4	7	0.02
0.7	2.5	8	<0.02
0.8	1.8	10	<0.02
1	1.2	12	<0.02
1.2	0.84	13	<0.02
1.5	0.6	15	<0.02
1.8	0.4	16	<0.02
2	0.25		

2-5200-...

Technical data

Voltage rating	DC 28 V (AC 250: suffix 051034)
Current rating range	0.05...16 A (up to 25 A to special order)
Typical life	5,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-20 . . .+60{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity $\mathrm{I}_{\text {cn }}$	$0.05 \ldots 2.5 \mathrm{~A}$ $8 \times I_{N}$ $3 \ldots .5 \mathrm{~A}$ $20 \times \mathrm{I}_{\mathrm{N}}$ $6 \ldots . .16 \mathrm{~A}(25 \mathrm{~A})$ 400 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$8 \mathrm{~g}(57 \text { to } 500 \mathrm{~Hz} / \pm 0.61 \mathrm{~mm}, 10-57 \mathrm{~Hz}) \text {, }$ to IEC 68-2-6, Test Fc,
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at 5% salt mist, to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 35 g

Approvals

Authority	Voltage ratings	Current ratings
LRoS	AC $250 \mathrm{~V} ;$ DC 28 V	$0.05 \ldots . .16 \mathrm{~A}$
Semko	AC 250 V ; DC 28 V	$0.05 \ldots 16 \mathrm{~A}$

Dimensions

Internal connection diagram

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.
Ambient temperature ${ }^{\circ} \mathrm{C}$
Multiplication factor

$$
\begin{array}{c|c|c|c|c|c|c}
-20 & -10 & 0 & +23 & +40 & +50 & +60 \\
\hline 0.76 & 0.84 & 0.92 & 1 & 1.08 & 1.16 & 1.24
\end{array}
$$

Accessories

Socket 16

Blanking plug
 Y 30147701

for sockets 10R-P10/K10

Connector bus links -P10 X 210588 01/1.5mm ${ }^{2}$ (brown) X 210588 02/2.5mm² (black) X 210588 03/2.5mm ${ }^{2}$ (red) X 210588 04/2.5mm² (blue)

Terminal for mounting rack X 20080001
for sockets 10R, 10F on EN rail 50 035-G32

Connector bus links -K10 X 210589 01/2.5mm² (black) X 210589 02/1.5mm ${ }^{2}$ (brown)

$$
\begin{aligned}
& 50 \text { pin lugs } \\
& \text { to DIN } 46230
\end{aligned}
$$ to DIN 46230

tinned copper tinned copper

Description

Single pole thermal circuit breakers with push-to-reset, tease-free, trip-free, snap action mechanism (R type TO CBE to EN 60934; M-type when fitted with manual release features/type 2-6200 only). Featuring auxiliary contacts ($1 \times \mathrm{N} / \mathrm{C} ; 1 \times \mathrm{N} / \mathrm{O}$) as standard. Options include manual release (type 2-6200 only), an additional unprotected circuit tap (-A3), a centre reset position in which all contacts are open (-ZR: type $2-6200-\mathrm{H}$ only), and -KF housing particularly suited to high humidity and other damp conditions. Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Motors, transformers, solenoids, controls for oil and gas boilers.

Accessories

For type 2-6400 with IG1 threadneck

X 20079902 Water splash cover/knurled nut assembly.
X 20079901 As above with the cover bonded to the nut for extra retention.
X 200798 01/02 as X 20079902 and 01 above but featuring a slotted knurled ring for wrench front of panel tightening.
X 21073901 Water splash cover/hex nut. The concertina design is extended when the button trips to the OFF position
For type 2-6400 with IG 2 threadneck
X 21066301 Water splash cover/knurled nut assembly.
X 20129601 Water splash cover/hex nut assembly without 'O'ring.
Separate hardware
Y 30019201 3/8" hex nut.
Y 30028402 3/8" knurled nut
Y $30011602 \quad 12 \mathrm{~mm}$ hex nut.
Y $30006501 \quad 12$ mm knurled nut.

Ordering information

[^1]
Technical data

Voltage rating	AC 250 V ; DC 28 V		
Current rating range	0.05... 16 A		
Auxiliary circuit	1 A, AC $250 \mathrm{~V} / \mathrm{DC} 28 \mathrm{~V}$		
Typical life	5,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$		
Ambient temperature	$-20 . .+60^{\circ} \mathrm{C}$		
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area		
Dielectric strength (IEC 664 and 664A) operating area main circuit to aux. circuit aux. circuit 4-5 to 6-7	Test voltage AC 3000 V AC 1500 V AC 840 V		
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$)		
Interrupting capacity I_{cn}	$10 \times \mathrm{I}_{\mathrm{N}}$		
Interrupting capacity (UL 1077)	$\underline{I_{N}}$	U_{N}	
	$\begin{aligned} & 0.05 \ldots . .4 .5 \mathrm{~A} \\ & 5 \ldots . .7 \mathrm{~A} \\ & 8 \ldots 15 \mathrm{~A} \\ & 16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { AC } 250 \mathrm{~V} \\ & \text { AC } 250 \mathrm{~V} \\ & \text { AC } 250 \mathrm{~V} \\ & \text { AC } 250 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 200 \mathrm{~A} \\ 1000 \mathrm{~A} \\ 2000 \mathrm{~A} \\ 3500 \mathrm{~A} \end{array}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00		
Vibration	$10 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 68-2-6, Test Fc, 10 frequency cycles/axis		
Shock	$\begin{aligned} & 40 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$		
Corrosion	96 hours at 5% salt mist, to IEC 68-2-11, test Ka		
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca		
Mass	approx. 25 g		

2-6200-...
2-6400...

1
Standard current ratings and typical internal resistance values

Current rating (A)			
0.05	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.057	2	0.30	
0.1	138	2.5	0.20
0.1	90	3	0.12
0.2	32.2	3.5	0.10
0.3	14.6	4	0.07
0.4	8.4	4.5	0.056
0.5	5.15	5	0.046
0.6	3.82	6	0.035
0.7	2.80	7	0.03
0.8	2.15	8	<0.02
1	1.42	10	<0.02
1.2	0.96	12	<0.02
1.5	0.51	15	<0.02
1.8	0.40	16	<0.02

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC $250 \mathrm{~V} ; \mathrm{DC} 28 \mathrm{~V}$	$0.05 \ldots 16 \mathrm{~A}$
CSA UL	AC $250 \mathrm{~V} ; \mathrm{DC} 28 \mathrm{~V}$	$0.05 \ldots 16 \mathrm{~A}$
Semko (EN 60934)	AC $250 \mathrm{~V} ; \mathrm{DC} 28 \mathrm{~V}$	$0.1 \ldots 16 \mathrm{~A}$
Demko	AC $250 \mathrm{~V} ;$ DC 28 V	$0.05 \ldots 16 \mathrm{~A}$

Dimensions

2-6400-...
IG1=3/8-27UNS-2A tightening torque max. 1 Nm IG2=M12x1 tightening torque max. 1.5 Nm

Installation drawing

2-6200-...

Terminal design

-P10 0,05... 7 A
see dimension diagram
-P10 8... 16 A

-P10-A3 0,05... 16 A

-L10 0,05... 7 A

-L10 8... 16 A

-L10-A3 0,05... 16 A

Installation drawing

Accessories for type 2-6400-...

With 3/8" threadneck (-IG1)
Water splash cover, transparent Y 30053801
and knurled nut Y 30062801
X 20079902 (IP64)
X 20079901 bonded to nut (IP64)

Water splash cover, transparent with special knurled nut
X 20079801 (IP64)
X 20079802 bonded to nut (IP64)

Separate hardware
Hex nut
Y 30019201

Hex nut with splash cover black X 21073901 (IP64)

3/8-27 UNS-2B

Knurled nut Y 30028402

With M12 threadneck (-IG2)

Hex nut with splash cover black X 20129601 without O ring (IP64) X 20080103 with 0 ring (IP66) X 20080108 transparent with O ring (IP66)

Separate hardware Hex nut
Y 30011602

Water splash cover transparent with knurled nut X 21066301 (IP64)

Knurled nut Y 30206501

Single and multi pole
 thermal-magnetic circuit breakers (CBEs) with and without auxiliary contacts

Voltage ratings max. 3 AC 433 V, AC 250 V, DC 65 V
Current ratings 0.05... 32 A

A latching type bimetal is combined with a magnetic coil to provide the joint benefits of delayed operation for low level over-current protection and fast magnetic action on higher value short circuits.

E-T-A has perfected thermal-magnetic technology to provide a choice of mounting options, covering an extensive range of current ratings all with high precision performance. These models are well suited to telecommunications, process control and other industrial applications where sophisticated equipment needs correct - and dependable - protection. The narrow profile of E-T-A thermal-magnetic circuit breakers enables high density packaging solutions.

Additional features to ensure perfect fit of device to application include options such as auxiliary contacts for status signalling and the choice of push button or toggle manual control. There are also single, two and multi-pole models in a range of types and variants. Plug-in versions provide a convenient means of positive circuit interruption by simply removing the circuit breaker - ideal for safety critical systems during maintenance and shutdown.

E-T-A thermal-magnetic circuit breakers for track mounting can be fitted to different standard rail designs, either direct in the case of combi-foot models, or with an E-T-A adapter.

All models are available in special configurations with separate thermal and thermal-magnetic circuits, providing capability for overload protection together with an independent control circuit, which may be operated in response to an external sensor input.

[^2]

Type No.	201 / 201-WA	2210-S2..-...	E2210 assembly
Description	rail mounting 201 standard type 201-WA low resistance option	socket or panel mounting, toggle actuator, single or multi pole, with auxiliary contact option	type 2210-S on Euro Card for 19" rack mounting
Max. voltage rating	AC $250 \mathrm{~V} ; \mathrm{DC} 65 \mathrm{~V}$	3 AC 433 V ; AC 250 V ; DC 65 V	3 AC 433 V ; AC 250 V ; DC 65 V
Current ratings	$\begin{aligned} & \text { 201: } \quad 0.05 \ldots 16 \mathrm{~A} \\ & \text { 201-WA: } 0.05 \ldots 10 \mathrm{~A} \end{aligned}$	0.1... 25 A	0.1...16 A
Aux. contact rating	without auxiliary contacts	$\begin{aligned} & \text { AC } 240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V} \\ & 1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { AC } 240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V} \\ & 1 \mathrm{~A} \end{aligned}$
Typical life / contact rating	5,000 operations at $2 \times 1 / \mathrm{l}$	10,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$	10,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$
Interrupting capacity $\mathbf{I}_{\text {cn }}$		$\begin{array}{ll} 0.1 \ldots 5 \text { A } & 400 \mathrm{~A} \\ 6 & \ldots . .25 \mathrm{~A} \\ 800 \mathrm{~A} \end{array}$	$\begin{aligned} & 0.1 \ldots 5 \text { A } 400 \mathrm{~A} \\ & 6 \ldots 16 \text { A } 800 \text { A } \end{aligned}$
Approvals	VDE, Demko, CSA, UL, LRoS	VDE, CSA, UL, Demko, Semko, BV, LRoS	
Available options	see pages 101-103	see pages 105-108	see pages 109-112
Dimensions			1 single pole circuit breaker
Internal connection diagrams			

E-T-A Thermal-Magnetic Overcurrent Circuit Breakers - Selector Chart

Type No.	Mounting method					Main terminal design								Number of poles				Max. ratings		
			$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\circ}} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{2} \end{aligned}$	$\overline{\text {] }}$			$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{n}{1} \\ & \frac{c}{0} \\ & \frac{3}{2} \end{aligned}$							$\begin{aligned} & \frac{0}{\circ} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{\sigma}{\omega} \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \frac{2}{\bar{I}} \\ & \frac{3}{E} \end{aligned}$				E	$\begin{aligned} & \frac{\mathbb{x}}{z} \\ & \frac{2}{x} \\ & \frac{x}{x} \end{aligned}$
201				-					\bullet			\bullet		-				250	65	16
2210			\bullet	-		\bullet			\bullet		\bigcirc	\bullet	\bigcirc	-	\bullet		-	433	65	32
2210 for distribution rail			\bullet			\bullet					\bullet	\bullet		\bullet				250	65	25
2215	\bullet	-			-	\bullet		-		\bigcirc	\bigcirc	\bullet		\bullet	\bullet		-	250	48	10
3120		-				\bullet			O	\bigcirc		\bullet	\bigcirc	-	-	\bigcirc		250	50	16
3200			-				-					\bullet		-				250	28	25
3300	\bullet					\bullet		-	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet				250	65	16
3400	-					\bullet		-	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-				250	65	16
3500		-				-		-	-	\bigcirc	\bigcirc	\bullet		-				250	65	16
3600			\bullet			\bullet				\bullet	\bigcirc	\bullet		-				250	65	16
3900			-			\bullet				\bullet	\bullet	\bullet		\bullet				250	65	10
4000		-				\bullet		-		\bigcirc	-	\bullet		-				250	65	10

- = standard
$O=$ optional

Description

Single pole thermal-magnetic circuit breaker with tease-free, trip-free, snap action mechanism and two button operation (M-type TM CBE to EN 60934). Featuring a narrow profile housing, recessed terminals, standard EN rail mounting, and precision CBE performance.
Complies with CBE standard EN 60934 (IEC 934)

Typical applications

Process control systems, instrumentation.

Accessories

X 20040901 Mounting adapter for asymmetric rail (G-profile).
X $21058901 \quad 50$-way $2.5 \mathrm{~mm}^{2}$ cable links with prefitted connection lugs, black
X 21058902 As above but with $1.5 \mathrm{~mm}^{2}$ cable links, brown
X 22149700 Bus bar
X 22149800 Bus bar
X 22149600 Supply terminal for bus bar

Ordering information

Type No.		
201	single pole, rail mounted version	
201-WA	low-resistance version	
	Option	
	2705	fitted with adapter X 20040
		Current ratings
		0.05...16 A (type 201)
		0.05...10 A (type 201-WA)
201-WA		10 A ordering example

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω) 201		Current 201-WA		Internal resistance (Ω)	
rating (A)	201	201-WA				
0.05	447	211	3	0.19	0.054	
0.1	131	48	4	0.090	0.035	
0.2	40	12.4	5	0.061	0.025	
0.3	19.3	5.7	6	0.041	<0.02	
0.4	10.4	3.1	7	0.034	<0.02	
0.5	7.1	2.0	8	<0.02	<0.02	
0.6	4.3	1.32	10	<0.02	<0.02	
0.8	2.5	0.76	12	<0.02		
1	1.67	0.49	14	<0.02		
1.5	0.61	0.21	15	<0.02		
2	0.38	0.101	16	<0.02		
2.5	0.24	0.078				

Technical data

Voltage rating	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 65 V (DC 80 V UL/CSA)		
Current rating range	$\begin{aligned} & \text { 201: } 0.05 \ldots 16 \mathrm{~A} \\ & \text { 201-WA: } 0.05 \ldots 10 \mathrm{~A} \end{aligned}$		
Typical life	5,000 operations at $2 \times 1_{N}$		
Ambient temperature	$-30 . .+60^{\circ} \mathrm{C}$		
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area		
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V		
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V)		
Interrupting capacity I_{cn}	201	201-WA	
	$\begin{aligned} & 0.05 \ldots 0.8 \mathrm{~A} \\ & 1 \ldots .2 \mathrm{~A} \\ & 2.5 \ldots 16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.05 \ldots 0.2 \mathrm{~A} \\ & 0.3 \ldots 2 \mathrm{~A} \\ & 2.5 \ldots .10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { self-limiting } \\ & 200 \mathrm{~A} \\ & 400 \mathrm{~A} \end{aligned}$
Interrupting capacity (UL 1077)	l_{N}	U_{N}	
	$\begin{aligned} & \hline 0.05 \ldots 16 \mathrm{~A} \\ & 005 \quad 16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { AC } 250 \mathrm{~V} \\ & \text { DC } 80 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~A} \\ & 1000 \mathrm{~A} \end{aligned}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 20		
Vibration	$\begin{aligned} & 5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6 \text {, Test Fc } \\ & 10 \text { frequency cycles/axis } \\ & \hline \end{aligned}$		
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, Test Ea } \end{aligned}$		
Corrosion	96 hours at 5% salt mist, to IEC 68-2-11, Test Ka		
Humidity	240 hours at 95 \% RH to IEC 68-2-3, Test Ca		
Mass	approx. 60 g		

Approvals

Authority	Voltage ratings	Current ratings
VDE, Demko,	AC 250 V, DC 65 V	$0.05 \ldots .16 \mathrm{~A}$
CSA, UL	AC 250 V, DC 80 V	$0.05 \ldots .16 \mathrm{~A}$
LRoS	AC 250 V, DC 65 V	$0.3 \ldots 16 \mathrm{~A}$

莌启可を送 Thermal－Magnetic Circuit Breaker 201／－WA

Dimensions

Installation drawing for protection class II（IEC 730－1）

Internal connection diagram

Time／current characteristics are calibrated at $23^{\circ} \mathrm{C}$（see page 8）．For operation at other temperatures please apply the factors below to determine the circuit breaker rating required．
Ambient temperature ${ }^{\circ} \mathrm{C}$

Multiplication factor	-20	-10	0	+23	+40	+50	+60
	0.76	0.84	0.92	1	1.08	1.16	1.24

Typical time／current characteristics

\qquad $+23^{\circ} \mathrm{C}$
$-30^{\circ} \mathrm{C}$
Magnetic tripping currents are increased by 20 \％on DC supplies．

Type 201－WA 0．05．．． 10 A DC

Magnetic tripping currents are decreased by 20% on $A C$ supplies．

Accessories

Adapter for EN rail 50035－G32 specified as a separate item X 20040901

Connector bus links－K10 X 210589 01／2．5 mm²（black）
X 210589 02／1．5 mm²（brown）

Supply terminal for bus bar
X 22149601

conductor size max． $10 \mathrm{~mm}^{2}$

Description

One, two and three pole thermal-magnetic circuit breakers with trip-free, snap action mechanism and toggle actuation (S-type TM CBE to EN 60934/IEC 934). Designed for panel or plug-in mounting. Available with auxiliary contacts ($1 \times \mathrm{N} / \mathrm{O}, 1 \times \mathrm{N} / \mathrm{C}$) for status signalling and fitted with an unprotected shunt tap terminal as standard. Two and three pole models are internally linked to ensure that both/all poles trip in the event of an overload on one pole, even if the actuator is held in the ON position. A choice of characteristic curves further extends the range of applications possibilities for these CBEs. Approved to CBE standard EN 60934 (IEC 934).

Typical applications

Process control equipment, robotics, machinetool control, communications systems, instrumentation. Special versions, e.g. for aggressive environmental conditions and low voltages (5 V) on request.

Ordering information

[^3]

2210-S2...

Technical data

Voltage rating	AC $250 \mathrm{~V} ; 3$ AC $433 \mathrm{~V}(50-60 \mathrm{~Hz})$; DC 65 V (higher voltages to special order)			
Current rating range	0.1... 25 A for curves M1, T1, T2 $0.1 \ldots 16$ A for curves F1, M3			
Auxiliary circuit	1 A, AC 240 V/DC 65 V			
Typical life	10,000 operations at $1 \mathrm{xl}_{\mathrm{N}}$			
Ambient temperature	$-30 . . .+60{ }^{\circ} \mathrm{C}$ (T 60)			
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution withstand voltage degree $2,5 \mathrm{kV}$ 2 reinforced insulation in operating area			
Dielectric strength (IEC 664 and 664A) operating area main/aux. circuit aux. circuit 11-12/23-24 pole/pole	Test voltage AC 3000 V AC 1500 V AC 1000 V AC 1500 V			
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$			
Interrupting capacity I_{cn}	0.1... 5 A 400 A; 6... 25 A 800 A Curve T2 : 0.1... 25 A $15 \mathrm{xl}_{\mathrm{N}}$ Curve M3: 0.1... 2 A AC 200 A			
Interrupting capacity				
(UL 10771) $\quad \mathrm{I}_{\mathrm{N}}$	AC 250 V	AC 125 V	AC 250 V	DC 65 V
1 pole	1000 A	2000 A	3500 A	2000 A
2 pole	2000 A	2000 A	3500 A	2000 A
3 pole	3AC 250 V 2000 A	3AC 250 V 2000 A	3AC 216 V 3500 A	
Degree of protection (IEC 529/DIN 40050)	operating area IP 30 terminal area IP 00			
Vibration	Curve F1: $3 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.23 \mathrm{~mm}(10-57 \mathrm{~Hz})$ Curves M1, M3, T1, T2: $5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 68-2-6, Test Fc 10 frequency cycles/axis			
Shock	$\begin{aligned} & \text { Curve F1: } 25 \mathrm{~g}(11 \mathrm{~ms}) \text {, directions } 1,2,3,4,5 \\ & 10 \mathrm{~g}(11 \mathrm{~ms}) \text {, direction } 6 \\ & \text { Curves M1,M3, T1, T2: } \\ & 25 \mathrm{~g}(11 \mathrm{~ms}) \text {, directions } 1,2,3,4,5 \\ & 20 \mathrm{~g}(11 \mathrm{~ms}) \text {, direction } 6 \\ & \text { to IEC 68-2-27, Test Ea } \end{aligned}$			
Corrosion	96 hours in 5 \% salt mist to IEC 68-2-11, Test Ka			
Humidity	240 hours at 95 \% RH to IEC 68-2-3, Test Ca			
Mass	approx. 5	p		

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 250 V , DC 65 V	
	3 AC 433 V	0.1... 25 A
UL, CSA	AC 250 V , DC 65 V	0.1... 25 A
Demko, Semko	AC 250 V , DC 65 V	0.1..16 A
LRoS, BV	3 AC 415 V ,	
	AC 250 V , DC 65 V	0.1... 20 A

Toggle positions

Shock directions

Dimensions 2210-S...

blade terminals DIN 46244-A6.3-0.8
unit III

multi pole devices

Cut-out dimensions 2210-S2...

Installation drawing 2210-S2..

Connector bus links -P10
X 210588 01/1.5mm² brown
X 210588 02/2.5mm ${ }^{2}$ black
X 210588 03/2.5mm ${ }^{2}$ red
X 210588 04/2.5mm ${ }^{2}$ blue
100 quick-connect tabs 6.3 insulated

Internal connection diagrams

with auxiliary contact function 1 (one each N/O and N/C)
(...-H111-...) without intermediate position
(...-Z111-...) with intermediate position

with auxiliary contact function 4

Accessories for mounting sockets

Bus bar for type 17 socket (for max. 100 A continuous load)
X 21115701 with terminal
X 21115702 without terminal

M4 Cu rail, tin-plated

Insulated sleeving for bus bar Y 30382401

Accessories for 2210-S...

Single mounting sockets	with adapter
17-P10-Si	17-P10-Si-20025

$\begin{array}{ll}\text { (retaining clip Y } 30297402 \text { available on request) } \\ \begin{array}{ll}\text { slot fitting labels from }\end{array} & \\ \text { Pheonix ZB, RBS, DST } \\ \text { Weidmüller dekafix, BS, PES } & \text { polarized blade termina } \\ \text { Wieland Type } 9003 & \text { DIN 46244-A6.3-0.8 }\end{array}$

Single mounting sockets	with adapter
17-P70-Si	17-P70-Si-20025

(retaining clip Y 30297402 available on request)

Toggle guard for 1 pole units
X 22161701

Typical time/current characteristics

DC
Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+10	+23	+30	+40	+50	+60
Mut										

-M1 0,1... 6 A

Multi pole devices: all poles symmetrically loaded. With single pole overload, thermal tripping will be at max. $1.7 \times \mathrm{I}_{\mathrm{N}}$ with curves $\mathrm{F} 1, \mathrm{M} 1$ and T 2 , and at max $2.2 \times \mathrm{I}_{\mathrm{N}}$ with curve M3.
N.B.

* Magnetic tripping currents are increased by 30% on DC supplies.
-T1 0,1... 6 A

$$
\text { -T1 8... } 25 \text { A }
$$

-M3 0,1... 5 A $A C^{*}$

Description

Thermal-magnetic circuit breaker mounted on Euro Card for 19" rack mounting, with one Euro Card accommodating one or two single pole, double pole or three pole circuit breakers. Convenient toggle actuation enables series 2210 additionally to be used as an ON/OFF switch. A red LED is located in the front frame of the Euro Card, indicating the switching status of the circuit breaker (via the auxiliary circuit).

Typical applications

Process control, measuring and control systems, telecommunications.

Front plate
Dimensions

(1 TE = $5.08 \mathrm{~mm}, 1 \mathrm{HE}=44.45 \mathrm{~mm}$)	
Width: one single pole circuit breaker	4 TE
one double pole circuit breaker	6 TE
one three pole circuit breaker	9 TE
two single pole circuit breakers	4 TE
two double pole circuit breakers	10 TE
two three pole circuit breakers	12 TE
Height:	3 HE
Material:	aluminium, anodized

LED
Voltage rating DC 24 V / DC 60 V

Ordering information

Type No.
E2210

only with 2×1 pole/2x2 pole/ $2 x 3$ pole
*) Clearly add the desired specifications
${ }^{* *}$) With mounting styles 6, 7 and 8: both circuit breakers must have the same characteristics
$\left.{ }^{* *}\right)$ It is possible to fit circuit breakers of mixed current ratings on the Euro Card.

One single pole circuit breaker

Two single pole circuit breakers

One double pole circuit breaker

Two double pole circuit breakers

One three pole circuit breaker

Two three pole circuit breakers

Internal connection diagram G IA/G IIA G IB/G IIB G IC/G IIC for units 1 (G I) and 2 (G II)

듬

Sockets for Euro Cards

Description

The following sockets may be used with single pole circuit breakers:

0Z041Z000004

24/7 pole mixed socket to DIN 41612 - form M. Connection: 7 pole for $6.3 \times 0.8 \mathrm{~mm}$ connectors and 24 pole midi-wire wrap posts $(1 \times 1 \mathrm{~mm})$.

0Z041Z000007

24/7 pole mixed socket to DIN 41612 - form M. Connection: 7 pole for $6.3 \times 0.8 \mathrm{~mm}$ connectors and 24 pole for $2.8 \times 0.8 \mathrm{~mm}$ connectors.

OZ041Z000005

A 15 pole socket to DIN 41612 , form H, for $6.3 \times 0.8 \mathrm{~mm}$ connectors is required in addition to the socket mentioned above, if two double pole or two three pole circuit breakers are fitted on one Euro Card.

Dimensions of sockets for Euro Cards

OZ041Z000004

OZ041Z000007

OZ041Z000005

blade terminals A6.3x0. 8 DIN46244

Description

19" rack fitted with E-T-A sockets 63-P10-Si to accommodate thermalmagnetic circuit breakers with each terminal block accepting up to 6 circuit breakers. Three rack sizes are available.

Typical applications

Circuit breakers that may be accommodated on 19" racks fitted with E-T-A sockets 63-P10-Si:

type 2210	see pages 105-108
type 3600	see pages 161-164

type 3900 see pages 161-164

Ordering information

X20109701	for 10 E-T-A terminal blocks 63-P10-Si
X21153001	for $5 \mathrm{E}-\mathrm{T}-\mathrm{A}$ terminal blocks 63-P10-Si
X20109601	for $9 \mathrm{E}-\mathrm{T}-\mathrm{A}$ terminal blocks 63-P10-Si plus 1 fuse holder

Connection

by means of one or two 4 pole female multi-pin connectors for max $4 \mathrm{~mm}^{2}$ cables, which may be connected either on the right or left side of the rack.

Dimensions

X 20109701

19 " rack with 10 E-T-A sockets 63-P10-Si

X 20109601

19" rack with 9 E-T-A sockets 63-P10-Si plus one fuse holder

X 21153001
19 " rack with 5 E-T-A sockets $63-\mathrm{P} 10-\mathrm{Si}$

Accessories

Connector bus links -P10

X 210588 01/1.5mm², brown X 210588 02/2.5mm², black X 210588 03/2.5mm², red X 210588 04/2.5mm², blue

100 quick-connect tabs 6.3
DIN 46247 tinned brass,
insulated

Description

The compact 19 " rack features aluminium profiled cross members with an anodized front plate. The panel cutout accommodates up to 30 positions numbered 1 through 30. Blanks cover unused positions, with $6,12,24$ or 30 being "open".
The rack can be fitted with plug-in type circuit breakers 3600/3900, 2210 or E-T-A Solid State Remote Power Controller (SSRPC) E-1048600. Please specify the correct option according to the ordering information shown, as different depths must be allowed for.
Four bus bars (X1...X4) with 10 positions each (6.3 mm blade terminals) provide easy terminal connection.

Prewired options available ex factory are:

- Parallel connected feed ($2.5 \mathrm{~mm}^{2}$) with separate supply for each socket via bus bars X1 and X2.
Choice of wiring colours: black, red, blue, grey. Outputs are not connected.
- Parallel connected auxiliary contacts (N/C) grouped per socket, $0.75 \mathrm{~mm}^{2}$, via bus bars X3 (supply) and X4 (signalisation).
Choice of wiring colours: black, red, blue, grey.
- Series connected auxiliary contacts (N/O) of all positions with $0.75 \mathrm{~mm}^{2}$, via bus bars X3 (feed) and X4 (signalisation). Choice of wiring colours: black, red, blue, grey.
- Custom designed connection according to specification.

Other fittings, e.g. back-up fuse, separate circuits, custom designed markings etc., are available to special order.

Ordering information

Example: Version for 18 positions

Accessories

Feed termina
X 22150301

Blanks (can be separated) Y 30648501

Plug-in jumper
X 22154401

to bypass the auxiliary contacts of sockets not used

Terminals

Feed with auxiliary contacts connected in parallel (2210, 3600/3900)

Feed with auxiliary contacts connected in series (2210, 3600/3900)

Feed with fault outputs connected in parallel (E-1048-600)

$\begin{aligned} & \text { X1- feed } \\ & \text { load } \end{aligned}$	$\begin{aligned} & \text { X2 - feed } \\ & \text { control } \end{aligned}$	X3 - error output supply	$\begin{aligned} & \text { X4- fault indica } \\ & \text { output } \end{aligned}$
Ithtitit		Iumithtit	IHMthtit

Internal connection diagrams

Description

Single pole thermal-magnetic circuit breaker with trip-free, snap action mechanism and toggle actuation. Two-chamber construction with cascade contact arrangement to provide high voltage DC capability and high switching performance. Designed for plug-in mounting in distribution rails X 2210-S0606J, X 2210-K... or terminal blocks 23-P10-Si-202005 and 63-P10-Si-202005.

Typical applications

Communications systems, power supplies, process control equipment.

Accessories

23-P10-Si-202005	Lug mounted socket which accommodates one single pole two-chamber type 2210 circuit breakers. With push-on terminals.
63-P10-Si-202005	Lug mounted socket which accommodates 3 single pole two-chamber type 2210 circuit breakers. With push-on terminals.
X 2210-S0606J	Terminal rail
X 2210-KA303 E	3-way terminal blocks
X 2210-K0404 E	4-way terminal blocks
X 2210-K0505 E	5-way terminal blocks
X 2210-K0606 E	6-way terminal blocks
X 2210-K0707 E	7-way terminal blocks
X 2210-K0808 E	8-way terminal blocks
X 2210-K0909 E	9-way terminal blocks
X 211018 01	Tool to aid withdrawal of circuit breakers from terminal blocks.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)
1	1.10
2	0.25
3	0.13
4	0.07
6	0.04
8	0.02
10	0.02
16	<0.02
25^{*}	<0.02
${ }^{*} 80 \% I_{\mathrm{N}}$ continuous load	

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 250 V, DC 65 V	$1 \ldots .25$ A
Demko/Semko	AC 250 V, DC 65 V	$1 \ldots 16$ A
CSA/UL	AC 250 V, DC 65 V	$1 \ldots .25 \mathrm{~A}$

2210-S291-P9M2-410033-... A

Technical data

Voltage rating	AC 250V; DC 65V
Current rating range	1... 25 A
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{AC} 240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$ resistive load
Typical life	$>10,000$ operations at $1 \times I_{N}$ $>20,000$ operations mechanical
Ambient temperature	$-30^{\circ} \mathrm{C} . . .60{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area main to aux. circuit	Test voltage AC 3000 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity Im	AC $250 \mathrm{~V} 1000 \mathrm{~A} \cos \varphi=0.8$ $\mathrm{DC} 65 \mathrm{~V} 2000 \mathrm{~A} / \mathrm{R}=4 \mathrm{~ms}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 30 terminal area IP 00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$; to IEC 68-2-6, Test Fc 10 frequency cycles/axis
Shock	25 g (11ms) directions $1,2,3,4,5$ 20 g (11 ms) direction 6 to IEC 68-2-27, Test Ea
Corrosion	96 hours in 5% salt mist to IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, Test Ca
Mass	approx. 80 g

Internal connection diagrams

Shock directions

Installation drawing

Description

Single pole thermal-magnetic circuit breaker with trip-free, snap action mechanism and toggle actuation. Two-chamber construction with cascade contact arrangement to provide high voltage DC capability and high switching performance. Designed for plug-in mounting in distribution rails X2210-S0606J, X2210-K... or terminal blocks 23-P10-Si-202005 and 63-P10-Si-202005.

Typical applications

Communications systems, power supplies, process control equipment.

Accessories

23-P10-Si-202005	Lug mounted socket which accommodates one single pole two-chamber type 2210 circuit breakers. With push-on terminals.
63-P10-Si-202005	Lug mounted socket which accommodates 3 single pole two-chamber type 2210 circuit breakers. With push-on terminals.
X 2210-S0606J	Terminal rail
X 2210-KA303 E	3-way terminal blocks
X 2210-K0404 E	4-way terminal blocks
X 2210-K0505 E	5-way terminal blocks
X 2210-K0606 E	6-way terminal blocks
X 2210-K0707 E	7-way terminal blocks
X 2210-K0808 E	8-way terminal blocks
X 2210-K0909 E	9-way terminal blocks
X 211018 01	Tool to aid withdrawal of circuit breakers from terminal blocks.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.4	6.87	6	0.09
0.65	2.96	8	0.03
1	1.84	10	0.03
1.6	0.75	12	0.02
2	0.50	16	<0.02
2.5	0.35	20^{*}	<0.02
3	0.25	25^{*}	<0.02
4	0.15	$* 80 \% I_{N}$ continuous load	

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 250 V, DC 65 V	$0.4 \ldots 25 \mathrm{~A}$
Demko/Semko	AC 250 V, DC 65 V	$0.4 \ldots . .16 \mathrm{~A}$
CSA/UL	AC 250 V, DC 65 V	$0.4 \ldots 25 \mathrm{~A}$

2210-S291-P9M2-410005-... A

Technical data

Voltage rating	AC 250V; DC 65V
Current rating range	0.4... 25 A
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{AC} 240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$
Typical life	$>10,000$ operations at $1 \times I_{N}$ $>20,000$ operations mechanical
Ambient temperature	$-30^{\circ} \mathrm{C} . . .+60^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area main to aux. circuit	Test voltage AC 3000 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity $\mathrm{I}_{\text {cn }}$	AC 250 V $\cos \varphi=0.8$ $0.4 \ldots .1 \mathrm{~A}$ self-limiting $1.6 \ldots .25 \mathrm{~A}$ 2000 A DC 65 V L/R $=4 \mathrm{~ms}$ $0.4 \ldots 4 \mathrm{~A}$ self-limiting $6 \ldots . .25 \mathrm{~A}$ 3500 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 30 terminal area IP 00
Vibration	$\begin{aligned} & 5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \text {; } \\ & \text { to IEC } 68-2-6 \text {, Test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	25 g (11ms) directions 1, 2, 3, 4, 5 20 g (11 ms) direction 6 to IEC 68-2-27, Test Ea
Corrosion	96 hours in 5% salt mist to IEC 68-2-11, Test Ka
Humidity	240 hours at 95% RH to IEC 68-2-3, Test Ca
Mass	approx. 80 g

Dimensions

Installation drawing

Internal connection diagrams

Shock directions

Selective back-up fuses

Voltage rating	Prospective shortcircuit	Selective to	
		NH fuse rating	$\begin{aligned} & \hline \text { Current rating of } \\ & \text { 2210-S291-P2M2-410005 } \end{aligned}$
DC 60 V	3500 A	35 A	$\leq 6 \mathrm{~A}$
		50 A	$\leq 12 \mathrm{~A}$
		63 A	$\leq 20 \mathrm{~A}$
		80 A	$\leq 25 \mathrm{~A}$
		100 A	$\leq 25 \mathrm{~A}$
AC 250 V	2000 A	35 A	$\leq 3 \mathrm{~A}$
		50 A	$\leq 8 \mathrm{~A}$
		63 A	$\leq 20 \mathrm{~A}$
		80 A	$\leq 25 \mathrm{~A}$
		100 A	≤ 25 A
NH fuse according to VDE 0636, part 21 (IEC 269)			
NH fuse = low voltage power fuse			

屋局民•A゚ Thermal－Magnetic Circuit Breaker 2210－S291－P9M2－410．．．－．．．A

Accessories

Mounting sockets

23-P10-Si-202005

63-P10-Si-202005

Distribution rail X2210-S06... see pages 123-124
Distribution rail X2210-K... see pages 125-129

Description

E－T－A rails distribute electrical power in telecommunications，automation， data and control systems．They have been designed to industry standard requirements and are suitable for mounting in ETSI control cabinets．These distribution rails are supplied with mounting bracket， cover， 6 blanks and withdrawal tool．
Live parts in terminal areas are protected against brush contact（VDE 106，part 100）．

Typical applications

Telecommunications systems using ETSI racks；process control， measuring and control systems．

Ordering information

Type N	
X2210 Module for circuit breaker type 2210	
	Version
	S distribution rail
	Identification number
	066 positions
	Terminal block（fitted）
	00 without
	011 x
	022 x
	033 x
	044 x
	055 x
	066 x
	Accessories（fitted）
	G without
	H with mounting bracket
	J with mounting bracket，cover and 6 blanks
	K with mounting bracket，cover and 5 blanks
	L with mounting bracket，cover and 4 blanks
	M with mounting bracket，cover and 3 blanks
	N with mounting bracket，cover and 2 blanks
	P with mounting bracket，cover and 1 blank
	Q with mounting bracket and cover，without blanks
	R without mounting bracket，with cover and 6 blanks
X2210	S 0606 J ordering example

X2210－S06．．．with circuit breaker 2210－S291．．．

Technical data

Circuit breakers to be fitted	$\begin{aligned} & \text { 2210-S291-P9M2-410005 } \\ & \text { 2210-S291-P9M2-410033 } \end{aligned}$
Voltage rating	AC 250 V ，DC 65 V
Load	max． 25 A per position max． 80 A for complete unit
Signalisation（N／C contact）	AC $240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$ max． 1 A per position
Insulation co－ordination （IEC 664 and 664A）	Rated impulse Pollution withstand voltage degree 2.5 kV 2
Flame resistance （IEC 695，part 2－2）	self－extinguishing
Terminal design input output	clamp－type terminal 2.5 to $25 \mathrm{~mm}^{2}$ clamp－type terminal 0.5 to $2.5 \mathrm{~mm}^{2}$
Typical volume resistances in main circuit	
input terminal $\mathrm{B}+(\mathrm{N})$ to output terminal $+(\mathrm{N})$	$<1.5 \times 10^{-3} \Omega$
input terminal B－（U） to female contact $2(\mathrm{k})$	$<1.5 \times 10^{-3} \Omega$
input terminal B－Sig to female contact 12	$<2 \times 10^{-3} \Omega$
output terminal－（U） to female contact 1	$<1.5 \times 10^{-3} \Omega$
output terminal－\perp to female contact 11	$<2 \times 10^{-3} \Omega$
Mass X2210－S0606J	660 g

Dimensions

Installation example

Description

E-T-A rails distribute electrical power in telecommunications, automation, data and control systems. A compact version is available for 3 to 9 loads. Mounting brackets and cover are not included.
Live parts in terminals areas are protected against brush contact (VDE 106 part 100).

Typical applications

Telecommunications systems (surveillance systems); process control.

Ordering information

Type No. X2210 Module for circuit breaker type 2210-...	
	Version
	K compact distribution rail
	Identification number
	A3 for 3 circuit breakers
	04 for 4 circuit breakers
	05 for 5 circuit breakers
	06 for 6 circuit breakers
	07 for 7 circuit breakers
	08 for 8 circuit breakers
	09 for 9 circuit breakers
	Terminal block (intermediate element) (fitted)
	011 x
	022 x
	033 x
	044 x
	055 x
	066 x
	$077 x$
	088 x
	099 x
	E short version
X2210	K 0404 E ordering example for 4 positions

X2210-K...

Technical data	
Circuit breakers to be fitted	$\begin{aligned} & \text { 2210-S291-P9M2-410005 } \\ & \text { 2210-S291-P9M2-410033 } \end{aligned}$
Voltage rating	AC 250 V , DC 65 V
Load	max. 25 A per position max. 80 A for complete unit
Signalisation (N/C contact)	AC 240 V/DC 65 V max. 1 A per position
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2
Flame resistance (IEC 695, part 2-2)	self-extinguishing
```Terminal design input (terminal A/B): output (terminal block + or N, \perp or U)```	clamp-type terminal 2.5 to $25 \mathrm{~mm}^{2}$ single and stranded conductor   clamp-type terminal 0.5 to $2.5 \mathrm{~mm}^{2}$ single and stranded conductor
Typical volume resistances   input terminal $A / B+(N)$   to output terminal $+(\mathrm{N})$   input terminal $A / B$ - (U)   to female contact 2 (k)   input terminal A/B - Sig to female contact 12   output terminal - (U)   to female contact 1   output terminal to female contact 11	$\begin{aligned} & \text { main circuit } \\ & <1,5 \times 10^{-3} \Omega \\ & <1,5 \times 10^{-3} \Omega \\ & <2 \times 10^{-3} \Omega \\ & <1,5 \times 10^{-3} \Omega \\ & <2 \times 10^{-3} \Omega \end{aligned}$
Mass X2210-K0404 E	approx. 280 g

## 屋局『A゚ Distribution rail X2210－K．．．



## Description

E-T-A rails distribute electrical power in telecommunications, automation, data and control systems. They have been designed to the BW7R design requirement of the telecommunications industry. Mounting brackets and cover are not included.
Live parts in terminal areas are protected against brush contact (VDE 106 part 100).

## Typical applications

Telecommunications systems of the BW7R design; process control, measuring and control systems

## Ordering information

Type	
X2210	Module for circuit breaker type 2210-...
	Version
	K distribution rail
	Identification number
	01 standard
	02 distribution rail for remote supply
	03 distribution rail, separate rails (2x8 outputs)
	Terminal block (intermediate element) (fitted)
	00 without
	01 1 x
	02 2x
	03 3x
	044 x
	05 5x
	066 x
	07 7x
	088 x
	09 9x
	1010 x
	1111 x
	1212 x
	1313 x
	1414 x
	1515 x
	1616 x
	Accessories (fitted)
	B insulating sleeving 2, cover 1
	C insulating sleeving 2, cover 0
	D insulating sleeving 0, cover 1
	F insulating sleeving 1, cover 2, for remote supply
X2210	K 0104 B ordering example



## 

## Connection



Connection pins and insulating sleeves may be removed when the distribution rail is directly connected by cable.
${ }_{* * *}$ Inserted in cover. Separate ground connection not required.

Internal connection diagram


Installation


The distribution rail is secured to the mounting bracket by means of the captive screws. A moulded cover is provided.

Two aluminium brackets carry the distribution rail and the moulded cover, at the same time leaving room for the cables. Several units can similarly be mounted together.

The supply cable which should be protected to a max. of 100 A is connected via a terminal block to the plus, minus and signal cables. Further distribution rails may be connected with power on by means of the insulated slide pins.

The distribution rail will accommodate up to 16 circuit breakers or similar components.

An intermediate block is fitted for each position to facilitate installation of the load circuits in service. All 16 plug-in blocks can be inserted or removed by the Phillips screw.

Load circuits can be safely installed without interrupting the supply. Finger-safe distribution rail components can also be inserted with power on

Plug-in connections ensure ease of intallation.
The cover and blanks provide front of rail protection.

## Description

E-T-A distribution rails ensure ease of expansion and retrofit without the need to disconnect the system. Safe operation with power on is ensured by the fully insulated plug-in design, enabling industry demands for trouble-free operation to be satisfied. Major benefits of this wellproven system include high reliability and user convenience.

E-T-A distribution rails meet the needs of many power supply systems including the 7R design of the German telecommunications market.

Even where space is at a premium E-T-A circuit breakers type 2210-S291-P9M2-410005-.., for both AC and DC use, will protect all downstream electrical equipment from overcurrent and short-circuits as well as providing protection against electrical shock hazards.

The Bw7R type 2 configuration can be equipped with one standard unit and one modified version for remote supply devices. Additional versions of the standard type are suitable both for telecommunications and process control and automation.

## Features

- Fully insulated design

Absolutely safe in operation even when retrofitted, as live parts cannot be touched.

- Ease of mounting

Fastening of the assembly is by means of two bolts only.

- Ease of electrical installation

The connection of only plus, minus and signal cable is required to operate the distribution rail for 16 outs. No further wiring is necessary.

## - Cost-effective expansion

Distribution rails can readily be installed in multiples. Safe electrical connection of several rails, even during systems operation, is by use of coupling pins.

- No costly system downtime

Live components need not be disconnected when the system is expanded.

- Safe connection of the supply line

Plug-in intermediate elements provide safe connection of the supply line independent of its position, thereby minimising installation difficulties.

## - Ease of access

Distribution rails can be mounted from the front. The load lines which are preconnected to the adapter plug can be easily inserted in the cable space obviating the need for costly threading.

## - Compact design

Optimum utilisation of the space available as circuit breakers, distribution rail and accessories have been designed in close cooperation with users and system designers.

## - Electrical safety

The system is suitable for voltages up to AC 275 V or DC 75 V (max.
100 A back-up fuse; $25 \mathrm{~mm}^{2}$ connecting cable).
Insulation co-ordination in conformance with IECF 664 and 664A.

## Application

- Telecommunications

Terminal rails of the Bw7R type 2 design can be connected to power supplies providing AC 230 V (max. 275 V ) or DC 60 V (max. 75 V ).

A back-up fuse with a max. rating of 100 A should be connected Power distribution is by means of 16 outputs which are protected by E-T-A circuit breakers.

Expansion is possible as required.
Power supply units of telecommunication equipment are typically connected downstream.

- X2210-K0116 B is designed to power system units
- X2210-K0212 F is designed for remote feeds

Both terminal rails can be mounted in Bw7R racks, one unit requiring a space of 500 mm

- Process control, automation and telecommunications

Initially designed for Bw7R (vertical mounting), the terminal rails are also suitable for 19 " control cabinets and other designs.

## Distribution rails

- Distribution rail X2210-K0316 E

Positions 8 and 9 of this type are physically isolated so that two independent distribution rails with 8 outputs each are available in one housing.
The signal contact rail is not isolated.
Feed-in from both sides.
Two separate power supplies which can carry different potentials (e.g. DC 65 V ; AC 230 V ) are accommodated on 500 mm spacings.

- Terminal strip X2210-K0404 E to X2210-K0404 E

A compact version of the distribution rail is available for applications requiring small distribution rails with up to 9 outputs only but providing the same benefits as the standard version.
Feed from one side allows the supply of 4 to 9 outputs. The compact distribution rail can be used where space is at a premium because its length may be varied.

## - Group signalisation

The circuit breakers suitable for the distribution rails comprise an auxiliary contact closing when the main contact opens.
All auxiliary contacts are placed above the distribution rail, parallel between ground and the group signalisation rail.

## - Single signalisation

Single signalisation can be provided by means of a modified intermediate element. The ground connection generally required in telecommunication systems is obviated.
"Signal potential" is applied to the terminal of the intermediate element as soon as the circuit breaker trips. The system manufacturer should however provide separate signal lines (max. 16) which should be connected to the ground terminal of the intermediate element.

## Description

One, two and three pole thermal-magnetic circuit breakers with tripfree, snap action mechanism and toggle actuation (S-type TM CBE to EN 60934/IEC 934). Featuring a combi-foot design for both symmetric and asymmetric rail mounting. Available with auxiliary contact ( $1 \times \mathrm{N} /$ O or $1 \times \mathrm{N} / \mathrm{C}$ ) for status signalling. Two and three pole models are internally linked to ensure that both/all poles trip in the event of an overload on one pole, even if the actuator is held in the ON position. This CBE can be supplied in current ratings to 32 A with a choice of characteristic curves. All screw terminals are recessed for safety. Approved to CBE standard EN 60934 (IEC 934).

## Typical applications

Process control equipment, robotics, machine tool control, communications systems, instrumentation.

## Ordering information

## Type No.

2210 single and multi pole thermal-magnetic circuit breaker

## | Mounting

\section*{| T rail mounting |
| :--- | <br> Actuator design} 2 toggle

Number of poles
1 single pole protected
22 pole protected 33 pole protected 44 pole protected 52 pole, protected on one pole only Accessories 0 without accessories

Terminal design (main contacts)
K0 screw terminals
Characteristic curve
F1 fast acting: therm. 1.01-1.4xI
magn. $2-4$ I $_{N}$ DC (DC only)
M1 standard delay: therm. 1.01-1.4x $\mathrm{I}_{\mathrm{N}}$;
magn. $6-12 \mathrm{xI}_{\mathrm{N}} \mathrm{AC}, 7.8-15.6 \mathrm{xl}_{\mathrm{N}} \mathrm{DC}$ T1 delayed: therm. 1.01-1.4 $\mathrm{I}_{\mathrm{N}} ;$ magn. $10-20 \mathrm{xI}_{\mathrm{N}} \mathrm{AC}$ T2 thermal only, 1.01-1.4x1
M3 standard delay, low resistance: therm. 1.4-1.8x1 ; magn. $6-12 \mathrm{xI}_{\mathrm{N}} \mathrm{AC}, 7.8-15.6 \times \mathrm{I}_{\mathrm{N}} \mathrm{DC}$ Auxiliary contact design
H without intermediate position
Auxiliary contacts
0 without auxiliary contacts
1 with auxiliary contacts
2 auxiliary contacts on pole 1 only
(multi pole devices)
3 auxiliary contacts on pole 1 and 3
( $\geq 3$ pole devices)
Auxiliary contact function
2 N/O contact
3 N/C contact
Auxiliary contact - terminal design
1 screw terminals
Current ratings
0.1... 32 A

2210 - T $2110-\mathrm{KO}$ M1- -| H | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- |
| -10 | A | ordering example |  |



2210-T2.
single pole
3 pole

## Technical data

Voltage rating	AC $250 \mathrm{~V} ; 3$ AC 433 V ( $50 / 60 \mathrm{~Hz}$ ); DC 65 V AC 277/480 V UL/CSA
Current rating range	$0.1 \ldots 32 \mathrm{~A}$   (32 A resistive load only)
Auxiliary circuit	1 A, AC 240 V / DC 65 V
Typical life	10,000 operations at $1 \mathrm{xI}_{\mathrm{N}}$
Ambient temperature	$-30 . . .+60^{\circ} \mathrm{C}$ (T 60)
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area main/aux. circuit pole/pole	Test voltage AC 3000 V AC 3000 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	$\begin{aligned} & 0.1 \ldots 5 \text { A } 400 \mathrm{~A} ; 6 \ldots 32 \mathrm{~A} 800 \mathrm{~A} ; \\ & \text { Curve T2 : } 0.1 \ldots 32 \text { A } 15 \mathrm{xI}_{\mathrm{N}} \\ & \text { Curve M3: } 0.1 \ldots 2 \text { A } 200 \text { A AC } \end{aligned}$
Interrupting capacity	
(UL 1077) $\mathrm{I}_{\mathrm{N}}$	0.1..16 A 20... 32 A
$1+2$ pole	AC $277 \mathrm{~V} / 5000 \mathrm{~A} \quad \mathrm{AC} 277 \mathrm{~V} / 2000 \mathrm{~A}$
3 pole	$3 \mathrm{AC} 480 \mathrm{~V} / 5000 \mathrm{~A} \quad 3 \mathrm{AC} 480 \mathrm{~V} / 2000 \mathrm{~A}$
$1+2$ pole	DC $65 \mathrm{~V} / 2000 \mathrm{~A} \quad$ DC $65 \mathrm{~V} / 2000 \mathrm{~A}$


Degree of protection	operating area IP 30
(IEC 529/DIN 40050)	terminal area IP 20

Vibration
Curve F1:
$3 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.23 \mathrm{~mm}(10-57 \mathrm{~Hz})$
Curves M1, M3, T1, T2:
$5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$
to IEC 68-2-6, Test Fc
10 frequency cycles/axis
Shock Curve F1: $25 \mathrm{~g}(11 \mathrm{~ms})$, directions 1,2,3,4,5
$10 \mathrm{~g}(11 \mathrm{~ms})$, direction 6
Curves M1, M3, T1, T2
25 g (11 ms), directions 1,2,3,4,5
20 g ( 11 ms ), direction 6
to IEC 68-2-27, Test Ea

Corrosion	96 hours at $5 \%$ salt mist   to IEC 68-2-11, Test Ka
Humidity	240 hours at $95 \% \mathrm{RH}$         to IEC 68-2-3, Test Ca
Mass	approx. 60 g per pole

## 

Standard current ratings and typical internal resistance values

Current   rating   (A)	Internal resistance ( $\Omega$ )   F1   fast acting   for DC	M1   standard delay   for AC + DC	T1   delayed   for AC	M3 low resistance   standard delay   for AC + DC	Thermal   for AC + DC
0.1	162	92	81	42	77
0.2	39.3	26.1	24.2	11.7	23
0.3	17.5	11.6	10.4	5.6	10.2
0.4	9.2	6.6	6.0	2.9	5.7
0.5	6.8	4.1	3.9	1.75	3.7
0.6	4.2	3	2.7	1.42	2.6
0.8	2.8	1.65	1.53	0.75	1.39
1	1.6	1.10	0.98	0.5	0.9
1.5	0.78	0.47	0.42	0.22	0.36
2	0.42	0.28	0.24	0.136	0.19
2.5	0.26	0.183	0.17	0.083	0.141
3	0.18	0.124	0.12	0.057	0.091
4	0.12	0.077	0.073	0.041	0.051
5	0.092	0.063	0.055	0.032	0.040
6	0.054	0.045	0.039	0.021	0.027
8	0.025	$\leq 0.02$	$\leq 0.02$	$\leq 0.02$	$\leq 0.02$
10	0.022	$\leq 0.02$	$\leq 0.02$	$\leq 0.02$	$\leq 0.02$
12	$\leq 0.02$				
16	$\leq 0.02$				
20	-	$\leq 0.02$	$\leq 0.02$	-	$\leq 0.02$
25	-	$\leq 0.02$	$\leq 0.02$	-	$\leq 0.02$
32	-	$\leq 0.02$	$\leq 0.02$	-	$\leq 0.02$

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	3 AC 433 V, AC 250 V, DC 65 V	$0.1 . .32 \mathrm{~A}$
LRoS, BV	3 AC $433 \mathrm{~V}, \mathrm{AC} 250 \mathrm{~V}, \mathrm{DC} 65 \mathrm{~V}$	$0.1 \ldots 32 \mathrm{~A}$
UL, CSA	3 AC $480 \mathrm{~V}, \mathrm{AC} 277 \mathrm{~V}, \mathrm{DC} 65 \mathrm{~V}$	$0.1 \ldots 32 \mathrm{~A}$

Internal connection diagrams


Dimensions


Installation drawing


## 

## Typical time/current characteristics

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

| Ambient temperature ${ }^{\circ} \mathrm{C}$ | -30 | -20 | -10 | 0 | +10 | +23 | +30 | +40 | +50 | +60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Multiplication factor | 0.76 | 0.79 | 0.83 | 0.88 | 0.93 | 1 | 1.04 | 1.11 | 1.19 | 1.29 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Multi pole devices: all poles symmetrically loaded
N.B.

* Magnetic tripping currents are increased by $30 \%$ on DC supplies.

-T1 0,1... 6 A


-M1 0,1... 6 A

-T1 8... 32 A

-T2 0,1... 6 A AC/DC

-M1 8... 32 A

-M3 0,1... 5 A
$A C^{*}$

-T2 8... 32 A



## 

## Accessories

Connector bus links -K10 X 210589 01/2.5mm² black
X 210589 02/1.5mm² brown


Bus bar for 2 pole units
X 22149701


Bus bar for 1 pole units
X 22149801


Supply terminal for bus bar
X 22149601


## Shock directions



## Description

Miniaturised single pole thermal-magnetic circuit breakers with tripfree, snap action mechanism and toggle actuation (S-type TM CBE to EN 60934). Two designs provide the option of either printed circuit board or threadneck panel mounting. A separate shunt tap terminal and auxiliary contacts are available. Fast acting, medium or long delay characteristics can be specified for both models.
Complies with CBE standard EN 60934 (IEC 935).

## Typical applications

Control equipment, communications systems, instrumentation.

## Ordering information



Standard current ratings and typical internal resistance values

Current   ratings (A)	Internal   resistance $(\Omega)$	Current   rating $(\mathrm{A})$	Internal   resistance $(\Omega)$
0.05	440	1.5	0.54
0.1	108	2	0.33
0.2	29.9	2.5	0.20
0.3	14.2	3	0.14
0.4	7.9	4	0.084
0.5	5.0	5	0.057
0.6	3.5	6	0.043
0.8	1.8	8	$\leq 0.02$
1	1.19	10	$\leq 0.02$



2215-L1.


2215-G1..

## Technical data



## 

Dimensions 2215-L1...


Dimensions 2215-G1...


Approvals

Authority	Voltage ratings	Current ratings
VDE	AC 250 V, DC 28 V	$0.05 \ldots 10 \mathrm{~A}$
UL	AC 250 V, DC 50 V	$0.05 \ldots . .10 \mathrm{~A}$
CSA	AC 250 V, DC 48 V	$0.05 \ldots 10 \mathrm{~A}$
Semko	AC 250 V, DC 28 V	$0.1 \ldots 10 \mathrm{~A}$

Installation drawing


Internal connection diagram


## Shock directions



## 

## Typical time/current characteristics

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

N.B.
*Magnetic tripping currents are increased by $30 \%$ on DC supplies.

-F1 0.05... 6 A
DC

-F1 8... 10 A

-T1 0.05... 6 A

-M1 0.05... 6 A AC*
-M1 8... 10 A


-     -         -             - $+60^{\circ} \mathrm{C}$
$\square+23^{\circ} \mathrm{C}$
-     -         - $-30^{\circ} \mathrm{C}$



## Description

Thermal-magnetic circuit breaker mounted on Euro Card for 19" rack mounting, with one Euro Card accommodating up to three circuit breakers. Convenient toggle actuation enables series 2210 additionally to be used as an ON/OFF switch. A red LED is located in the front frame of the Euro Card, indicating the switching status of the circuit breaker (via the auxiliary circuit).

## Typical applications

Process control, measuring and control systems, telecommunications.

## Ordering information for circuit breakers only



Select the circuit breakers to above ordering information. For further information please refer to pages 135-137.

It is possible to fit circuit breakers of mixed current ratings on the Euro Card.

Please add "Circuit breakers to be mounted on Euro Card" to the circuit breaker designation when ordering so that the applicable suffix number for the special version (E2215-L2..) can be determined .

19" racks may also be fitted with one or two circuit breakers by the customer, using industry standard components such as base plates, front plates with handle, sockets. Connection by means of blade terminals $6.3 \times 0.8 \mathrm{~mm}$.


E2215-...

## Technical data



Auxiliary circuit:

voltage rating	AC $250 \mathrm{~V} / \mathrm{DC} 28 \mathrm{~V}$
current rating	1 A

Other data see type 2215

## Front plate

Dimensions:

width   height	$4 \mathrm{TE}(1 \mathrm{TE}=5.08 \mathrm{~mm})$
Material	$3 \mathrm{HE}(1 \mathrm{HE}=44.45 \mathrm{~mm})$
LED	aluminium, anodized
Max. voltage rating	

## 

## Dimensions



Terminal selection


Connection of the Euro Card to DIN 41612 with socket type H7/F24-F413.173 Connection of the 19 " rack to DIN 41494

Internal connection diagrams
applicable to all circuit breakers, G I to G III


## Description

Miniaturised two pole thermal-magnetic circuit breakers with trip-free, snap action mechanism and toggle actuation (S-type TM CBE to EN 60934). Fitted with panel mounting flange and push-on termination, also suitable for mounting on Euro Cards. Available with auxiliary contacts and a choice of fast, medium or long delay characteristics. Complies with CBE standard EN 60934 (IEC 934).

## Typical applications

Control equipment, communications systems, instrumentation.

## Ordering information



Standard current ratings and typical internal resistance values

Current   ratings $(\mathrm{A})$	Internal resistance   per pole $(\Omega)$	Current   ratings $(\mathrm{A})$	Internal resistance   per pole $(\Omega)$
0.05	440	1.5	0.54
0.1	108	2	0.33
0.2	29.9	2.5	0.20
0.3	14.2	3	0.14
0.4	7.9	4	0.084
0.5	5.0	5	0.057
0.6	3.5	6	0.043
0.8	1.8	8	$\leq 0.02$
1	1.19	10	$\leq 0.02$



## Technical data

Voltage rating	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 48 V (higher DC voltage to special order)
Current rating range	0.05... 10 A
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{AC} 250 \mathrm{~V} / \mathrm{DC} 28 \mathrm{~V}$ resistive load
Typical life	10,000 operations at $1 \times l_{\text {N }}$
Ambient temperature	$-30 . .+60^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area pole/pole main/aux. circuit	Test voltage AC 3000 V AC 1500 V AC 1500 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	600 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 30 terminal area IP 00
Vibration	Curve F1:   $6 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.46 \mathrm{~mm}(10-57 \mathrm{~Hz})$ Curves M1, T1:   $8 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 68-2-6, Test Fc   10 frequency cycles/axis
Shock	Curves F1, M1, T1:   30 g ( 11 ms ), directions 1, 2, 3, 4, 5   Curve F1:   10 g ( 11 ms ), direction 6   Curves M1, T1:   $15 \mathrm{~g}(11 \mathrm{~ms})$ direction 6 to IEC 68-2-27, Test Ea
Corrosion	96 hours at 5 \% salt mist to IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, Test Ca
Mass	approx. 50 g

## 

## Dimensions 2215-F1...


blade terminals
DIN 46244-A6.3-0.8


Installation drawing


Internal connection diagram


## Shock directions



## Typical time/current characteristics

Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+10	+23	+30	+40	+50	+60
(2)										

N.B.
*Magnetic tripping currents are increased by $30 \%$ on DC supplies.

Multiplication factor	0.76	0.79	0.83	0.88	0.93	1	1.04	1.11	1.19	1.29



## Description

Single or two pole rocker switch/thermal-magnetic circuit breaker (Stype TM CBE to EN 60934). The addition of a magnetic tripping module to the type 3120 range described in catalogue section 1 extends the choices available to include single pole with thermal-magnetic protection; double pole switching with thermal-magnetic protection on one pole, thermal protection on the other; double pole switching with thermal-magnetic protection on one pole only. All are offered with rocker switch or push button control - two buttons for ON/OFF or one button press-to-reset only, in designs to suit one of three different panel cut-out sizes. Neon illumination (filament bulb for low voltages) is optional. Approved to CBE standard EN 60934 (IEC 934).

## Typical applications

Motors, machine tools, office equipment, appliances.

## Accessories

Y 30306801 Insulated cover, snap-fitted to the exposed areas of the two incoming terminals (when terminal screws are not specified) to provide brush contact protection.
Y 30367501 Retaining clip for -F3 mounting frame for panel thicknesses under 2 mm .
Y 30367502 As above for panel thicknesses under 4 mm
Y 30388531 Blanking piece in -F3 size mounting frame.
X 21083201 Separate water splash cover for use with -F4 and -F5 size mounting frames.

Standard current ratings and typical internal resistance values

Current   ratings   (A)	Internal resistance   per pole $(\Omega)$   therm-.magn.		therm.	Current   ratings   (A)	Internal resistance   per pole $(\Omega)$   therm-.magn.		therm.
0.1	165	94	2.5	0.20	0.0785		
0.2	42.5	24	3	0.14	0.0595		
0.3	20.2	12	3.5	0.114	0.0565		
0.4	9.7	5.40	4	0.092	0.0435		
0.5	7.17	4.30	5	0.06	0.0325		
0.6	4.9	3	6	0.043	0.0215		
0.8	2.65	1.50	7	0.030	0.0215		
1	1.49	0.9	8	0.029	0.02		
1.2	1.25	0.7	10	0.021	0.02		
1.5	0.74	0.45	14	$<0.02$	$<0.02$		
2	0.49	0.29	16	$<0.02$	$<0.02$		

## Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 240 V, DC 28 V	$0.1 \ldots 16 \mathrm{~A}$
	DC 50 V	$0.1 \ldots 16 \mathrm{~A}$ double pole
	DC 50 V	$0.1 \ldots 10 \mathrm{~A}$ single pole
CSA, UL	AC 250 V	$0.1 \ldots 14 \mathrm{~A}$



3120-...-М...

## Technical data

Voltage rating	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 50 V
Current ratings	0.1..16 A
Typical life	50,000 operations at $1 \mathrm{xI}_{N}$ double pole 30,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$ single pole
Ambient temperature	$-30 . .+60^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area current path/ current path	Test voltage AC 3000 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Interrupting capacity $\mathrm{I}_{\text {cn }}$	$0.1 \ldots 2 \mathrm{~A}$ $100 \times \mathrm{I}_{\mathrm{N}}$   $2.5 \ldots 16 \mathrm{~A}$ 250 A 2 pole    150 A 1 pole
Interrupting capacity (UL 1077)	$I_{N}$ $U_{N}$    $0.1 \ldots 4 \mathrm{~A}$ AC 250 V 200 A   $5 \ldots 10 \mathrm{~A}$ AC 250 V 2000 A   $12 \ldots 14 \mathrm{~A}$ AC 125 V 1000 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40   (with water splash protection IP 54) terminal area IP 00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 68-2-6, test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 30 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 53 g (2 pole) approx. 50 g (1 pole)

## 

## Ordering information

3120 rocker switch/circuit breaker

Mounting
F $\quad$ snap-in frame


Size of frame		panel thickness
3	to fit in cut-out $50.5 \times 21.5 \mathrm{~mm}$	$1-6.35 \mathrm{~mm}$
4	to fit in cut-out $44.5 \times 22 \mathrm{~mm}$	$1-2.5 \mathrm{~mm}$
5	to fit in cut-out $44.5 \times 22 \mathrm{~mm}$	2.6-4 mm
6	to fit in cut-out $45 \times 33.7 \mathrm{~mm}$	$1.2-2.4 \mathrm{~mm}$
Number of poles		
11 pole, thermal-magnetic protection		
22 pole, thermal-magnetic protection on one pole, thermally protected on the other pole		
52 pole, thermal-magnetic protection on one pole, unprotected on the other pole		
	Mounting frame design	
	1 collar height 1 mm	
	3 collar height 9 mm (with safety frame)	
	3 colar heigh 9 mm (wit sarety frame)	

(not with -F6 frame)
Terminal configuration
P7 blade terminals $2 \times 2.8-0.8 \mathrm{~mm}$
(terminals 12(k), 22(k), 11, 21)
H7 12(k), 22(k): blade terminals $2 \times 2.8-0.8$ 11, 21: terminal screws M3.5, blade terminals $2 \times 2.8-0.8$
N7 as P7, but shunt terminals (12(i) and 22(i)) are blade terminals $2 \times 2.8-0.8$
G7 as H7, but shunt terminals (12(i) and 22(i)) are blade terminals $2 \times 2.8-0.8$

## Characteristic curve

M1 standard delay, therm. 1.01-1.4xIN; magn. 4-9xIN AC Switch style
W rocker


Rocker illumination (optional)	
B with illumination AC/DC	
G g	en LED, AC/DC
yellow LED, AC/DC	
$R$ red LED, AC/DC	
Illumination voltage range/ power consumption	
0	$4-7 \mathrm{~V} / 6 \mathrm{~V} / 80 \mathrm{~mA} \mathrm{(B,G,Y,R)}$
1	$10-14 \mathrm{~V} / 12 \mathrm{~V} / 75 \mathrm{~mA}(\mathrm{~B}, \mathrm{G}, \mathrm{Y}, \mathrm{R})$
2	$20-28 \mathrm{~V} / 24 \mathrm{~V} / 35 \mathrm{~mA}(\mathrm{~B}, \mathrm{G}, \mathrm{Y}, \mathrm{R})$
3	$90-140 \mathrm{~V} / 115 \mathrm{~V} /<1 \mathrm{~mA}$ (B)
4	$185-275 \mathrm{~V} / 230 \mathrm{~V} /<1 \mathrm{~mA}$ (B)
5	$42-54 \mathrm{~V} / 48 \mathrm{~V} / 35 \mathrm{~mA}$ (B,Y,R)
	Current ratings
	0.1... 16 A

$0.1 \ldots 16 \mathrm{~A}$

$3120-\begin{array}{lllll}\text { F } & 3 & 2 & 1 & -N 7 M 1\end{array}-$| W | 12 | A | B | 4 |
| :--- | :--- | :--- | :--- | :--- |
| 10 A | ordering example |  |  |  |

[^4]
## Ordering information

## Type

3120 push button switch/circuit breaker
Mounting
F snap-in frame

## Size of frame

2 special frame for fitting splash cover
3 to fit in cut-out $50.5 \times 21.5 \mathrm{~mm}$ panel thickness $1-6.35 \mathrm{~mm}$
Number of poles
$1 \quad 1$ pole, thermal-magnetic protection
22 pole, thermal-magnetic protection on one pole, thermally protected on the other pole
52 pole, thermal-magnetic protection on one pole, unprotected on the other pole
Mounting frame design
F frame with two push buttons
G frame with one push button
Terminal configuration
P7 blade terminals $2 \times 2.8-0.8 \mathrm{~mm}$
(terminals 12(k), 22(k), 11, 21)
H7 12(k), 22(k): blade terminals $2 \times 2.8-0.8$
11, 21: terminal screws M3.5
blade terminals $2 \times 2.8-0.8$
N7 as P7, but shunt terminals (12(i) and 22(i)) are blade terminals $2 \times 2.8-0.8$
G7 as H7, but shunt terminals (12(i) and 22(i)) are blade terminals $2 \times 2.8-0.8$

## Characteristic curve

M1 standard delay, therm. 1.01-1.4xIN
magn. 4-9xIN AC
Switch style/colour

D 1 push button (reset only)	
01X	black
04X	red
12X	white translucent
19X	green translucent
S 2 push buttons ON/OFF	
GRX green translucent/red	
WRX white translucent/red	
WBX white translucent/black	
- $\quad$ Pr\| ${ }^{\text {P }}$ Push button illumination (optional)	
	B filament bulb (AC/DC)
	L neon (AC)
	G green LED, AC/DC
	Y yellow LED, AC/DC
	R red LED, AC/DC
	Illumination voltage range/ power consumption
	$0 \quad 4-7 \mathrm{~V} / 6 \mathrm{~V} / 80 \mathrm{~mA}(\mathrm{~B}, \mathrm{G}, \mathrm{Y}, \mathrm{R})$
	$1 \quad 10-14 \mathrm{~V} / 12 \mathrm{~V} / 75 \mathrm{~mA}(\mathrm{~B}, \mathrm{G}, \mathrm{Y}, \mathrm{R})$
	$2 \quad 20-28 \mathrm{~V} / 24 \mathrm{~V} / 35 \mathrm{~mA}(\mathrm{~B}, \mathrm{G}, \mathrm{Y}, \mathrm{R})$
	$3 \quad 90-140 \mathrm{~V} / 115 \mathrm{~V} /<1 \mathrm{~mA}$ (L)
	$4 \quad 185-275 \mathrm{~V} / 230 \mathrm{~V} /<1 \mathrm{~mA}$ (L)
	$5{ }^{5} 42-54 \mathrm{~V} / 48 \mathrm{~V} / 35 \mathrm{~mA}(\mathrm{Y}, \mathrm{R})$
	Current ratings
	0.1..16 A

3120-- F 3 2 2 F-N7 M1- S GRX L $4-10$ A ordering example

## 

## Dimensions

Mounting style -F3.1, with rocker
Collar height 1 mm


## Installation drawing

Required safety distances for rocker and push button


## Cut-out dimensions

Cut-out for mounting style -F3 with rocker and push button


## Cut-out for mounting style -F4/-F5



## Mounting frame variants

Mounting style -F3.3, with rocker


Mounting style -F3.4, with rocker
collar height 2 mm , with water splash protection


Mounting style -F3.F-..-S.., with 2 push buttons


Mounting style -F3.G-...-D...,
with 1 push button


For mounting styles -F2.., -F4.., -F5.., -F6.
please see pages 67 and 71

## 

## Internal connection diagrams

therm.-magn. protection on one pole
therm.-magn. protection on one pole unprotected on the other pole

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

2.5... 16 A

AC


Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required
Ambient temperature ${ }^{\circ} \mathrm{C}$
Multiplication factor

-30	-20	-10	0	+23	+40	+50	+60
0.8	0.84	0.88	0.92	1	1.08	1.14	1.23

## Accessories

Insulated cover
Y 30306801



Retaining clip for 3120-F3.. Y 303675 01/02

Retaining clip for 3120-F5... Y 30367601


Y303 67501 suitable
 for panel thickness < 2 mm Y303 67502 suitable
for panel thickness $<4 \mathrm{~mm}$
Blanking piece in -F3... size mounting frame


Separate water splash cover for use with -F4../-F5.. size mounting frames
X 22161901


Separate water splash cover for style -F2 see page 72

## Description

Single pole thermal-magnetic circuit breaker with tease-free, trip-free, press-to-reset, snap action mechanism and additional manual release (M-type TM CBE to EN 60934). Designed for plug-in mounting with E-T-A sockets 10 and 16. Complies with CBE standard EN 60934 (IEC 934).

## Typical applications

Control equipment, extra-low voltage wiring systems and components.

## Accessories

10R-K10 Modular snap-together surface mounted sockets, each accommodating two plug-in circuit breakers. With screw terminals.
10R-P10 As above but with push-on terminals.
10R-A10 As above but with a combination of screw and push-on terminals.
Y 30116602 Two-way brass connecting/bus bar links for type 10 sockets.
Y 30116601 Four-way brass connecting/bus bar links for type 10 sockets.
16 Single socket for symmetric EN rail mounting.
Y 30147701 Blanking plug with insulated pins, for sockets 10, 20, 40, 60.
X $21058901 \quad 50$-way $1.5 \mathrm{~mm}^{2}$ cable links with pre-fitted connection lugs for type 10F-K10/-A10 sockets.
X 21058902 As above but with $2.5 \mathrm{~mm}^{2}$ cable links.
X 21058801 100-way $1.5 \mathrm{~mm}^{2}$ cable links with pre-fitted push-on connectors for type 10F-P10 sockets.
X 21058802 As above but with $2.5 \mathrm{~mm}^{2}$ cable links.

Ordering information

Type No.	
3200 plug-in	
	Current ratings
	0.05...25 A

$3200-5 \mathrm{~A}$ ordering example

Standard current ratings and typical internal resistances

Current   rating (A)	Internal   resistance ( $\Omega)$	Current   rating (A)	Internal   resistance $(\Omega)$
0.05	534	4	0.141
0.1	149	5	0.107
0.2	56	6	0.060
0.3	24.2	7	0.049
0.4	13.6	8	$<0.02$
0.5	8.1	10	$<0.02$
0.6	5.25	12	$<0.02$
0.8	3.55	14	$<0.02$
1	2.02	15	$<0.02$
1.5	0.90	16	$<0.02$
2	0.51	18	$<0.02$
2.5	0.36	20	$<0.02$
3	0.23	25	$<0.02$



## Technical data

Voltage rating	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 28 V
Current ratings	0.05... 25 A
Typical life	4000 operations at $2 \mathrm{xl}_{N}$
Ambient temperature	$-30 . .+60^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V double insulation
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	$0.05 \ldots . .0 .8 \mathrm{~A}$ self-limiting   $1 \ldots .2 \mathrm{~A}$ 200 A   $2.5 \ldots 25 \mathrm{~A}$ 400 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$\begin{aligned} & 5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6 \text {, test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 50 g

## Approvals

Authority	Voltage ratings	Current ratings
VDE	AC 250 V, DC 28 V	$0.05 \ldots . .25 \mathrm{~A}$
CSA	AC 250 V, DC 28 V	$0.05 \ldots 15 \mathrm{~A}$
LRoS	AC 250 V, DC 28 V	$0.3 \ldots 25 \mathrm{~A}$

## 

## Dimensions



Installation drawing


Internal connection diagram


Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

N.B.

Magnetic tripping currents are increased by 20\% on DC supplies.

Typical time/current characteristics

8... 16 A




## Description

Single pole thermal-magnetic circuit breakers with tease-free, trip-free, press-to-reset, snap action mechanism (R-type TM CBE to EN 60934; M-type with manual release -H). Available with fast acting and standard magnetic tripping characteristics - types 3300 and 3400 - both with threadneck panel mounting. Options include auxiliary contacts, a separate shunt tap terminal (-A3), and pull-to-trip manual release (-H). Complies with CBE standard EN 60934 (IEC 934).

## Typical applications

Control systems, instrumentation, medical equipment, machine tools, robotics.

## Accessories

X 21066301 Water splash cover/knurled nut assembly for version with press-to-reset only (-IG2).
X 20080108 Concertina style splash cover/hex nut assembly for version with press-to-reset only (-IG2).

## Ordering information


*) metal threadneck version for -H is not approved.
The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current	Internal resistance $(\Omega$		Current		Internal resistance $(\Omega)$	
ratings $(\mathrm{A})$	3300	3400	ratings $(\mathrm{A})$	3300	3400	
0.05	477	447	3	0.18	0.19	
0.1	131	131	4	0.109	0.090	
0.2	41	40	5	0.066	0.061	
0.3	19.6	19.3	6	0.046	0.041	
0.4	10.4	10.4	7	0.032	0.034	
0.5	7.2	7.1	8	0.020	$\leq 0.02$	
0.6	4.8	4.3	10	$\leq 0.02$	$\leq 0.02$	
0.8	2.5	2.5	12	$\leq 0.02$	$\leq 0.02$	
1	1.93	1.67	13	$\leq 0.02$	$\leq 0.02$	
1.5	0.81	0.61	14	$\leq 0.02$	$\leq 0.02$	
2	0.44	0.38	15	$\leq 0.02$	$\leq 0.02$	
2.5	0.27	0.24	16	$\leq 0.02$	$\leq 0.02$	



## Technical data

Voltage rating	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 65 V
Current ratings	$0.05 \ldots . .16 \mathrm{~A}$
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{AC} 250 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$
Typical life	5000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-30 . .+60^{\circ} \mathrm{C}$
Insulation co-ordination	Rated impulse Pollution
(IEC 664 and 664 A)	withstand voltage degree
operating area	$2.5 \mathrm{kV} \quad 2$


Dielectric strength (IEC 664 and 664A) operating area main circuit/aux. circuit aux. circuit 4-5/6-7	Test voltage   AC 3000 V double insulation   AC 1500 V   AC 840 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Interrupting capacity $\mathrm{I}_{\text {cn }}$	$\begin{array}{ll} \hline 0.05 \ldots 0 . . .8 \mathrm{~A} \text { self-limiting } \\ 1 \ldots .2 \mathrm{~A} & 200 \mathrm{~A} \\ 2.5 \ldots 16 \mathrm{~A} & 400 \mathrm{~A} \end{array}$
Interrupting capacity (UL 1077)	$\mathrm{I}_{\mathrm{N}} \quad \mathrm{U}_{\mathrm{N}}$
	0.05...16 A AC 250 V 1000 A
	0.05...16 A DC 80 V 1000 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 68-2-6, test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	3300: approx. 55 g   3400: approx. 50 g

## 



Installation drawing


Internal connection diagrams


Terminal design


## Approvals

Authority	Voltage ratings	Current ratings
VDE, Demko,	AC $250 \mathrm{~V}, \mathrm{DC} 65 \mathrm{~V}$	$0.05 \ldots . .16 \mathrm{~A}$
LRoS	AC $250 \mathrm{~V}, \mathrm{DC} 65 \mathrm{~V}$	$0.3 \ldots 16 \mathrm{~A}$
CSA, UL	AC 250 V, DC 80 V	$0.05 \ldots . .16 \mathrm{~A}$
Nemko	AC 250 V, DC 65 V	$0.05 \ldots . .15 \mathrm{~A} \mathrm{(3300)}$
	AC 250 V	$0.05 . .16 \mathrm{~A}(3400)$
Semko	AC 250 V	2 A and 2.5 A
Metal threadneck version for -H is not approved		



## Accessories

For push buttons with M12 moulded threadneck (-IG2)
Hex nut with splash cover, black
X 20129601 (IP 64)
X 20080108 (IP 66)with O-ring
Water splash cover, transparent with knurled nut X 21066301 (IP 64)


Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 0.76 & 0.84 & 0.92 & 1 & 1.08 & 1.16 & 1.24 \\
\hline
\end{array}
$$

## Description

Single pole thermal-magnetic circuit breaker with tease-free, trip-free, snap action mechanism and two button operation (M-type TM CBE to EN 60934). Featuring a flange for panel mounting, and optional auxiliary contacts and unprotected shunt tap terminal. Type 4000 offers lower internal resistance values and is fitted as standard with auxiliary contacts and an intermediate reset position in which all contacts are isolated. Complies with CBE standard EN 60934 (IEC 934)

## Typical applications

Control systems, instrumentation, medical equipment, machine tools, robotics, communications systems

## Ordering information



The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current	Internal resistance $(\Omega)$		Current		Internal resistance ( $\Omega$ )	
ratings (A)	3500	4000	ratings (A)	3500	4000	
0.05	447	211	3	0.19	0.054	
0.1	131	48	4	0.090	0.035	
0.2	40	12.4	5	0.061	0.025	
0.3	19.3	5.4	6	0.041	$\leq 0.02$	
0.4	10.4	3.1	7	0.034	$\leq 0.02$	
0.5	7.1	2.0	8	$\leq 0.02$	$\leq 0.02$	
0.6	4.3	1.32	10	$\leq 0.02$	$\leq 0.02$	
0.8	2.5	0.76	12	$\leq 0.02$		
1	1.67	0.49	14	$\leq 0.02$		
1.5	0.61	0.21	15	$\leq 0.02$		
2	0.38	0.101	16	$\leq 0.02$		
2.5	0.24	0.078				



## Technical data

Voltage rating	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 65 V		
Current rating range	$\begin{aligned} & \text { 3500: } 0.05 \ldots 16 \mathrm{~A} \\ & \text { 4000: } 0.05 \ldots 10 \mathrm{~A} \end{aligned}$		
Auxiliary circuit	1 A, AC $250 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$		
Typical life	5,000 operations at $2 \times 1_{N}$		
Ambient temperature	$-30 . . .+60^{\circ} \mathrm{C}$		
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area		
Dielectric strength (IEC 664 and 664A) operating area main/aux. circuit aux. circuit 4-5/6-7	Test voltage AC 3000 V AC 1500 V AC 840 V		
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )		
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	3500	4000	
	$\begin{aligned} & \hline 0.05 \ldots 0.8 \mathrm{~A} \\ & 1 \ldots 2 \mathrm{~A} \\ & 2.5 \ldots .16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.05 \ldots 0.2 \mathrm{~A} \\ & 0.3 \ldots 2 \mathrm{~A} \\ & 2.5 \ldots .10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { self-limiting } \\ & 200 \mathrm{~A} \\ & 400 \mathrm{~A} \end{aligned}$
Interrupting capacity (UL 1077)	$\mathrm{I}_{\mathrm{N}}$	$\mathrm{U}_{\mathrm{N}}$	
type 3500	$\begin{aligned} & \hline 0.05 \ldots 16 \mathrm{~A} \\ & 0.05 \ldots 16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { AC } 250 \mathrm{~V} \\ & \mathrm{DC} 80 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~A} \\ & 1000 \mathrm{~A} \end{aligned}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00		
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 68-2-6, Test Fc 10 frequency cycles/axis		
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, Test Ea } \end{aligned}$		
Corrosion	96 hours at $5 \%$ salt mist to IEC 68-2-11, Test Ka		
Humidity	240 hours at 95 \% RH to IEC 68-2-3, Test Ca		
Mass	approx. 40 g		

## RE『『迢 Thermal－Magnetic Circuit Breakers 3500／4000

## Dimensions

## Version－P10



## Installation drawing



Internal connection diagrams


Switching position with intermediate position and auxiliary contacts（－ZR－Si）

with shunt terminal（－A3）
and auxiliary contacts（－Si）

## Terminal design



## Approvals

Authority	Voltage ratings	Current ratings
3500：		
VDE，Demko	AC $250 \mathrm{~V}, \mathrm{DC} 65 \mathrm{~V}$	0．05．．． 16 A
CSA，UL	AC 250 V ，DC 80 V	0．05．．．16 A
Nemko，Semko	AC $250 \mathrm{~V}, \mathrm{DC} 65 \mathrm{~V}$	0．05．．． 10 A
LRoS	AC 250 V ，DC 65 V	0.3 ．．． 16 A
4000：		
VDE，Demko，Semko	AC $250 \mathrm{~V}, \mathrm{DC} 65 \mathrm{~V}$	0．05．．． 10 A
LRoS	AC $250 \mathrm{~V}, \mathrm{DC} 65 \mathrm{~V}$	0.3 ．．． 10 A
CSA，Nemko	AC 250 V	0．05．．．10 A



## 

## Special version 3500-...-2100

Single pole thermal-magnetic overcurrent circuit breaker with slow magnetic trip curve, suitable for high inrush currents (up to $12 \mathrm{xl}_{N}$ ). Suffix -2100 is also available for types 3400 and 3600. Enquire for further details.

## Typical applications

Industrial control systems, telecommunications, etc.

Standard current ratings and typical internal resistance values

Current   rating $(A)$	Internal   resistance $(\Omega)$	Current   rating $(A)$	Internal   resistance $(\Omega)$
0.06	292	3	0.18
0.1	165	4	0.11
0.2	41.7	5	0.067
0.3	19.7	6	0.052
0.4	12.1	7	0.035
0.5	7.9	8	0.031
0.6	5.5	10	0.022
0.8	2.6	12	$\leq 0.02$
1	1.88	14	$\leq 0.02$
1.5	0.77	15	$\leq 0.02$
2	0.42	16	$\leq 0.02$
2.5	0.24		

## Typical time/current characteristics at $23^{\circ} \mathrm{C}$


N.B.

Magnetic tripping currents are increased by 20\% on DC supplies.

## Special version 3500-...-2350

Single pole thermal-magnetic circuit breaker suitable for high ambient temperatures. The special rating of the circuit breaker allows resetting at no load in ambient temperatures up to $+80^{\circ} \mathrm{C}$. Suffix -2350 is also available for types 3400 and 3600. Enquire for further details.

## Typical applications

Industrial control systems

Standard current ratings and typical internal resistance values

Current   rating (A)	Internal   resistance $(\Omega)$	Current   rating $(\mathrm{A})$	Internal   resistance $(\Omega)$
0.05	583	2.5	0.42
0.1	167	3	0.21
0.2	49.9	4	0.13
0.3	23.1	5	0.11
0.4	12.8	6	0.056
0.5	8.7	10	0.022
0.8	3.45	12	$\leq 0.02$
1	2.3	15	$\leq 0.02$
1.5	0.89	16	$\leq 0.02$
2	0.48		

Typical time/current characteristics

N.B.

Magnetic tripping currents are increased by 20\% on DC supplies.

## Description

Single pole thermal-magnetic circuit breaker with tease-free, trip-free, snap action mechanism and two button operation (M-type TM CBE to EN 60934). Designed for plug-in mounting with E-T-A sockets 17-P10$\mathrm{Si}, 23-\mathrm{P} 10-\mathrm{Si}, 63-\mathrm{P} 10-\mathrm{Si}$; or panel mounting using E-T-A clips. Featuring an unprotected shunt tap terminal and optional auxiliary contacts. Type 3900 offers lower internal resistance values and is fitted as standard with auxiliary contacts and an intermediate reset position in which all contacts are isolated.
Complies with CBE standard EN 60934 (IEC 934).

## Typical applications

Process control systems, instrumentation, communications systems.

## Accessories

23-P10-S
63-P10-Si
17-P10-Si
17-P10-Si-20025

Y 30139802

X 21058801
X 21058802
Y 30050402

Lug mounted socket. With push-on terminals. Lug mounted socket. With push-on terminals. EN rail mounted socket.
Socket supplied with adapter fitted or asymmetric rail mounting (G-profile).
thdrawal tool - spring metal clip to aid withdrawal of the circuit breaker from its mounting socket
100 -way $1.5 \mathrm{~mm}^{2}$ cable links with pre-fitted pushon connectors for type 10F-P10 sockets. As above but with $2.5 \mathrm{~mm}^{2}$ cable links. One pair of clips to facilitate panel mounting of types 3600 and 3900.

## Ordering information



The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance ( $\Omega$ )		Current rating (A)	Internal resistance ( $\Omega$ )	
	3600	3900		3600	3900
0.05	447	211	3	0.19	0.054
0.1	131	48	4	0.090	0.035
0.2	40	12.4	5	0.061	0.025
0.3	19.3	5.7	6	0.041	$\leq 0.02$
0.4	10.4	3.1	7	0.034	$\leq 0.02$
0.5	7.1	2.0	8	$\leq 0.02$	$\leq 0.02$
0.6	4.3	1.32	10	$\leq 0.02$	$\leq 0.02$
0.8	2.5	0.76	12	$\leq 0.02$	
1	1.67	0.49	14	$\leq 0.02$	
1.5	0.61	0.21	15	$\leq 0.02$	
2	0.38	0.101	16	$\leq 0.02$	
2.5	0.24	0.078			



3600
standard type
3900
low-resistance type

## Technical data

Voltage rating	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 65 V		
Current rating range	3600: 0.05...16 A; 3900: 0.05... 10 A		
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{AC} 250 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$		
Typical life	5000 operations at $2 \times 1_{N}$		
Ambient temperature	$-30 . . .+60^{\circ} \mathrm{C}$		
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area		
Dielectric strength (IEC 664 and 664A) operating area main/aux. circuit aux. circuit 4-5/6-7	Test voltage AC 3000 V AC 1500 V AC 840 V		
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )		
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	3600	3900	
	$\begin{aligned} & 0.05 \ldots 0.8 \mathrm{~A} \\ & 1 \ldots 2 \mathrm{~A} \\ & 2.5 \ldots 16 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.05 \ldots 0.2 \mathrm{~A} \\ & 0.3 \ldots 2 \mathrm{~A} \\ & 2.5 \ldots 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { self-limiting } \\ & 200 \mathrm{~A} \\ & 400 \mathrm{~A} \end{aligned}$
Interrupting capacity	$\mathrm{I}_{\mathrm{N}}$	$\mathrm{U}_{\mathrm{N}}$	
(UL 1077)	0.05...16 A	AC 250 V	1000 A
type 3600	0.05...16 A	DC 80 V	1000 A

## 

## Dimensions


-Si3/R


Intermediate position: Holding down reset button and actuating manual release simultaneously.

Installation drawing


Internal connection diagrams


Switching position with auxiliary contacts and reset button (-Si3/R)




Switching position with special auxiliary contact (-Si60)




Switching position with intermediate position and auxiliary contacts (-ZR-Si)

OFF position

intermediate position

ON position


## Accessories

## 19＂Rack

accommodating up to $60 \mathrm{E}-\mathrm{T}-\mathrm{A}$ thermal－magnetic circuit breakers type 3600－P10－Si or 3900－P10－Si．
For technical data see pages 113－114．


19＂Rack 19BGT2 2HE
for 18， 24 or 30 circuits．
For technical data see pages 115－116．


## RED『® Thermal-Magnetic Circuit Breakers 3600/3900

## Accessories

## Sockets

17-P10-Si
(continuous load up to 16 A)
-
slot fitting labels from
Phoenix ZB, RBS, DST
Weidmüller dekafix, BS, P Wieland Type 9003
polarized blade terminals symmetrical rail $50022-35 \times 7.5$

17-P10-Si- 20025 mounted with adapter

polarization recess
Retaining clip Y 30058111
Please enquire for dimension diagram.

## Sockets

17-P70-Si
17-P70-Si- 20025 mounted with adapter


Sockets
23-P10-Si 63-P10-Si


Retaining clip Y 30058103
Please enquire for dimension diagram.

Bus bar for socket 17 (for max. 100 A continuous load) X 21115701 with terminal X 21115702 without terminal


Insulated sleeving for busbar Y 30382401


Connector bus links -P10
X $21058801 / 1,5 \mathrm{~mm}^{2}$, brown
X 21058802 /2,5mm², black
X $21058803 / 2,5 \mathrm{~mm}^{2}$, red
X $21058804 / 2,5 \mathrm{~mm}^{2}$, blue
DIN quick-connect tabs 6.3
DIN 46247 tinned brass,
insulated


Extraction tool
Y 30139802


## Single and multi pole magnetic and hydraulic-magnetic circuit breakers (CBEs)

Voltage ratings max. 3 AC 415 V AC 250 V, DC 80 V Current ratings 0.006... 100 A

The E-T-A range of magnetic CBEs includes the miniature Printo-magnetic series (808 and 809) with extremely fast operating characteristics for printed circuit board applications, and series 8330,8340 and 8350 for higher current duties.

Types 808 and 809 cover ratings from as low as 0.006 A up to 5 A with low internal resistance values. Their unique method of magnetic operation not only provides rapid response times, but is also suited to impulse disconnection for control applications.

Type 8340-G provides the option of either single round hole panel mounting or plug-in mounting utilising an E-T-A series 18 base. On/off control is by means of a push/pull button with visual indication of the off/tripped position. Types 8340-F and 8340-T, with industry standard dimensions and toggle actuation, are panel mounted with two fixing bolts (8340-F) or rail mounted with combi-foot (8340-T).


All models within the 8330,8340 and 8350 range offer a choice of fast acting magnetic operation or hydraulically delayed switching characteristics which may be selected to suit a range of application requirements such as those of the telecommunications and process control industries, where precise and dependable protection of sophisticated systems cannot be compromised. The 8330 is available in single and two pole models, multipole options are also available for types 8340 and 8350 . Single, two and three pole models are available with various internal circuit configurations to provide status signal and relay trip functions.

## 

Type No.	808 / 809-...	8330-...	8340-G2...
Description	PCB mounting   808: fast-acting type   809: delayed type	Toggle/baton or rocker circuit breaker, flange or threadneck mounting, with auxiliary contact option	Push/pull circuit breaker, threadneck panel mounting, with auxiliary contact option
Max. voltage rating	DC 24 V   (please inquire for other voltages)	AC $240 \mathrm{~V}(50 / 60 \mathrm{~Hz}$ ); DC 50 V	$\begin{aligned} & 3 \text { AC } 415 \mathrm{~V} ; \\ & \text { AC } 240 \mathrm{~V}(50 / 60 \mathrm{~Hz}) ; \text { DC } 80 \mathrm{~V} \end{aligned}$
Current ratings	$\begin{aligned} & \text { 808: } 0.01 \ldots . .5 \text { A } \\ & \text { 809: } 0.006 \ldots . .3 \text { A } \end{aligned}$	0.1...25 A	0.02... 30 A
Aux. contact rating	5 A		1 A
Typical life	6,000 operations at 5 A for switching circuit and   2.65 or $4.4 \mathrm{I}_{\mathrm{N}}$ ffor excitation circuit	10,000 operations with $1 \times I_{N}$	10,000 operations with $I_{N} 1$ pole 1,000 operations with $\mathrm{I}_{\mathrm{N}} 2$ and 3pole
Interrupting capacity $\mathbf{I}_{\text {cn }}$	$\begin{aligned} & 100 \text { A } \\ & 1000 \text { A max. (to UL 1077) } \end{aligned}$	AC: 1000 A DC: 500 A	$\begin{aligned} & \text { AC: } 1200 \text { A } \\ & \text { DC: } 2000 \text { A } \end{aligned}$

Approvals

8340-F...	X8340-S02 /-S04	8340-T...	8350-...
Toggle circuit breaker, flange mounting, with auxiliary contact option	Modular distribution rail for circuit breaker type 8340-F...	Toggle circuit breaker, rail mounting, with auxiliary contact option	Toggle circuit breaker, flange mounting, with auxiliary contact option
$\begin{aligned} & 3 \text { AC } 415 \mathrm{~V} \text {; } \\ & \text { AC } 240 \mathrm{~V}(50 / 60 \mathrm{~Hz}) ; \text { DC } 80 \mathrm{~V} \end{aligned}$	AC 230 V ; DC 65 V	$\begin{aligned} & 3 \text { AC } 415 \mathrm{~V} \text {; } \\ & \text { AC } 240 \mathrm{~V}(50 / 60 \mathrm{~Hz}) \text {; DC } 80 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \text { AC } 415 \mathrm{~V} \text {; } \\ & \text { AC } 240 \mathrm{~V}(50 / 60 \mathrm{~Hz}) ; \text { DC } 80 \mathrm{~V} \end{aligned}$
0.02... 30 A	0.02... 80 A	0.02... 30 A	0.1... 60 A multi pole 0.1... 100 A single pole
6 A	$\begin{aligned} & \text { AC: } 6 \text { A } \\ & \text { DC: } 1 \text { A } \end{aligned}$	1 A	1 A
10,000 operations with $1 \times I_{N}$ single and multi pole		10,000 operations with $I_{N}$ single and multi pole	6,000 operations with $I_{N}$
$\begin{aligned} & \text { AC: } 1200 \text { A } \\ & \text { DC: } 2000 \text { A } \end{aligned}$		$\begin{aligned} & \text { AC: } 1200 \text { A } \\ & \text { DC: } 2000 \text { A } \end{aligned}$	$\begin{array}{ll} \text { AC: } 5000 \mathrm{~A} & \left(I_{\mathrm{nc}}\right) \\ \text { DC: } 5000 \mathrm{~A} & \left(I_{\mathrm{nc}}\right) \end{array}$
VDE, CSA, UL, BV, LRoS, QPL		VDE, CSA, UL,	VDE, CSA, UL,
see pages 179-182	see pages 183-186	see pages 187-190	see pages 191-194
	X8340-S02   X8340-S04   terminal for group siganlisation	1 pole	



Selector Chart

Type No.	Mounting method					Main terminal design						$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{0} \\ & \frac{\pi}{0} \\ & 0 \\ & 0 \\ & \frac{1}{0} \\ & \frac{\pi}{3} \end{aligned}$	Number of poles		Actuator					Ratings		
	$\begin{aligned} & \text { 드 } \\ & \text { © } \\ & \text { ㅁ } \\ & \tilde{W} \\ & \stackrel{L}{E} \end{aligned}$	$\begin{aligned} & \mathbb{D} \\ & \text { © } \\ & \text { 픈 } \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { ভ } \\ & \text { © } \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{\bar{\sigma}} \\ & \stackrel{y}{\Upsilon} \end{aligned}$									$\begin{aligned} & \frac{0}{O} \\ & \text { ㅁ } \\ & \frac{0}{O} \\ & . \frac{1}{6} \end{aligned}$	$\begin{aligned} & \frac{0}{O} \\ & \frac{2}{5} \\ & \frac{\#}{5} \end{aligned}$	웅 응	$\overline{3}$ $\frac{0}{2}$ $\frac{1}{5}$ $\frac{5}{2}$				$\underset{\substack{~}}{\sum}$	$\underset{\substack{\mathrm{O}}}{\mathrm{E}}$	
808					-		-			-	$\bigcirc$		-			-					24	5
809					-		-			-	$\bigcirc$		-			-					24	3
8330	-	$\bigcirc$				-				$\bigcirc$	-	$\bigcirc$	-	-	-		$\bigcirc$	$\bigcirc$	-	240	50	25
8340-F		-				-		$\bigcirc$		$\bigcirc$	-	$\bigcirc$	-	-	-				-	415	80	30
8340-G	-		-			-		$\bigcirc$		$\bigcirc$	-	$\bigcirc$	-	-		-			-	415	80	30
8340-T				-				$\bullet$		$\bigcirc$	-		-	-	-				-	415	80	30
8350	-	-		$\bigcirc$		O		$\bigcirc$	$\bigcirc$	$\bigcirc$	-	$\bigcirc$	-	$\bullet$	$\bullet$				-	415	80	100

- = standard
$O=$ optional


## Description

Single pole miniaturised magnetic circuit breaker with unique high－ speed operating mechanism and push／pull on／off manual actuation． Fitted with electrically separate excitation and switching circuits，and one pair of auxiliary contacts which close when the main circuit is open． Also suitable for impulse operation．Designed for printed circuit board mounting．Low temperature sensitivity．

## Typical applications

Printed circuit boards and components，safety and control systems．

## Ordering information

Type No．		
808	fast－acting	
809	delayed	
	Manual release（optional）	
		manual release facility
		Current ratings
		0.01 ．．． 5 A type 808
		0．006．．．3 A type 809

The exact part number required can be built up from the table of choices shown above．Ordering references for optional features should be omitted if not required．

Standard current ratings and typical internal resistance values

Current	Internal resistance（ $\Omega$ ）		Current		Internal resistance（ $\Omega$ ）	
rating（A）	808	809	rating（A）	808	809	
0.006	-	625	0.7	0.143	0.050	
0.01	625	-	0.8	0.096	0.040	
0.012	-	170	0.9	0.085	-	
0.02	170	77	1	0.073	0.031	
0.03	77	29.2	1.2	0.050	$\leq 0.02$	
0.04	47	18.5	1.5	0.031	$\leq 0.02$	
0.05	29.2	10.3	1.8	-	$\leq 0.02$	
0.06	-	5.6	2	$\leq 0.02$	$\leq 0.02$	
0.08	10.3	-	2.5	$\leq 0.02$	-	
0.1	5.6	3.4	3	$\leq 0.02$	$\leq 0.02$	
0.2	1.65	0.89	3.25	$\leq 0.02$	-	
0.3	0.89	0.28	4	$\leq 0.02$	-	
0.4	0.39	0.143	4.5	$\leq 0.02$	-	
0.5	0.28	0.096	5	$\leq 0.02$	-	
0.6	0.198	0.073				

## Approvals

Authority	Voltage ratings	Current ratings	
UL	AC 120 V, DC 60 V	$0.01 \ldots 5 \mathrm{~A}$	（type 808）
	AC 120 V, DC 60 V	$0.006 \ldots 3 \mathrm{~A}$	（type 809）
CSA	AC 115 V, DC 60 V	$0.01 \ldots 5 \mathrm{~A}$	（type 808）
	AC 115 V, DC 28 V	$0.006 \ldots 3 \mathrm{~A}$	（type 809）



## 룸ㄹㅁ몽 Magnetic Overcurrent Circuit Breakers 808/809-...



## Description

Single and double pole magnetic and hydraulic-magnetic circuit breaker with trip-free mechanism and toggle or rocker actuation. A choice of fast magnetic only or hydraulically delayed switching characteristics (S type MO or HM CBE to EN 60934/IEC 934) ensures suitability for a wide range of applications. Low temperature sensitivity at rated load. Industry standard dimensions and threadneck or snap in panel mounting. Complies with CBE standard EN 60934 (IEC 934).

## Typical applications

Power supplies, process control, switchgear and controlgear

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance $(\Omega)$ per pole
0.1	101
1	0.99
2	0.25
3	0.1
5	0.041
10	0.011
15	0.0057
20	0.0039
25	0.0028

## Approvals

Authority	Voltage ratings	Current ratings
UL/CSA	AC 240 V; DC 50 V	$0.1 \ldots 25 \mathrm{~A}$
VDE	AC 240/V; DC 50 V	$0.1 \ldots 25 \mathrm{~A}$ under test



8330

## Technical data

Voltage rating	$\begin{aligned} & \text { AC } 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & \text { DC } 50 \mathrm{~V} \end{aligned}$
Current rating range	0.1... 25 A
Auxiliary circuit	AC 125 V 3 A ; DC 30 V 2 A
Typical life	10,000 operations at $\mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-40 \ldots+75^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in the operating area
Dielectric strength (IEC 664 and 664A) operating area pole to pole main to auxiliary circuit switching to trip circuit	Test voltage   AC 3000 V AC 1500 V AC 1500 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	$\begin{aligned} & 1,000 \mathrm{~A} \text { at AC } 240 \mathrm{~V} \\ & 500 \mathrm{~A} \text { at DC } 50 \mathrm{~V} \end{aligned}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40; terminal area IP 00
Vibration	```single pole: 10 g (57-500 Hz) \pm0.76 mm (10-57) double pole: 7 g (57-500 Hz) \pm 0.54 mm (10-57) to IEC 68-2-6, Test Fc, 10 frequency cycles/axis```
Shock	$\begin{aligned} & 50 \mathrm{~g}(6 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, Test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH, to IEC 68-2-3, Test Ca
Mass	approx. 30 g per pole (depending on version)

## 

## Ordering information

## Type No.

8330 circuit breaker


F flange mounting, black
G threadneck mounting, black (standard)
H threadneck mounting, light-grey


W illuminated rocker, 1 rocker/unit, for accessories 0,9

## Characteristic curve

00 switch only
AS long delay

BS	medium delay
CS	short delay

OP instantaneous trip

Actuator colour and marking details					
Colour	Marking	B	C	R	W
2 white	without	X	X	X	X
3 black	without	X	$x$	x	x
7 red	without	X	X	X	X
B green	1-0			X	X
C white	1-0			X	x
D black	1-0			X	X
H red	1-0			X	X
$J$ orange	1-0			X	X
M green	ON-OFF			X	X
N white	ON-OFF			X	X
P black	ON-OFF			X	X
T red	ON-OFF			X	X
U orange	ON-OFF			X	X

Illumination voltage

voltage range	actuator
1 AC 100-125 V	W

2 AC 220-250 V
2 AC $220-250 \mathrm{~V}$
4 DC $16-24 \mathrm{~V}$
5 DC 24-32V
6 DC 32-48 V W
X without illumination B, C, R, W
Auxiliary contacts
A no auxiliary contacts
B one change over per pole
H one change over per unit (multipole version only)
Internal circuit
A switch
B series trip
D relay trip (remote trip)
Remote trip
00 no remote trip
03 12V; 04: 24V; 21: 120V; 22: 240V
Frequency
4 AC $50 / 60 \mathrm{~Hz}$
9 DC
Current rating
0.1... 25 A
$8330-G L 10-P$ B BS
$3 \times$ A B 004
5 A
ordering example

Dimensions - threadneck mounted version

Actuator configuration B threadneck mounting, paddle

1 pole
M12x1 or 1/2"-32


2 pole
or $1 / 2-32$

blade terminal A6.3-0.8 to DIN 46244


Actuator configuration C
threadneck mounting, baton


Installation drawing


## RE『『迫 Magnetic and Hydraulic－Magnetic Circuit Breaker 8330－．．．

## Dimensions flange mounted version

Actuator configuration R，W

panel cut－out


## Terminal configurations



With illuminated rocker


## Internal connection diagrams

A Switch only with auxiliary contacts


D Relay trip


B Series trip，single pole with auxiliary contacts

with illumination


## Shock directions－Mounting attitudes



## RE『『迫 Magnetic and Hydraulic－Magnetic Circuit Breaker 8330－．．．

## Typical time／current characteristics

AC $50 / 60 \mathrm{~Hz}, \mathrm{DC}$, ambient temperature $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$ Curve AS－long delay


Curve BS－medium delay


Curve CS－short delay


Curve OP－instantaneous trip


Series 8330 will not trip at a halfsine wave of 10 ms and an amplitude of $\leq 8 \times I_{N}$ ．

All curves are for mounting planes 1，2，3， 4

## Accessories

Threadneck design L：
Hex nut M 12x1
Y 30011602


Knurled nut M 12x1 Y 30206501


Washer with locating pin Y 30640101


Legend plate
Y 30640201


Splash cover M 12x1
X 22142701


Ordering code	Threadneck design－L（M12）					Threadneck design－M（1／2＂－32）				
	B	D	F	H	S	B	D	F	H	S
Y 30011602	2	2	1	1						
Y 30048620						2	2	1	1	
Y 30206501			1	1						
Y 30199901								1	1	
Y 30640101		1		1						
Y 30642401							1		1	
Y 30640201	1	1	1	1	1					
Y 30642501						1	1	1		1
X22142701					1				1	
X 22143401										1

## Description

Single, two and three pole magnetic circuit breakers with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation. A choice of fast magnetic only or hydraulically delayed switching characteristics (S type MO or HM CBE to EN 60934) ensures suitability for a wide range of applications. Convenient threadneck panel or plugin mounting, and with a white push button indicator band showing clearly the tripped/off position. Available with auxiliary contacts (1 x $\mathrm{N} / \mathrm{O}, 1 \times \mathrm{N} / \mathrm{C}$ ) for status signalling and fitted with an unprotected shunt tap terminal as standard. Approved to CBE standard EN 60934 (IEC 934)

## Typical application

Control equipment, communications systems, power semiconductors.

## Ordering information




## Technical data

Voltage rating	3 AC 415 V ; AC $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 80V
Current ratings	0.02... 30 A
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{AC} 240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$; 0.5 A , DC 80 V
Typical life	1 pole: 10,000 operations at $1 \mathrm{xI}_{\mathrm{N}}$ 2 and 3 pole: 1000 operations at $1 \mathrm{xl}_{N}$
Ambient temperature	$-40 . . .+85{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area

Dieelectric strength
(IEC 664 and 664A) operating area

Test voltage
AC 3000 V
pole to pole $(2+3$ pole $)$ AC 1500 V
main to auxiliary circuit AC 1500 V
aux. circuit 11-12/23-24 AC 1000 V
switching to trip circuit (-X) AC 1500 V

Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$		
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	1200 A at AC; 2000 A at DC		
Interrupting capacity	$\mathrm{I}_{\mathrm{N}}$	$0.025 . .30 \mathrm{~A}$	
(UL 1077)	1 pole	$\mathrm{AC} 250 \mathrm{~V} / 3500 \mathrm{~A}$	
	1 pole	DC $65 \mathrm{~V} / 2000 \mathrm{~A}$	


Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	with button down:   $10 \mathrm{~g}(57-2000 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$ at $0.9 \times \mathrm{I}_{\mathrm{N}}$   Other mounting planes:   $10 \mathrm{~g}(57-2000 \mathrm{~Hz})$ bei $\mathrm{I}_{\mathrm{N}}$   to IEC 68-2-6, test Fc   10 frequency cycles/axis
Shock	$100 \mathrm{~g}(11 \mathrm{~ms})$ at $1 \mathrm{xl}_{\mathrm{N}}$, directions $1,2,3,4,5$ $100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \mathrm{x}_{\mathrm{N}}$, direction 6 to IEC 68-2-27, test Ea
Corrosion	96 hours at $5 \%$ salt mist, to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 70 g per pole

Standard purely magnetic type: 8340-G211-N1F4-A4H111-...A
Standard hydraulic-magnetic type: 8340-G211-N1E1-A4HO-...A

## Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	3 AC 415 V, AC 240 V, DC 80 V	$0.02 \ldots 30 \mathrm{~A}$
UL, CSA	3 AC 250 V, AC 250 V, DC 65 V	$0.02 . .30 \mathrm{~A}$
LRoS, BV	AC 250 V, DC 65 V	$0.1 \ldots 30 \mathrm{~A}$

## R

Current rating (A)	Internal resistance curve -F4	$(\Omega)$ per pole curves -E1/H1/R1	curves -E2/H2/R2
0.02	376	1498	1814
0.05	94	376	365
0.08	35.8	148	144
0.1	23	94	84
0.15	9.9	39	38
0.2	5	23	22.4
0.3	2.44	9.9	9.7
0.5	0.79	3.16	3.1
0.75	0.39	1.55	1.51
1	0.25	0.79	0.77
1.5	0.10	0.37	0.36
2	0.059	0.20	0.24
2.5	0.044	0.146	0.138
3	0.028	0.10	0.099
4	< 0.02	0.059	0.057
5	< 0.02	0.040	0.038
6	< 0.02	0.026	0.026
8	< 0.02	< 0.02	< 0.02
10	< 0.02	< 0.02	< 0.02
12	< 0.02	< 0.02	< 0.02
15	< 0.02	< 0.02	< 0.02
16	< 0.02	< 0.02	< 0.02
20	< 0.02	< 0.02	< 0.02
25	<0.02*	< 0.02	< 0.02
30	<0.02*	< 0.02	< 0.02

## Accessories

18-P10-Si $\quad$ EN rail mounted socket may be used in multiples of two or
18-P10-Si-20025 Socket supplied with adapter fitted for asymmetric rail mounting (G-profile).
Six-way connecting/bus bar link with clamp terminal.
$\begin{array}{ll}\text { X } 21115801 & \text { Six-way connecting/bus bar link with clamp terminal. } \\ \text { X } 21115802 \quad \text { Six-way connecting/bus bar link, as above but without }\end{array}$
X $21115802 \quad \begin{aligned} & \text { Six-way connecting/bus bar link, as above but without } \\ & \text { clamp terminal. }\end{aligned}$
30382411
Y 30057911
100 -way $1.5 \mathrm{~mm}^{2}$ brown cable links with pre-fitted push-on
$\times 21058802$ As above but with $2.5 \mathrm{~mm}^{2}$ black cable links.
X 21058803 As above but with $2.5 \mathrm{~mm}^{2}$ red cable links.
$\times 21058804$ As above but with $2.5 \mathrm{~mm}^{2}$ blue cable links.
Y 30011602 Hex nut M 12x1
Y 30011803 Spring washer
X 20080101 Concertina style splash cover/hex nut assembly.
X 20080201 Splash seal/hex nut assembly, allowing full visibility of the push button actuator.
X 20080301 Screw-tightened clamp-on actuator extension to aid manual operation.

## Shock directions / Mounting attitudes



## Dimensions (1 pole)

Terminal design - N

blade terminal DIN 46244-A6.3-0.8


Terminal design -G

current rating in A location pin for 3 mm hole dia.

pane tickness max. 3 mm
terminal with flat head screw M4x6 ISO 1580 tightening torque max.1.2 Nm
blade termina
DIN 46244-A6.3-0.8

## Installation drawings

Terminal design -N


Terminal design -G



Internal connection diagrams

| 1 pole, protected magnetically | multipole |
| :--- | :--- | :--- |
| LINE 1 |  |

## Typical time/current characteristics

Curve -F4, magnetic
( $\mathrm{I}_{\mathrm{N}}>20 \mathrm{~A}, 50 \%$ ON period, 30 min ) at $23^{\circ} \mathrm{C}$


Short delay curves E1 for DC and E2 for AC $50 / 60 \mathrm{~Hz}$, hydraulic-magnetic


Medium delay curves H1 for DC and H2 for AC $50 / 60 \mathrm{~Hz}$ hydraulic-magnetic


Long delay curves R1 for DC and R2 for AC $50 / 60 \mathrm{~Hz}$ hydraulic-magnetic


## N.B.

Curves E1, E2, H1,H2, R1 and R2 are for mounting planes 1,2,3,4.


Bus bar for socket 18
X 21115801 with Phoenix terminal
X 21115802 without Phoenix terminal


Insulated sleeving for bus bars
（constriction 1 mm thick）

## Y $303 \mathbf{8 2 4} 11$



Retaining clip for socket 18－P10－Si
Y $\mathbf{3 0 0} 57911$


## Connector bus link－P10

X 210588 01／1，5mm²，brown
X 210588 02／2，5 $\mathrm{mm}^{2}$ ，black
X 210588 03／2，5mm²，red
X 210588 04／2，5mm²，blue
100 quick－connect tabs 6.3
IN 46247 tinned brass， insulated


Hex nut Y 30011602


Accessories for push button
Splash cover，transparent nickel plated hex nut X 20080108 （IP 66） Splash cover，black black finish hex nut X 20080103 （IP 66）


Actuator extension X 20080301


## Spring washer

 Y 30011803

Splash seal black／ hex nut assembly and 0 ring X 20080201 （IP 54）


## Description

Single and multipole magnetic circuit breakers with trip-free, snapaction mechanism and toggle actuation. A choice of fast magnetic only or hydraulically delayed switching characteristics (S-type MO or HM CBE to EN 60934) ensures suitability for a wide range of applications. Industry standard dimensions and panel mounting. Options include auxiliary changeover contacts, or relay trip function.
Approved to CBE standard EN 60934 (IEC 934).

## Typical applications

Control equipment, communications systems, transportation, power supplies.

## Accessories

X 21111701 Single pole splash cover with fixing plate.
X 21111801 Two pole splash cover with fixing plate.
X 21111901 Three pole splash cover with fixing plate.

Standard current ratings and typical internal resistance values

Current   rating (A)	Furves and internal resistance per pole ( $\Omega$ )			
0.02	1498	957	2669	2457
0.05	276	152	452	376
0.1	58	37	100	94
0.25	8.2	6.0	15.5	14.7
0.5	2.3	1.47	3.9	3.2
0.75	0.98	0.63	1.65	1.56
1	0.58	0.35	0.95	0.90
2	0.145	0.096	0.26	0.20
2.5	0.096	0.061	0.15	0.15
3	0.065	0.048	0.10	0.10
5	0.025	$<0.02$	0.042	0.040
6	$<0.02$	$<0.02$	0.029	0.028
8	$<0.02$	$<0.02$	$<0.02$	$<0.02$
10	$<0.02$	$<0.02$	$<0.02$	$<0.02$
12	$<0.02$	$<0.02$	$<0.02$	$<0.02$
15	$<0.02$	$<0.02$	$<0.02$	$<0.02$
16	$<0.02$	$<0.02$	$<0.02$	$<0.02$
20	$<0.02$	$<0.02$	$<0.02$	$<0.02$
25	$<0.02$	$<0.02$	$<0.02$	$<0.02$
30	$<0.02$	$<0.02$	$<0.02$	$<0.02$

## Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	3 AC $415 \mathrm{~V}, \mathrm{AC} 240 \mathrm{~V}$, DC 80 V	0.02...30 A
UL, CSA	3 AC 250 V , AC 250 V , DC 65 V	0.02... 30 A
LRoS, BV	AC 250 V , DC 65 V	0.1 ... 30 A
QPL (Sweden)	AC 240 V , DC 50 V	$1 . . .30 \mathrm{~A}$



1 pole


3 pole

## Technical data

Voltage rating	3 AC 415 V; AC $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 80V (higher DC ratings to special order)
Current ratings	0.02... 30 A
Auxiliary circuit	6 A, AC 240 V/DC 28 V   $1 \mathrm{~A}, \mathrm{DC} 65 \mathrm{~V}$; $0.5 \mathrm{~A}, \mathrm{DC} 80 \mathrm{~V}$
Typical life	10,000 operations at $1 \mathrm{xI}_{\mathrm{N}}$
Ambient temperature	-40... $85{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area pole to pole (2 and 3 pole) main to auxiliary circuit switching to trip circuit	Test voltage   AC 3000 V   AC 1500 V   AC 1500 V   AC 1500 V (version -X)
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	$\begin{aligned} & 1200 \text { A at AC, } \\ & 2000 \text { A at DC } \end{aligned}$
Interrupting capacity (UL 1077)	$I_{\mathrm{N}}$ $0.025 \ldots 20 \mathrm{~A}$ $25 \ldots 30 \mathrm{~A}$   1 pole AC $250 \mathrm{~V} / 3500 \mathrm{~A}$ $\mathrm{AC} 250 \mathrm{~V} / 3500 \mathrm{~A}$   2 pole AC $250 \mathrm{~V} / 3500 \mathrm{~A}$ AC $250 \mathrm{~V} / 5000 \mathrm{~A}$   3 pole $3 A C ~ 250 \mathrm{~V} / 3500 \mathrm{~A}$ $3 A C 250 \mathrm{~V} / 5000 \mathrm{~A}$   1 to 3 pole DC $65 \mathrm{~V} / 2000 \mathrm{~A}$ $\mathrm{DC} 65 \mathrm{~V} / 2000 \mathrm{~A}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	with toggle down: $10 \mathrm{~g}(57-2000 \mathrm{~Hz})$   $\pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$ at $0.9 \times \mathrm{I}_{\mathrm{N}}$   Directions 1, 2, 3, 4, 5:   $10 \mathrm{~g}(57-2000 \mathrm{~Hz})$ at $1 \mathrm{xl}_{\mathrm{N}}$.   With curves F1, F2 in all planes:   $10 \mathrm{~g}(57-2000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$   at $0.8 \mathrm{xl}_{\mathrm{N}}$,   to IEC 68-2-6, test Fc   10 frequency cycles/axis
Shock	100 g ( 11 ms ) at $1 \mathrm{xl}_{\mathrm{N}}$, directions $1-5$ $100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \mathrm{xl}_{\mathrm{N}}$, direction 6. With curves F1, F2: $100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \mathrm{xl}_{\mathrm{N}}$ to IEC 68-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 65 g per pole

## 

## Ordering information

## Type No.

8340 magnetic circuit breaker with toggle actuator

| Configuration

1	with mounting nuts $6-32$
4	with mounting nuts M3
9	snap-in frame

Number of poles
0 single pole, switch only
1 single pole protected
2 two pole protected
3 three pole protected
4 four pole protected
5 two pole, protected on one pole only
6 four pole, protected on poles 1, 2 and 3 only
7 two pole, switch only
Panel hardware
$0 \quad$ without panel hardware
Terminal design (main contact)
K2 screw terminals with metric thread,
(recommended for $\mathrm{IN}>20 \mathrm{~A}$ )
P1 blade terminals
X1 blade terminals with separate switching and relay circuit
Characteristic curves
Characteristic curve F, instantaneous trip:
F2 AC $50 / 60 \mathrm{~Hz} \quad$ trip at $1.01-1.5 \times \mathrm{I}_{\mathrm{N}}$
Characteristic curve K, short delay:
K1 $\quad$ DC $\quad$ trip time at 2xln: 0.16-1.2 s

K2 AC $50 / 60 \mathrm{~Hz}$ trip time at $2 \times \mathrm{I}_{\mathrm{N}}: 0.13-1.6 \mathrm{~s}$

Characteristic curve $\mathbf{M}$, medium delay:	
M1	DC
trip time at 2x1	$0.6-7.5 \mathrm{~s}$

M2 AC $50 / 60 \mathrm{~Hz}$ trip time at $2 \times 1 \mathrm{~N}: ~ 2.2-20 \mathrm{~s}$
Without characteristic curve:
Q0 switch only
Characteristic curve T, long delay:

T1	DC	trip time at $2 \times\left.\right\|_{N}: 10-70 \mathrm{~s}$
T2	AC $50 / 60 \mathrm{~Hz}$	trip time at $2 \times \mathrm{I}_{\mathrm{N}}: 15-150 \mathrm{~s}$

Relay trip X:
X1 voltage trip at DC, instantaneous trip
X2 voltage trip at AC, instantaneous trip
Other curves to special order (e.g. pulse delayed)

Actuator colour		
A black		
B white		
Actuator marking		
0 without marking		
2 ON-OFF		
3 I-O		
5 I-O side marking		
Auxiliary contacts		
H0 without auxiliary contacts		
H1 with auxiliary contacts		
	H2 auxiliary contacts on one pole only (multi pole)	
H3 auxiliary contacts on poles 1 and 3 ( 3 and 4 pole)		
	G1 as H1, but contacts gold plated	
	G2 as H2, but contacts gold plated	
	G3 as H3, but contacts gold plated	
	Auxiliary contact function	
	41 change over contact	
		Auxiliary contact terminal design
		2 blade terminal 2.8-0.5 mm
		Current ratings
		0.02... 30 A
		Voltage rating (for relay trip)
		DC $5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$
		AC $110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$

8340 -F 1

## Internal connection diagrams

1 pole protected magnetically


1 pole protected hydraulic-magnetic

multipole
unit 1

unit 2


unit 4



## Dimensions

Mounting Configuration 8340-F9..

panel cut-out


## 

## Dimensions



Cut-out dimensions:

with separate switching and
relay circuit 8340-F...-X...


Installation drawing


## Accessories

$\begin{array}{ll}\text { Splash covers (transparent) } & \text { with fixing plate (IP54) } \\ \text { X } 21111701 & \text { X } 21111801 \\ 1 \text { pole } & 2 \text { pole }\end{array}$
1 pole

mounting dimensions:-
M3-hole dia. 3.5 6 -32 UNC-2B - hole dia. 4

## X 21111901

3 pole

mounting dimensions:
6-32 UNC-2B - hole dia. 4

Shock directions / mounting attitudes


## 

## Curve F1 (instantaneous) <br> for DC



Curve F2 (instantaneous)
for AC $50 / 60 \mathrm{~Hz}$


Curve K1 (short delay)
for DC


Curve K2 (short delay)
for AC $50 / 60 \mathrm{~Hz}$


Curve M1 (medium delay)
for DC


Curve M2 (medium delay)
for AC $50 / 60 \mathrm{~Hz}$


Curve T1 (long delay)
for DC


Curve T2 (long delay)

N.B. All curves are for mounting planes 1, 2, 3, 4. Other characteristic curves to special order.

## Description

Modular distribution rail, each module accommodating 2 magnetic or hydraulic-magnetic circuit breakers and associated load terminals. Circuit breaker status indication (group signalisation) is via 2 busbars. Power supply is via right- or left-side terminal block. Live parts in the plug-in and supply feed terminal areas are protected against brush contact. Circuit breakers may be replaced with power on.

## Typical applications

Telecommunications and cellular communication systems

## Ordering information




X8340-S02

## Technical data

For circuit breaker type	$8340-\mathrm{F} .10-\mathrm{P} 1 . .-\mathrm{H} 142$	
Voltage rating	AC 230 V, DC 65 V	
Load	16 A per position	
	80 A for complete unit	
Signalisation (N/C)	AC $230 \mathrm{~V}, 6 \mathrm{~A} / \mathrm{DC} 65 \mathrm{~V} 1 \mathrm{~A}$	
	per position	
Insulation co-ordination	Rated impulse	Pollution
(IEC 664 and 664A)	withstand voltage	degree
	2.5 kV	2


Supply terminal design   (terminal socket)	recessed screw/pressure plate $35 \mathrm{~mm}^{2}$   feed-in $6 . .25 \mathrm{~mm}^{2}$
	with connector sleeve   additional blade terminals $6.3 \times 0.8$      load (module)
blade terminals 6.3x0.8	
signalisation (module)	blade terminals 4.8×0.8
Mass X8340-S02L1-100	245 g

## 

## Dimensions

Distribution rail, shown with power supply right-side


* E-T-A circuit breaker type 8340-F. (not supplied with product)
load terminals

$\xrightarrow{-11.1}$


Distribution rail, power supply left-side X8340-SO2L.-

ground bridge in first module (optional)
ground connection between signalisation and metal base

Internal connection diagram

module with circuit breaker E-T-A 8340-F

## Description

Distribution rail for one or two modules suitable for ETSI control cabinet and similar applications. One module comprises 4 positions for magnetic or hydraulic-magnetic circuit breakers and associated line and load terminals. Circuit breaker status indication (group signalisation) is via two busbars. The modular design facilitates the operation of a single distribution rail at two different voltages.
Live parts in the plug-in and supply feed terminal areas are protected against brush contact.
Expansion or circuit breaker replacement is possible with power on.

## Typical appalications

Telecommunications, measuring and control systems.

## Ordering information




## 

## Dimensions



Internal connection diagram


## Description

Single, two, three and four pole magnetic and hydraulic-magnetic circuit breakers with trip-free mechanism and toggle actuation. A choice of fast magnetic only or hydraulically delayed switching characteristics (S-type MO or HM CBE to EN 60934) ensures suitability for a wide range of applications. Featuring a combi-foot design for symmetric and asymmetric rail mounting.
Approved to CBE standard EN 60934 (IEC 934).

## Typical applications

Power supplies, control equipment, communication systems, EDP systems.

Standard current ratings and typical internal resistance values

Current   rating (A)	F1			

## Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	3 AC $415 \mathrm{~V}, \mathrm{AC} \mathrm{240} \mathrm{V}$,	
	DC 80 V	$0.02 \ldots 30 \mathrm{~A}$
UL, CSA	3 AC $250 \mathrm{~V} ;$ AC 250 V,	
	DC 65 V	$0.02 \ldots 30 \mathrm{~A}$



8340-T...
single pole

## Technical data

Voltage rating	3 AC 415V; AC 240 V ( $50 / 60 \mathrm{~Hz}$ ); DC 80V (higher DC voltages to special order)
Current rating range	0.02... 30 A
Auxiliary circuit	1 A, AC 240 V/DC 65 V ; 0.5 A DC 80 V
Typical life	10,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	-40... $85{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area pole to pole main to aux. circuit	Test voltage AC 3000 V   AC 1500 A   AC 1500 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ )
Interrupting capacity $\mathrm{I}_{\text {cn }}$	$\begin{aligned} & 1200 \mathrm{~A} \text { at } A C \\ & 2000 \mathrm{~A} \text { at DC } \end{aligned}$
Interrupting capacity (UL 1077)	$\mathrm{I}_{\mathrm{N}}$ $0.02 \ldots .20 \mathrm{~A}$ $25 \ldots 30 \mathrm{~A}$   1 pole $\mathrm{AC} 240 \mathrm{~V} / 3500 \mathrm{~A}$ $\mathrm{AC} 240 \mathrm{~V} / 3500 \mathrm{~A}$   2 pole AC240V/3500 A AC240V/5000 A   3 pole $3 \mathrm{AC} 250 \mathrm{~V} / 3500 \mathrm{~A}$ $3 \mathrm{AC} 240 \mathrm{~V} / 5000 \mathrm{~A}$   $1-3$ pole DC $65 \mathrm{~V} / 2000 \mathrm{~A}$ $\mathrm{DC} 65 \mathrm{~V} / 2000 \mathrm{~A}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 20
Vibration	$\begin{aligned} & \text { with toggle down: } 10 \mathrm{~g} \text { at } 0.9 \mathrm{I}_{\mathrm{N}} \\ & \text { directions } 1,2,3,4,5: 10 \mathrm{~g} \text { at } 1 \times \mathrm{I}_{\mathrm{N}} \\ & \text { with curves } \mathrm{F} 1, \mathrm{~F} \text { : } \\ & 10 \mathrm{~g} \text { at } 0.8 \times \mathrm{I}_{\mathrm{N}} \text { in all planes. } \\ & (57-2000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6 \text {, Test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$100 \mathrm{~g}(11 \mathrm{~ms})$ at $1 \times \mathrm{I}_{\mathrm{N}}$, directions $1,2,3,4,5$ $100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \times \mathrm{I}_{\mathrm{N}}$, direction 6 with curves F1, F2: 100 g ( 11 ms ) at $0.8 \mathrm{II}_{\mathrm{N}}$ to IEC 68-2-27, Test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, Test Ka
Humidity	240 hours at $95 \%$ RH, to IEC 68-2-3, Test Ca
Mass	approx. 98 g per pole

## 

## Ordering information



## Dimensions



## Installation drawing


terminal area

## 

## Internal connection diagrams



## Accessories

Connector bus links -K10 X 210589 01/2.5mm ${ }^{2}$ black
X 210589 02/1.5mm ${ }^{2}$ brown
50 pin lugs
tinned copper



## 

## Curve F1 (instantaneous) <br> for DC



Curve F2 (instantaneous)
for AC $50 / 60 \mathrm{~Hz}$


Curve K1 (short delay)
for DC


Curve K2 (short delay)
for AC $50 / 60 \mathrm{~Hz}$


Curve M1 (medium delay)
for DC


Curve M2 (medium delay)
for AC $50 / 60 \mathrm{~Hz}$


Curve T1 (long delay)
for DC


Curve T2 (long delay)

N.B. All curves are for mounting planes 1, 2, 3, 4. Other characteristic curves to special order.

## Description

Single, two, three and four pole magnetic and hydraulic-magnetic circuit breakers with trip-free-mechanism and toggle actuation. A choice of fast magnetic only or hydraulically delayed switching characteristics (S type MO or HM CBE to EN 60934) ensures suitability for a wide range of applications. Industry standard dimensions and panel mounting. Low temperature sensitivity at rated load.
Approved to CBE standard EN 60934 (IEC 934).

## Typical applications

Communications systems, process control and transportation

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance $(\Omega)$ per pole
0.1	94
1	0.823
2	0.214
3	0.094
5	0.044
10	$<0.02$
15	$<0.02$
20	$<0.02$
25	$<0.02$
30	$<0.02$
40	$<0.02$
50	$<0.02$
60	
100	$<0.02$

## Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	3 AC 415 V, AC 240 V,	
	DC 80 V	$0.1 \ldots 60 \mathrm{~A}$
UL, CSA	3 AC 433 V, AC 250 V,	
	DC 80 V	$1 \ldots 60 \mathrm{~A}$ (100 A single pole)

## Shock directions





3 pole
8350

## Technical data

Voltage rating	$\begin{aligned} & 3 \text { AC } 415 \mathrm{~V} \text {; AC } 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & \text { DC } 80 \mathrm{~V} \end{aligned}$
Current rating range	0.1... 60 A multi pole $0.1 . .100 \mathrm{~A}$ single pole
Auxiliary circuit	$\begin{aligned} & 6 \mathrm{~A}, \mathrm{AC} 240 \mathrm{~V} / \mathrm{DC} 28 \mathrm{~V} \\ & 1 \text { A, DC } 65 \mathrm{~V} ; 0.5 \mathrm{~A}, \mathrm{DC} 80 \mathrm{~V} \end{aligned}$
Typical life	6,000 operations at $\mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-40 . . .+85^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength   (IEC 664 and 664A) operating area pole to pole main to auxiliary circuit switching to trip circuit	Test voltage AC 3000 V AC 1500 V AC 1500 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega($ DC 500 V$)$
Interrupting capacity I $\mathrm{I}_{\mathrm{n}}$ EN 60934, PC 1   UL 1077	5000 A at AC 240/415 V, DC 80 V
Degree of protection (IEC 529/DIN 40050)	operating area IP 40; terminal area IP 00
Vibration	$10 \mathrm{~g}(10-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57)$ to IEC 68-2-6, Test Fc, 10 frequency cycles/axis
Shock	100 g ( 6 ms half-sine) to IEC 68-2-27, Test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH, to IEC 68-2-3, Test Ca
Mass	approx. $65 . . .100 \mathrm{~g}$ per pole (depending on version)

## 

## Ordering information


*Bold type versions are preferred. For special configuration please enquire

## Dimensions

Mounting version A standard mounting: 1 to 4 poles


Mounting version C C-frame mounting: 1 to 4 poles


Mounting version D threadneck mounting: 1 to 3 poles


## 

## Dimensions



Mounting variants


Terminal design / Dimensions

A/M stud terminals


B clamp terminals $\left(\mathrm{l}_{\mathrm{N}} \leq 30 \mathrm{~A}\right)$


C rear push-on terminals ( $\mathrm{I}_{\mathrm{N}} \leq 25 \mathrm{~A}$ )


## Internal connection diagrams



J - Dual control


B - Series trip with auxiliary contacts


D - Relay trip


LOAD ${ }_{2}$

## Actuator configuration

A 1 toggle per pole


G reduced number of toggles per unit


* Denotes microswitch pole on multipole units.


## Interphase barriers / Dimensions



## 

## Typical time/current characteristics



## Curve BS - medium delay

for AC $50 / 60 \mathrm{~Hz}$, DC
at ambient temperature $+23^{\circ} \mathrm{C}$


## Curve CS - short delay

for AC $50 / 60 \mathrm{~Hz}$, DC
at ambient temperature $+23^{\circ} \mathrm{C}$


Series 8350 with characteristics AS, BS and CS will not trip at a halfsine wave of 10 ms and an amplitude of $\leq 8$ times rated current.

The tripping characteristics as outlined in this catalogue will only be maintained if the escutcheon is mounted on a vertical surface.

## Accessories

Splash cover (IP64) for 8350-A.../8350-H..
Y 30626501 1pole
Y 30626601 2pole
Y 30626701 3pole


Splash cover M12x1
X 22142701


Threadneck design L:
Hex nut M12x1
Y 30011602


Knurled nut M12x1
Y 30206501


Legend plate
Y 30640201


Auxiliary switch (change over contact) Y 30626801

1/2"-32 X 22143401


Threadneck design M: 1/2"-32 Y 30048620


1/2"-32
Y 30199901


Y 30642501


Auxiliary switch housing Y 30626901


## Single and multi pole high performance circuit breakers (CBEs) and battery isolation switches with and without remote control

Voltage ratings max. 3 AC 660 V, AC 250 V, DC 220 V
Current ratings 0.05 ... 500 A

E-T-A high performance circuit breakers, of thermal or thermal magnetic operation, have been designed for applications with uncompromising performance and reliability requirements.

Models are available for aircraft, defence equipment, marine systems and other specialised equipment where safety is paramount.

All the circuit breakers in this catalogue section are highly resistant to the effects of shock, vibration, salt spray, humidity and similar influences. Their small physical size, low mass and advanced construction guarantee total versatility. Approvals are held from the supervisory authorities of key relevant industries. For example, E-T-A aircraft circuit breakers have been qualified for use in some of the world's most advanced aircraft, fixed wing and helicopter.


Accessories include panel seals providing various levels of protection for E-T-A single-hole panel mount models, from splash proofing right up to full immersion.

Complementing these high performance products, E-T-A battery isolation switches with remote control capability are especially suited to installation in the main battery systems of heavy duty vehicles-including tankers, boats, off-road plant and other battery powered equipment. Remote disconnection offers the dual benefits of user convenience and safety.







둘ㅁ. High Performance Circuit Breakers and Battery Isolation Switches


E-1032	E-1073-437/921/922	4910 (RCCB)	Type No.
battery emergency switch, single or double pole, to ADR requirements	single or double pole, remote disconnection and reconnection, with undervoltage protection optional	remote control circuit breaker (RCCB) single pole, temperature compensated, with auxiliary contacts	Description
DC 12 V ; DC 24 V	DC 12 V ; DC 24 V	DC 28 V ( $\mathrm{DC} \mathrm{18..}$.36 V )	Max. voltage rating
$\begin{aligned} & \text { 921: } 240 \mathrm{~A} \\ & \text { 922: } 120 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 437: } 40 \ldots . .240 \mathrm{~A} \\ & 921: 240 \mathrm{~A} \\ & 922: 120 \mathrm{~A} \end{aligned}$	5... 100 A	Current ratings
6 A at DC 28 V	6 A at DC 28 V	$\begin{aligned} & \text { DC } 28 \mathrm{~V}, \mathrm{AC} 115 \mathrm{~V}(400 \mathrm{~Hz}) \text { : } \\ & 3 \text { A } \end{aligned}$	Aux. contact rating
10,000 operations electrical 20,000 operations mechanical	10,000 operations electrical 20,000 operations mechanical	50,000 operations at $1 \times I_{N}$	Typical life
$\begin{aligned} & \text { DC } 28 \text { V (921): 2,500 A } \\ & \text { DC } 28 \text { V (922): 1,500 A } \end{aligned}$	DC 28 V (437): 10,000 A DC 28 V (921): 2,500 A DC 28 V (922): 1,500 A	6,000 A	Interrupting capacity $\mathbf{I}_{\text {cn }}$
TÜV			Approvals
see pages 253-256	see pages 257-260	see pages 261-262	Available options
			Dimensions
			Internal connection diagrams



High Performance Circuit Breakers - Selector Chart

Type	Mounting method					Main terminal design						$\grave{0}$   0	Number of poles			Ratings		
		$\begin{aligned} & \overline{\text { I }} \\ & \overline{\widetilde{\Sigma}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { O } \end{aligned}$		"	$\begin{aligned} & \frac{0}{\widetilde{0}} \\ & \stackrel{C}{\bar{E}} \\ & \frac{1}{D} \\ & \frac{0}{0} \\ & \frac{\pi}{0} \end{aligned}$	들 $-\frac{c}{1}$ $\frac{3}{0}$ 응						$\begin{aligned} & \frac{0}{O} \\ & \frac{2}{0} \\ & \frac{0}{0} \\ & \cdot \frac{5}{\omega} \end{aligned}$	$\begin{aligned} & \frac{00}{O} \\ & \text { Q } \\ & \frac{\#}{\partial} \\ & \underline{E} \end{aligned}$		$\underset{\substack{2}}{\Sigma}$	$\begin{aligned} & \Sigma \\ & 0 \end{aligned}$	$\underline{z}$
402	-					$\bigcirc$			$\bigcirc$			$\bigcirc$	-			250	28	25
410		$\bigcirc$		$\bigcirc$	$\bigcirc$				-	$\bigcirc$	-	$\bigcirc$	$\bigcirc$	$\begin{aligned} & 520 \\ & 530 \\ & \hline \end{aligned}$	$\bigcirc$	240	110	125
412	$\bigcirc$								-		-	$\bigcirc$	$\bullet$		-	115	28	35
413	-								-		-	$\bigcirc$	$\bullet$		-	115	28	70
428			-		(O)		$\bullet$				-		$\bigcirc$			250	28	25
433/434	-					$\bigcirc$		$\bigcirc$	$\bigcirc$		$\bigcirc$	$\bigcirc$	$\bullet$		-	250	28	16
437				-					-	$\bigcirc$	-		$\bullet$		$\bullet$		144	240
446/447/449				-					-	$\bigcirc$	-		-		-		28	500
452	-	-							-		-	$\bigcirc$	$\bigcirc$		$\bigcirc$	115	28	100
482	-								-	$\bigcirc$	-	$\bigcirc$	$\bullet$			115	28	50
483	$\bullet$								-	$\bigcirc$	-	$\bigcirc$	$\bullet$	583		115	28	25
4120	-								$\bullet$	$\bigcirc$	-	$\bigcirc$	$\bigcirc$	583		115	28	25
4201					-				-		-		$\bullet$			250	28	16
4910				-					-	$\bigcirc$			$\bigcirc$				28	100
520/530		-		$\bigcirc$	$\bigcirc$				-	$\bigcirc$	-	$\text { only } 520$	410	-	$\bigcirc$	660	220	125
583	$\bigcirc$								-	$\bigcirc$	-	$\bigcirc$	483	-		$\begin{aligned} & 115 \\ & 200 \end{aligned}$	28	25
911-914		$\bigcirc$		$\bigcirc$	$\bigcirc$				-	$\bigcirc$	-	$\left.\begin{array}{\|l\|} \hline \text { only } 911 / 1 \\ 912 \end{array} \right\rvert\,$	911	$\begin{array}{\|l\|l\|} \hline 912 \\ 991 \\ 914 \\ \hline \end{array}$		240	110	$\begin{array}{\|l\|} \hline 125 \\ 240 \\ 1 \text { pol. } \end{array}$
921/922		-		$\bigcirc$	$\bigcirc$				-	$\bigcirc$	-	$\bigcirc$	921	922			24	$\begin{array}{\|l\|} 120 / 922 \\ 240 / 921 \end{array}$
E-1032				-					-			-	$\bigcirc$	$\bigcirc$			$\begin{aligned} & 12 \\ & 24 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \text { 1pol. } \end{aligned}$
E-1073				-					-	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$		$\begin{aligned} & \hline 12 / 24 \\ & 144 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \\ & 2 \text { pol } \end{aligned}$

- = standard

O = optional

Cross Reference List of German military part numbers versus E-T-A part numbers

VG Number	E-T-A Type	VG Number	E-T-A Type
VG 95345 T06-001	483-G411-K1M1-A1S0ZN-1A	VG 95345 T15-106	449-K-H-FN-Si-315A
VG 95345 T06-002	483-G411-K1M1-A1S0ZN-2A	VG 95345 T15-107	449-K-H-FN-Si-350A
VG 95345 T06-003	483-G411-K1M1-A1S0ZN-2,5A	VG 95345 T15-108	449-K-H-FN-Si-400A
VG 95345 T06-004	483-G411-K1M1-A1S0ZN-3A	VG 95345 T15-109	449-K-H-FN-Si-500A
VG 95345 T06-005	483-G411-K1M1-A1S0ZN-4A		-K-H-Si-500A
VG 95345 T06-006	483-G411-K1M1-A1SOZN-5A	VG 95345 T17-001	452-K34-FN2-60A
VG 95345 T06-007	483-G411-K1M1-A1S0ZN-6A	VG 95345 T17-002	452-K34-FN2-70A
VG 95345 T06-008	483-G411-K1M1-A1S0ZN-7,5A	VG 95345 T17-003	452-K34-FN2-80A
VG 95345 T06-009	483-G411-K1M1-A1S0ZN-8A	VG 95345 T17-004	452-K34-FN2-90A
VG 95345 T06-010	483-G411-K1M1-A1S0ZN-10A	VG 95345 T17-005	452-K34-FN2-100A
VG 95345 T06-011	483-G411-K1M1-A1SOZN-15A	VG 95345 T17-101	452-K14-LN2-60A
VG 95345 T06-012	483-G411-K1M1-A1S0ZN-16A	VG 95345 T17-102	452-K14-LN2-70A
VG 95345 T06-013	483-G411-K1M1-A1SOZN-20A	VG 95345 T17-103	452-K14-LN2-80A
VG 95345 T06-014	483-G411-K1M1-A1S0ZN-25A	VG 95345 T17-104	452-K14-LN2-90A
VG 95345 T06-101	483-G111-K1M1-A1S1ZN-1A	VG 95345 T17-105	452-K14-LN2-100A
VG 95345 T06-102	483-G111-K1M1-A1S1ZN-2A	VG 95345 T21-001	482-N-MS-0,5A
VG 95345 T06-103	483-G111-K1M1-A1S1ZN-2,5A	VG 95345 T21-002	482-N-MS-1,0A
VG 95345 T06-104	483-G111-K1M1-A1S1ZN-3A	VG 95345 T21-003	482-N-MS-1,5A
VG 95345 T06-105	483-G111-K1M1-A1S1ZN-4A	VG 95345 T21-004	482-N-MS-2,0A
VG 95345 T06-106	483-G111-K1M1-A1S1ZN-5A	VG 95345 T21-005	482-N-MS-3,0A
VG 95345 T06-107	483-G111-K1M1-A1S1ZN-6A	VG 95345 T21-006	482-N-MS-3,5A
VG 95345 T06-108	483-G111-K1M1-A1S1ZN-7,5A	VG 95345 T21-007	482-N-MS-4,0A
VG 95345 T06-109	483-G111-K1M1-A1S1ZN-8A	VG 95345 T21-008	482-N-MS-4,5A
VG 95345 T06-110	483-G111-K1M1-A1S1ZN-10A	VG 95345 T21-009	482-N-MS-5,0A
VG 95345 T06-111	483-G111-K1M1-A1S1ZN-15A	VG 95345 T21-010	482-N-MS-5,5A
VG 95345 T06-112	483-G111-K1M1-A1S1ZN-16A	VG 95345 T21-011	482-N-MS-6,0A
VG 95345 T06-113	483-G111-K1M1-A1S1ZN-20A	VG 95345 T21-012	482-N-MS-6,5A
VG 95345 T06-114	483-G111-K1M1-A1S1ZN-25A	VG 95345 T21-013	482-N-MS-7,0A
		VG 95345 T21-014	482-N-MS-7,5A
VG 95345 T11-001	583-G411-K1M1-A1SOTN-1A	VG 95345 T21-015	482-N-MS-8,0A
VG 95345 T11-002	583-G411-K1M1-A1SOTN-2A	VG 95345 T21-016	482-N-MS-10A
VG 95345 T11-003	583-G411-K1M1-A1SOTN-2,5A	VG 95345 T21-017	482-N-MS-12A
VG 95345 T11-004	583-G411-K1M1-A1S0TN-3A	VG 95345 T21-018	482-N-MS-15A
VG 95345 T11-005	583-G411-K1M1-A1S0TN-4A	VG 95345 T21-019	482-N-MS-20A
VG 95345 T11-006	583-G411-K1M1-A1S0TN-5A	VG 95345 T21-020	482-N-MS-25A
VG 95345 T11-007	583-G411-K1M1-A1SOTN-6A	VG 95345 T21-021	482-N-MS-30A
VG 95345 T11-009	583-G411-K1M1-A1S0TN-8A	VG 95345 T21-022	482-N-MS-35A $482-\mathrm{N}-\mathrm{MS}-40 \mathrm{~A}$
VG 95345 T11-010	583-G411-K1M1-A1S0TN-10A	VG 95345 T21-024	482-N-MS-45A
VG 95345 T11-011	583-G411-K1M1-A1SOTN-15A	VG 95345 T21-025	482-N-MS-50A
VG 95345 T11-012	583-G411-K1M1-A1SOTN-16A		
VG 95345 T11-013	583-G411-K1M1-A1S0TN-20A	VG 95345 T21-101	482-MS-0,5A
VG 95345 T11-014	583-G411-K1M1-A1S0TN-25A	VG 95345 T21-102	482-MS-1,0A
		VG 95345 T21-103	482-MS-1,5A
VG 95345 T11-101	583-G111-K1M1-A1S1UN-1A	VG 95345 T21-104	482-MS-2,0A
VG 95345 T11-102	583-G111-K1M1-A1S1UN-2A	VG 95345 T21-105	482-MS-3,0A
VG 95345 T11-103	583-G111-K1M1-A1S1UN-2,5A	VG 95345 T21-106	482-MS-3,5A
VG 95345 T11-104	583-G111-K1M1-A1S1UN-3A	VG 95345 T21-107	482-MS-4,0A
VG 95345 T11-105	583-G111-K1M1-A1S1UN-4A	VG 95345 T21-108	482-MS-4,5A
VG 95345 T11-106	583-G111-K1M1-A1S1UN-5A	VG 95345 T21-109	482-MS-5,0A
VG 95345 T11-107	583-G111-K1M1-A1S1UN-6A	VG 95345 T21-110	482-MS-5,5A
VG 95345 T11-108	583-G111-K1M1-A1S1UN-7,5A	VG 95345 T21-111	482-MS-6,0A
VG 95345 T11-109	583-G111-K1M1-A1S1UN-8A	VG 95345 T21-112	482-MS-6,5A
VG 95345 T11-110	583-G111-K1M1-A1S1UN-10A	VG 95345 T21-113	482-MS-7,0A
VG 95345 T11-111	583-G111-K1M1-A1S1UN-15A	VG 95345 T21-114	482-MS-7,5A
VG 95345 T11-112	583-G111-K1M1-A1S1UN-16A	VG 95345 T21-115	482-MS-8,0A
VG 95345 T11-113	583-G111-K1M1-A1S1UN-20A	VG 95345 T21-116	482-MS-10A
VG 95345 T11-114	583-G111-K1M1-A1S1UN-25A	VG 95345 T21-117	482-MS-12A
VG 95345 T15-001		VG 95345 T21-118	482-MS-15A
	449-K-H-FN-125A	VG 95345 T21-119	482-MS-20A
VG 95345 T15-002	449-K-H-FN-160A 449-K-H-FN-200A	VG 95345 T21-120	482-MS-25A
VG 95345 T15-004	449-K-H-FN-200A $449-\mathrm{K}-\mathrm{H}-\mathrm{FN}-225 \mathrm{~A}$	VG 95345 T21-121	482-MS-30A
VG 95345 T15-005	449-K-H-FN-250A	VG 95345 T21-123	482-MS-35A
VG 95345 T15-006	449-K-H-FN-315A	VG 95345 T21-124	482-MS-45A
VG 95345 T15-007	449-K-H-FN-350A	VG 95345 T21-125	482-MS-50A
VG 95345 T15-008	449-K-H-FN-400A		
VG 95345 T15-009	449-K-H-FN-500A	VG 95345 T23 A	X 20080201
VG 95345 T15-101	449-K-H-FN-Si-125A	VG 95345 T23 B	X 20080108
VG 95345 T15-102	449-K-H-FN-Si-160A	VG 95345 T23 D	X20080301
VG 95345 T15-103	449-K-H-FN-Si-200A		
VG 95345 T15-104	449-K-H-FN-Si-225A		
VG 95345 T15-105	449-K-H-FN-Si-250A		



## Cross Reference List of EN military part numbers versus E-T-A part numbers

EN/MS Number	E-T-A Type	MS Number	E-T-A Type
EN 2495-01A M	4120-G111-K1M1-A1S0ZN-1A	MS 3320-5VL	483-W533-J1M1-B2S0Z-5A
EN 2495-02A M	4120-G111-K1M1-A1S0ZN-2A	MS 3320-6VL	483-W533-J1M1-B2S0Z-6A
EN 2495-2A5 M	4120-G111-K1M1-A1S0ZN-2,5A	MS 3320-7.5VL	483-W533-J1M1-B2S0Z-7,5A
EN 2495-03A M	4120-G111-K1M1-A1S0ZN-3A	MS 3320-10VL	483-W533-J1M1-B2S0Z-10A
EN 2495-05A M	4120-G111-K1M1-A1S0ZN-5A	MS 3320-15VL	483-W533-J1M1-B2S0Z-15A
EN 2495-7A5 M	4120-G111-K1M1-A1S0ZN-7,5A	MS 3320-20VL	483-W533-J1M1-B2S0Z-20A
EN 2495-10A M	4120-G111-K1M1-A1S0ZN-10A		
EN 2495-15A M	4120-G111-K1M1-A1S0ZN-15A	MS 14154-1	583-G533-J1M1-B2S0X-1A
EN 2495-20A M	4120-G111-K1M1-A1S0ZN-20A	MS 14154-2	583-G533-J1M1-B2S0X-2A
EN 2495-25A M	4120-G111-K1M1-A1S0ZN-25A	MS 14154-2.5	583-G533-J1M1-B2S0X-2,5A
		MS 14154-3	583-G533-J1M1-B2S0X-3A
EN 2495-01A U	4120-G111-J2M1-K5SOZN-1A	MS 14154-4	583-G533-J1M1-B2S0X-4A
EN 2495-02A U	4120-G111-J2M1-K5SOZN-2A	MS 14154-5	583-G533-J1M1-B2S0X-5A
EN 2495-2A5 U	4120-G111-J2M1-K5SOZN-2,5A	MS 14154-6	583-G533-J1M1-B2S0X-6A
EN 2495-03A U	4120-G111-J2M1-K5S0ZN-3A	MS 14154-7.5	583-G533-J1M1-B2S0X-7,5A
EN 2495-05A U	4120-G111-J2M1-K5S0ZN-5A	MS 14154-10	583-G533-J1M1-B2S0X-10A
EN 2495-7A5 U	4120-G111-J2M1-K5SOZN-7,5A	MS 14154-15	583-G533-J1M1-B2S0X-15A
EN 2495-10A U	4120-G111-J2M1-K5S0ZN-10A	MS 14154-20	583-G533-J1M1-B2S0X-20A
EN 2495-15A U	4120-G111-J2M1-K5SOZN-15A		
EN 2495-20A U	4120-G111-J2M1-K5SOZN-20A		

MS 3320-1 483-G533-J1M1-B2S0Z-1A
MS 3320-2
MS 3320-2.5
MS 3320-3
MS 3320-4
MS 3320-5
MS 3320-6
MS 3320-7.5
MS 3320-10
MS 3320-15
MS 3320-20
MS 3320-1L MS 3320-2L MS 3320-2.5L MS 3320-3L MS 3320-4L MS 3320-5L MS 3320-6L MS 3320-7.5L MS 3320-10L MS 3320-15L MS 3320-20L

MS 3320-1V
MS 3320-2V MS 3320-2.5V MS 3320-3V MS 3320-4V MS 3320-5V MS 3320-6V MS 3320-7.5V MS 3320-10V MS 3320-15V MS 3320-20V

MS 3320-1VL MS 3320-2VL MS 3320-2.5VL MS 3320-3VL MS 3320-4VL

483-G533-J1M1-B2S0Z-1A 483-G533-J1M1-B2SOZ-2A 483-G533-J1M1-B2SOZ-2,5A 483-G533-J1M1-B2S0Z-3A 483-G533-J1M1-B2SOZ-4A 483-G533-J1M1-B2SOZ-5A 483-G533-J1M1-B2SOZ-6A 483-G533-J1M1-B2SOZ-7,5A 483-G533-J1M1-B2SOZ-10A 483-G533-J1M1-B2SOZ-15A 483-G533-J1M1-B2SOZ-20A

483-L533-J1M1-B2SOZ-1A 483-L533-J1M1-B2SOZ-2A 483-L533-J1M1-B2SOZ-2,5A 483-L533-J1M1-B2SOZ-3A 483-L533-J1M1-B2S0Z-4A 483-L533-J1M1-B2SOZ-5A 483-L533-J1M1-B2SOZ-6A 483-L533-J1M1-B2S0Z-7,5A 483-L533-J1M1-B2SOZ-10A 483-L533-J1M1-B2SOZ-15A 483-L533-J1M1-B2SOZ-20A

483-V533-J1M1-B2S0Z-1A 483-V533-J1M1-B2S0Z-2A 483-V533-J1M1-B2SOZ-2,5A 483-V533-J1M1-B2S0Z-3A 483-V533-J1M1-B2SOZ-4A 483-V533-J1M1-B2S0Z-5A 483-V533-J1M1-B2SOZ-6A 483-V533-J1M1-B2SOZ-7,5A 483-V533-J1M1-B2SOZ-10A 483-V533-J1M1-B2SOZ-15A 483-V533-J1M1-B2SOZ-20A

483-W533-J1M1-B2S0Z-1A 483-W533-J1M1-B2S0Z-2A 483-W533-J1M1-B2SOZ-2.5A 483-W533-J1M1-B2S0Z-3A 483-W533-J1M1-B2SOZ-4A

MS 14154-1 MS 14154-2 54-2 MS 14154-4 MS 14154-5 MS 14154-6 MS 14154-7.5 MS 14154-15 MS 14154-20

483-W533-J1M1-B2S0Z-5A 483-W533-J1M1-B2SOZ-6A 483-W533-J1M1-B2SOZ-7,5A 483-W533-J1M1-B2S0Z-10A 483-W533-JTM1-B2SOZ-15A

583-G533-J1M1-B2S0X-1A 583-G533-J1M1-B2S0X-2A 583-G533-J1M1-B2SOX-2,5A 583-G533-J1M1-B2S0X-3A 583-G533-J1M1-B2S0X-4A 33-JIM1-B2SOX-5A 3-G533-J1M1-B2SOX-6A 583-G533-J1M1-B2SOX-7,5A 583-G5 583-G533-J1M1-B2SOX-20A

## Description

Single pole high performance version of type 2-5700 (section 1) thermal circuit breaker, with push-to-reset tease free, trip-free, snap action mechanism (R-type TO CBE to EN 60 934). Designed for threadneck panel mounting and for applications with a high fault current switching requirement.

## Typical applications

Extra low voltage systems, industrial equipment.

## Accessories

X 20079902 Water splash cover/knurled nut assembly.
X 20079901 As above with the cover bonded to the nut for extra retention.
X 200798 01/02 As X200 79902 and 01 above but featuring a slotted knurled ring for wrench front of panel tightening.
X $21073901 \quad$ Water splash cover/hex nut. The concertina design is extended when the button trips to the OFF position.

## Ordering information


*mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current   rating $(A)$	Internal   resistance $(\Omega)$	Current   rating $(A)$	Internal   resistance $(\Omega)$
8	$<0.02$	14	$<0.02$
10	$<0.02$	15	$<0.02$
12	$<0.02$	16	$<0.02$



402-..

## Technical data

Voltage rating	AC $250 \mathrm{~V} ; \mathrm{DC} \mathrm{28} \mathrm{V}$
Current rating range	$8 \ldots .16 \mathrm{~A} \mathrm{(20...25} \mathrm{~A} \mathrm{to} \mathrm{special} \mathrm{order)}$
Typical life	4,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-30 \ldots+60{ }^{\circ} \mathrm{C}$
Insulation co-ordination	Rated impulse Pollution   withstand voltage degree   (IEC 664 and 664A)   2.5 kV   (threadneck should be earthed/grounded)
Dielectric strength	Test voltage   (IEC 664 and 664A)   operating area
AC 2000 V	

## 

## Dimensions

402-P10

blade terminals DIN 46244-A6.3-0.8

-K14


Typical time/current characteristics at $23^{\circ} \mathrm{C}$


Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

## Accessories

Water splash cover, transparent Y 30053801

+ knurled nut Y 30062801
X 20079902 (IP64)
X 20079901 bonded to nut (IP64)


3/8-27 UNS-2B

Splash cover, transparent/ knurled nut assembly (IP64) X 20079801
X 20079802 bonded to nut


Splash cover, transparent/ hex nut assembly (IP64) X 21073901



## Description

Single, double and three pole high performance thermal-magnetic circuit breakers with tease-free, trip-free, snap action mechanism and toggle actuation (S-type TM CBE to EN 60 934; also to EN 60 947). Designed for rail, panel or surface mounting. Available with a choice of characteristic curves and optional auxiliary contacts.

## Typical applications

Motors, generators, transformers, thyristor and silicon rectifiers.

## Accessories

X 21111801 Single pole splashcover with fixing plate.
X 21111901 Two pole splashcover with fixing plate.
X 21170501 Terminal insulation cover for use with types 410, 520 and 530 - two per pole required.

## Interrupting capacity to IEC 947/EN 60947

AC voltage						
Number of poles	Voltage rating	Interrupting capacity $\mathrm{I}_{\mathrm{N}}=12-125 \mathrm{~A}$	Powe factor		Interrupting capacity $\mathrm{I}_{\mathrm{N}}=7+10 \mathrm{~A}$	Power factor
1	AC 240 V	5,000 A	$\cos \varphi$	0.7	3,500 A	$\cos \varphi=0.8$
2	AC 240 V	8,000 A	$\cos \varphi$	0.7	6,000 A	$\cos \varphi=0.7$
3	3 AC 415 V	5,000 A	$\cos \varphi$	0.7	3,000 A	$\cos \varphi=0.85$
3	3 AC 500 V	4,000 A	$\cos \varphi$	0.8	2,500 A	$\cos \varphi=0.85$
3	3 AC 660 V	2,000 A	$\cos \varphi$	0.85	2,000 A	$\cos \varphi=0.85$
DC voltage						
Number of poles	Voltage rating	Interrupting capacity				Time constant
1	DC 110 V	3,000 A	$3,000 \mathrm{~A}$ L			$\mathrm{L} / \mathrm{R}=13 \mathrm{~ms}$
1	DC 110 V	$5,000 \mathrm{~A}$		$3,500 \mathrm{~A} \quad \mathrm{~L}$		$L / R=5 \mathrm{~ms}$
2	DC 110 V	5,000 A		3,000 A L/		$\mathrm{L} / \mathrm{R}=13 \mathrm{~ms}$
2	DC 110 V	10,000 A		6,000 A L		$L / R \approx 0 \mathrm{~ms}$
2	DC 220 V	2,000 A		2,000 A		$\mathrm{L} / \mathrm{R}=13 \mathrm{~ms}$
2	DC 220 V	3,000 A		3,000 A L/R		$\mathrm{L} / \mathrm{R} \approx 0 \mathrm{~ms}$

Standard current ratings and typical internal resistance values

Curves 01, 02, 04, 05:   Current   rating (A)   10	Internal resistance   $(\Omega)$ per pole	Curves B3, C3:   Current   rating (A)	Internal resistance   $\Omega)$ per pole
16	0.033	7	0.033
20	0.015	10	0.015
25	0.010	12	0.015
32	0.0062	16	0.010
40	0.0039	20	0.0062
50	0.0031	25	0.0039
63	0.0022	32	0.0031
80	$\leq 0.002$	40	0.0022
90	$\leq 0.002$	50	$\leq 0.002$
100	$\leq 0.002$	63	$\leq 0.002$
125	$\leq 0.002$	80	$\leq 0.002$

## Approvals

Authority	Voltage ratings	Current ratings
LRoS	3 AC 415 V	
BV (except type 530)	AC 240 V, DC 110 V	$16 \ldots 125 \mathrm{~A}$



## Technical data

Voltage rating	AC 240 V , 3 AC 415 V , 3 AC 500 V , 3 AC 660 V $(50 / 60 \mathrm{~Hz})$,   DC 110 V; DC 220 V series connection
Current rating range	10... 125 A (EN 60947), curves 01/02/04/05 7... 100 A (EN 60898), curves B3/C3
Auxiliary circuit	$\begin{aligned} & 6 \text { A, AC } 240 \mathrm{~V} \text { or DC } 28 \mathrm{~V} \text {; } \\ & 1 \text { A, DC } 110 \mathrm{~V} \end{aligned}$
Typical life	10,000 operations at $1 \mathrm{xI}_{\mathrm{N}}$ 20,000 operations mechanical
Ambient temperature	$-20 . .+60{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   6 kV 3
Dielectric strength (IEC 664 and 664A) operating area pole/pole main circuit/aux.circuit aux. circuit 11-12/13-14	Test voltage AC 3300 V AC 3300 V AC 2200 V AC 1000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Degree ef protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$\begin{aligned} & \text { curves } 02 / 04 / 05 / \mathrm{B} 3 / \mathrm{C} 3: \\ & 4 \mathrm{~g}(60-500 \mathrm{~Hz}) \pm 0.30 \mathrm{~mm}(10-60 \mathrm{~Hz}) \\ & \text { curve } 01: \\ & 3 \mathrm{~g}(60-500 \mathrm{~Hz}) \pm 0.23 \mathrm{~mm}(10-60 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6 \text {, Test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	curves 02/04/05/B3/C3:   $50 \mathrm{~g}(11 \mathrm{~ms})$ directions 1, 2, 3, 4, 5   30 g in direction 6   curve 01:   30 g ( 11 ms ) in directions 1, 2, 3, 4, 5   20 g in direction 6   to IEC 68-27, Test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	410 (1 pole): approx. 290 g 520 (2 pole): approx. 580 g 530 (3 pole): approx. 870 g

##  <br> High Performance Thermal-Magnetic Circuit Breakers 410/520/530-.

## Ordering information


$520-\mathrm{K}-1-01-\square-10 \mathrm{~A}$ ordering example
The exact number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

## Mounting methods



## Dimensions


top-hat rail DIN EN 50022-35x7.5
G profile rail DIN EN 50035-G32 (not shown)

M3.5 - thread max. 9 mm deep
tightening torque max. 0.55 Nm


Current   rating	Dimensions				Terminal	Max. tightening   torque
	B	C	D	E		
	M5	13	114	7	pressure plate	2.0 Nm
$\leq 63 \mathrm{~A}$	M6	15.4	120	9	pressure plate	2.5 Nm
$\leq 125 \mathrm{~A}$	M6	15.4	120	9	terminal screw	2.5 Nm



## 

Typical time/current characteristics at $23^{\circ} \mathrm{C}$


Magnetic trip curves B3,C3

N.B.

Magnetic tripping currents are increased by $20 \%$ on DC supplies.

Internal connection diagram

Type 410-K


Type 520-K-Si


Type $530-\mathrm{K}-\mathrm{Si}$
Type 530-K-3Si


Shock directions

Type 410-K-Si


Type 520-K-2Si



## Accessories

Water splash cover with fixing plate (IP 54) for type 410 X 21111801


Water splash cover with fixing plate (IP 54) for type 520
X 21111901


Terminal insulation cover for types 410/520/530-K X 21170501 (1 set = 2 pcs per pole)


## Description

Single pole high performance thermal circuit breaker with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). An indicator band on the push button shows clearly the tripped/off position. Threadneck panel mounted and available in tracked vehicle, aircraft and general purpose versions.

## Typical applications

Extra low voltage wiring systems on all types of vehicles for land, sea and air; defence equipment; battery powered machines.

## Accessories

X 20080108 Water splash cover/hex nut assembly. The concertina design is extended when the button trips to the OFF position. Plated finish.
X 20080103 As above but blackened finish.
X 20080201 Splash seal/hex nut assembly, allowing full visibility of the push button actuator. Plated finish.
X 20080202 As above but blackened finish.
X 20080301 Screw-tightened clamp-on actuator extension to aid manual operation.

## Ordering information



412 K14 - LN2 - 10 A ordering example

Standard current ratings and typical voltage drop values

Current	Voltage drop (mV)		Current		Voltage drop (mV)	
rating (A)	- LN/N	- FN	rating (A)	-LN/N	-FN	
6	-	$\leq 300$	15	$\leq 200$	$\leq 200$	
7.5	$\leq 300$	$\leq 250$	20	$\leq 200$	$\leq 200$	
8	$\leq 250$	$\leq 200$	25	$\leq 200$	$\leq 200$	
10	$\leq 200$	$\leq 200$	30	$\leq 200$	-	
12	$\leq 200$	$\leq 200$	35	$\leq 200$	-	
13	$\leq 200$	$\leq 200$				



412-...

## Technical data

Voltage rating	AC 115 V ( 400 Hz ); DC 28 V
Current rating range	$\begin{aligned} & \text { 6... } 25 \text { A (-FN) } \\ & \text { 7.5... } 35 \text { A (-LN/-N), } \end{aligned}$   lower current ratings to special order
Typical life	4,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-55 \ldots+75{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   1.5 kV 3
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 1500 V
Insulation resistance	> $100 \mathrm{M} \Omega$ (DC 500 V )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	AC $115 \mathrm{~V}(400 \mathrm{~Hz}): 1000 \mathrm{~A}$ DC 28 V : 6000 A
Interrupting capacity (UL 1077)	DC 28 V : 6000 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$\begin{aligned} & 10 \mathrm{~g}(56-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz}) \\ & \text { to VG } 95210 \text {, sheet } 19 / \\ & \text { MIL-STD-202, meth. 204/ } \\ & \text { IEC 68-2-6, test Fc } \end{aligned}$
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to VG } 95210 \text {, sheet } 28 / \\ & \text { MIL-STD-202, meth. } 213 / \\ & \text { IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at $5 \%$ salt mist, to VG 95210, sheet 2/   MIL-STD-202, meth. 101/ IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH to VG 95210, sheet 7/ MIL-STD-202, meth. 106/ IEC 68-2-3, test Ca
Mass	approx. 40 g

## Approvals

Test authority	Voltage ratings	Current ratings
UL	DC 28 V	$0.1 \ldots . .35 \mathrm{~A}$
LRoS	DC 28 V	$6 . .25 \mathrm{~A}$

## 

## Dimensions

## 412-K54-FN2/N2

412-K14/K54-FN2/N2

412-K14-LN2

412-K14/K54-LN2

Internal connection diagram


Typical time/current characteristics



Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit breaker rating required.

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

$$
\begin{array}{|c|c|c|c|c|c|c}
-20 & -10 & 0 & +23 & +40 & +50 & +60 \\
\hline 0.76 & 0.84 & 0.92 & 1 & 1.08 & 1.16 & 1.24
\end{array}
$$

Accessories (approved to VG 95345, part 23)

## Splash cover/hex nut assembly

 with $O$ ring (IP 66)X 20080108 nickel plated nut, translucent cover X 20080103 matt black finish nut, black cover

Splash cover black/hex nut assembly with $O$ ring (IP 54)
X 20080201
nickel plated nut

## X 20080202

matt black finish nut


## Actuator extension

(black)
X 20080301


## Description

Single pole high performance thermal circuit breaker with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). An indicator band on the push button shows clearly the tripped/off position. Threadneck panel mounted and available in tracked vehicle, aircraft and general purpose versions.

## Typical applications

Extra low voltage wiring systems on all types of vehicles for land, sea and air; defence equipment; battery powered machines.

## Accessories

X 20080108 Water splash cover/hex nut assembly. The concertina design is extended when the button trips to the OFF position. Plated finish.
X 20080103 As above but blackened finish.
X 20080201 Splash seal/hex nut assembly, allowing full visibility of the push button actuator. Plated finish
X 20080202 As above but blackened finish.
X 20080301 Screw-tightened clamp-on actuator extension to aid manual operation.

## Ordering information



Standard current ratings and typical voltage drop values

Current	Voltage drop (mV)   rating (A)		$-\mathrm{LN} / \mathrm{N}$	-FN	Current
rating (A)	Voltage drop (mV)				
30	$\leq 250$	$\leq 250$	50	$\leq 200$	$\leq 200$
35	$\leq 250$	$\leq 250$	60	$\leq 200$	-
40	$\leq 200$	$\leq 200$	70	$\leq 200$	-
45	$\leq 200$	$\leq 200$			



## Technical data

Voltage rating	AC $115 \mathrm{~V}(400 \mathrm{~Hz})$; DC 28 V
Current rating range	$\begin{aligned} & 30 \ldots 50 \mathrm{~A}(-\mathrm{FN}) \\ & 30 \ldots 70 \mathrm{~A}(-\mathrm{LN} /-\mathrm{N}) \text {, } \end{aligned}$
Typical life	2,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-55 \ldots+75{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   1.5 kV 3
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 1500 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ )
Interrupting capacity Im	AC $115 \mathrm{~V}(400 \mathrm{~Hz}): 1000 \mathrm{~A}$ DC 28 V : 6000 A
Interrupting capacity (UL 1077)	DC 28 V: 6000 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$\begin{aligned} & 10 \mathrm{~g}(56-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz}) \\ & \text { to VG } 95210, \text { sheet } 19 / \\ & \text { MIL-STD-202, meth. } 204 / \\ & \text { IEC 68-2-6, test Fc } \end{aligned}$
Shock	$\begin{aligned} & 50 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to VG 95210, sheet } 28 / \\ & \text { MIL-STD-202, meth. } 213 / \\ & \text { IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at $5 \%$ salt mist, to VG 95210, sheet $2 /$ MIL-STD-202, meth. 101/ IEC 68-2-11, Test Ka
Humidity	240 hours at 95 \% RH to VG 95210, sheet 7/ MIL-STD-202, meth. 106/ IEC 68-2-3, test Ca
Mass	approx. 65 g

## Approvals

Test authority	Voltage ratings	Current ratings
UL	DC 28 V	$30 \ldots .70 \mathrm{~A}$
LRoS, BV	DC 28 V	$30 \ldots . .70 \mathrm{~A}$
QPL Sweden	DC 28 V	$30 \ldots . .50 \mathrm{~A}$

## 莌㢂可込 High Performance Thermal Circuit Breaker 413－．．．



Internal connection diagram


Typical time／current characteristics


413－．．LN／N 30．．． 70 A


Time／current characteristics are calibrated at $23^{\circ} \mathrm{C}$（see page 8）．For operation at other temperatures please apply the factors below to determine the circuit breaker rating required．

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

## Accessories（approved to VG 95345，part 23）

Splash cover／hex nut assembly with $O$ ring（IP 66）
X 20080108 nickel plated nut， translucent cover X 20080103
matt black finish nut， black cover

Splash cover black／hex nut assembly with $O$ ring（IP 54）
X 20080201
nickel plated nut
X 20080202
matt black finish nut


## Actuator extension

（black）
X 20080301


## Description

Single pole high performance version of type 3200 (section 2) thermalmagnetic circuit breaker with tease-free, trip-free, snap action mechanism and additional manual release (M-type TM CBE to EN 60934). Designed for plug-in mounting with E-T-A sockets 10R or 16. Available with optional silver plated terminal pins for use in corrosive environments.
Complies with CBE standard EN 60934 (IEC 934).

## Typical applications

Extra low voltage systems, control equipment.

Accessories

10R-K10	Modular snap-together surface mounted sockets, each accommodating two plug-in circuit breakers. With screw terminals.
10R-P10	As above but with push-on terminals.
10R-A10	As above but with a combination of screw and push-on terminals.
Y 30116602	Two-way brass connecting/bus bar links for type 10 sockets
Y 30116601	Four-way brass connecting/bus bar links fortype 10 sockets
16	Single socket for symmetric EN rail mounting.
X 20040901	Adapter for mounting socket type 16 to asymmetric rail (G-profile)
Y 30147701	Blanking plug with insulated pins, for socket 10.
X 21058901	50 -way $1.5 \mathrm{~mm}^{2}$ cable links with pre-fitted connection lugs for type 10F-K10/-A10 sockets.
X 21058902	As above but with $2.5 \mathrm{~mm}^{2}$ cable links.
X 21058801	100 -way $1.5 \mathrm{~mm}^{2}$ cable links, brown, with pre-fitted push-on connectors for type 10F-P10 sockets.
X 21058802	As above but with $2.5 \mathrm{~mm}^{2}$ cable links, black
X 21058803	As above, but red
X 21058804	As above, but blue
X 20080010	Terminal for mounting rack

## Ordering information



Standard current ratings and typical internal resistance values

Current   rating (A)	Internal   resistance $(\Omega)$	Current   rating (A)	Internal   resistance $(\Omega)$
0.05	534	4	0.1407
0.1	149	5	0.1068
0.2	56	6	0.0627
0.3	24.2	7	0.0491
0.4	13.65	8	$\leq 0.02$
0.5	8.08	10	$\leq 0.02$
0.6	5.25	12	$\leq 0.02$
0.8	3.55	14	$\leq 0.02$
1	2.02	15	$\leq 0.02$
1.5	0.904	18	$\leq 0.02$
2	0.514	20	$\leq 0.02$
2.5	0.36	25	$\leq 0.02$
3	0.23		



## Technical data

Voltage rating	AC $250 \mathrm{~V}(50 / 60 \mathrm{~Hz}$ ); DC 28 V
Current rating range	0.05... 25 A
Typical life	4,000 operations at $2 \times I_{N}$
Ambient temperature	$-30 . .+60{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Interrupting capacity Icn	0.05...5 A 400 A
	5.5..7.5 A 750 A
	8... 25 A 1500 A (with back-up fuse NH 40 A to VDE 0636)


Degree of protection   (IEC 529/DIN 40050)	operating area IP 40   terminal area IP 00
Vibration	$5 \mathrm{~g} \mathrm{(57-500} \mathrm{Hz)} \pm 0.38 \mathrm{~mm} \mathrm{(10-57} \mathrm{Hz)}$   to IEC 68-2-6, test Fc   10 frequency cycles/axis
Shock	$25 \mathrm{~g} \mathrm{(11} \mathrm{ms)}$   to IEC 68-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist   to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH   to IEC 68-2-3, test Ca
Mass	approx. 50 g

## Approvals

Authority	Voltage ratings	Current ratings
VDE	AC $250 \mathrm{~V}, \mathrm{DC} 28 \mathrm{~V}$	$0.05 \ldots 25 \mathrm{~A}$

## 

## Dimensions



Installation drawing

Internal connection diagram


Time/current characteristics are calibrated at $23^{\circ} \mathrm{C}$ (see page 8). For operation at other temperatures please apply the factors below to determine the circuit other temperatures pleas

Ambient temperature ${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Multiplication factor	0.76	0.84	0.92	1	1.08	1.16	1.24

N.B.

Magnetic tripping currents are increased by $20 \%$ on DC supplies.

## Typical time/current characteristics

0,05... 7 A
AC

8... 16 A

18... 25 A (for $I_{N}>20$ A $50 \%$ ON duty)

AC



## Description

Single pole high performance versions of types 3300 and 3400 (section 2) thermal-magnetic circuit breakers with tease-free, trip-free, press-to-reset, snap action mechanism (R-type TM CBE to EN 60934; M-type with manual release -H ). Available with fast acting and standard magnetic tripping characteristics - types 433 and 434 - both with threadneck panel mounting. Options include a separate shunt tap terminal (-A3), and pull-to-trip manual release (-H).
Complies with CBE standard EN 60934 (IEC 934).

## Typical applications

Industrial equipment, control systems, power supplies.

## Accessories

X 20129601
Concertina style splash cover/hex nut assembly for version with press-to-reset only (-IG2), without Oring.
X 20080108 As above, but translucent, with O-ring
X 21066301 Splash seal/knurled nut assembly, allowing full visibility of the push button actuator, for version with press-to-reset only (-IG2).

## Ordering information



The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance ( $\Omega$ )		Current rating (A)	Internal resistance ( $\Omega$ )	
	433-...   (fast acting)	434-...   (standardl)		433-...   (fast acting)	434-... (standard)
0.05	477	447	2.5	0.27	0.24
0.1	131	131	3	0.183	0.19
0.2	41	39.6	4	0.109	0.090
0.3	32	19.3	5	0.066	0.061
0.4	10.3	10.4	6	0.046	0.041
0.5	7.2	7.1	7	0.032	0.034
0.6	4.8	4.3	8	$\leq 0.02$	$\leq 0.02$
0.8	2.50	2.5	10	$\leq 0.02$	$\leq 0.02$
1	1.93	1.67	12	$\leq 0.02$	$\leq 0.02$
1.5	0.81	0.60	15	$\leq 0.02$	$\leq 0.02$
2	0.44	0.38	16	$\leq 0.02$	$\leq 0.02$



433-... 434-...

## Technical data

Voltage rating	AC $250 \mathrm{~V}(50 / 60 \mathrm{~Hz}$ ); DC 28 V
Current rating range	0.05... 16 A
Typical life	4,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-30 . . .+60{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	0.05..5 A 400 A   5.5..7.5 A 750 A   8...16 A 1000 A (in accordance with        VDE 0636/IEC 269)
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$\begin{aligned} & 5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6, \text { test } \mathrm{Fc} \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist to IEC 68-2-11, test Ka
Humidity	240 hours at $95 \%$ RH to IEC 68-2-3, test Ca
Mass	type 433: approx. 55 g   type 434: approx. 50 g

## Approvals

Authority	Voltage ratings	Current ratings
VDE, Demko	AC 250 V, DC 28 V	$0.05 \ldots . .16 \mathrm{~A}$

## 

## Dimensions

Version -IG2-P10


## Version -H



Installation drawing


Internal connection diagrams
with shunt terminal -A3


## Terminal design



## 冨根 $\Delta^{\circ}$ High Performance Thermal-Magnetic Circuit Breakers 433/434-...



## 

## Accessories

For push buttons with moulded threadneck M12 (-IG2) (not with manual release -H)

Splash cover black with hex nut assembly
X 20129601 without O-ring (IP 64)
Splash cover translucent with nickel-plated hex nut X 20080108 with $\mathbf{O}$ ring (IP 66)


Splash cover (translucent) with knurled nut assembly X 21066301 (IP 64)


## Description

Single pole high performance thermal magnetic circuit breaker with toggle actuation (S-type TM CBE to EN 60934). Options include auxiliary contacts, a moulded flame retardant enclosure for added environmental protection, and remote operation - disconnection only, or disconnection and re-connection.

## Typical applications

Battery and cable protection for all types of vehicles (including electric), battery powered systems.

## Ordering information



The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.


## Technical data

Voltage rating	DC 144 V (higher voltage ratings to special order)
Current rating range	$40 \ldots 240 \mathrm{~A}$
Auxiliary contact rating	$6 \mathrm{~A} \mathrm{max}$. at DC 28 V; 0.2 A at DC 180 V

Electrical remote disconnection (-FA)

operating voltage	DC 12 V or DC 24 V
operating current	approx. 18 A or 12 A
max. pulse time	$10 \mathrm{~ms}<$ ton $^{2} 20 \mathrm{~ms} /$ toff $>10 \mathrm{~s}$
switching time	$<20 \mathrm{~ms}$

switching time $<20 \mathrm{~ms}$
Electrical remote re-connection (-FC
operating voltage DC 12 V or DC 24 V
operating current approx. 30 A or 15 A
max pulse time
switching time
$0.1 \mathrm{~s}<\mathrm{t}_{\text {ON }}<1.2 \mathrm{~s} / \mathrm{t}_{\text {OFF }}>60 \mathrm{~s}$

Typical life	3,000 operations at $240 \mathrm{~A}, \mathrm{DC} 180 \mathrm{~V}$
	10,000 operations at $240 \mathrm{~A}, \mathrm{DC} 28 \mathrm{~V}$
	20,000 operations mechanical


Ambient temperature	$-40 \ldots+60^{\circ} \mathrm{C}$	
Insulation co-ordination	Rated impulse	Pollution
(IEC 664 and 664 A)	withstand voltage	degree
	6 kV	3

Dielectric strength

Dielectric strength   (IEC 664 and 664 A) operating area main to aux. circuit aux. circuits 11-12 to 13-14	Test voltage   AC 3300 V   AC 2200 V   AC 1000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	$2,000 \mathrm{~A}$ at $\mathrm{DC} 180 \mathrm{~V} ; \mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$ $10,000 \mathrm{~A}$ at $\mathrm{DC} 28 \mathrm{~V} ; \mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$ $7,500 \mathrm{~A}$ at DC 28 V ; L/R $=13 \mathrm{~ms}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40, terminal area IP 00 (IP 54 with enclosure $\mathrm{B} . .$. )
Vibration Curve 06:     Curve 07:	$\begin{aligned} & 3 \mathrm{~g}(60-500 \mathrm{~Hz}), \pm 0.23 \mathrm{~mm}(10-60 \mathrm{~Hz}) \\ & 4 \mathrm{~g}(60-500 \mathrm{~Hz}), \pm 0.30 \mathrm{~mm}(10-60 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6, \text { test Fc, } 10 \text { frequency cycles/axis } \end{aligned}$
Shock Curve 06:	$\begin{aligned} & 20 \mathrm{~g}(11 \mathrm{~ms}) \\ & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	48 hours at $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidity	240 hours at $95 \%$ RH, to IEC 68-2-3, test Ca
Mass	approx. 1000 g (with remote disconnection) approx. 1400 g (with remote disconnection and re-connection)

## Approvals

Authority	Voltage ratings	Current ratings
LRoS, ABS, BV	DC 180 V	$40 \ldots 240 \mathrm{~A}$

## 

## Dimensions



437-K60-1-...-FA

-BC-FA operating range see type 921-...-BC-FA -FC coil shown with type 922-...-FC

Typical time/current characteristics at $23^{\circ} \mathrm{C}$

Curve 06 (fast trip)


Curve 07 (delayed trip)


Internal connection diagram
$\mathrm{I}_{\mathrm{N}} \leq 125 \mathrm{~A}$
$I_{N}>125 A$


## Description

Single pole thermal-magnetic circuit breakers with tease-free, trip-free, press-to-reset snap action mechanism and special dual button manua release which avoids the danger of unintended disconnection (M-type TM CBE to EN 60934). Surface mounted, compact design available with fast acting, standard and delayed switching characteristics. Options include auxiliary contact and remote electrical disconnection.

## Typical applications

Heavy duty vehicles, battery systems, defence equipment.

## Ordering information



## $447-\mathrm{K}-\mathrm{H}-\mathrm{FN}-\square-\square-200 \mathrm{~A}$ ordering example

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current   rating (A)	Internal   resistance ( $\Omega$ )	Current   rating (A)	Internal   resistance ( $\Omega$ )
446	0.006	447	
30	0.0048	100	$<0.002$
40	0.0038	125	$<0.001$
50	0.0028	160	$<0.001$
60	0.0025	225	$<0.001$
70	0.0023	300	$<0.001$
80	0.0019	400	$<0.001$
90	0.0016	449	
100	$<0.001$	125	$<0.001$
125	$<0.001$	160	$<0.001$
150	$<0.001$	225	$<0.001$
170	$<0.001$	315	$<0.001$
200	$<0.001$	350	$<0.001$
225	$<0.001$	400	$<0.001$
250	$<0.001$	500	$<0.001$
300	$<0.001$	only with $50 \%$ ON duty	
350	$<0.001$		
400			



## Technical data

Voltage rating	DC 28 V
Current rating range	type 446: 30...400 A
	type 447: 100..400 A
	type 449: 125...500 A


Auxiliary circuit	10 A
Electrical remote disconnection (-FA)	
operating voltage	DC 12 V or DC 24 V
operating current	approx. 18 A or 12 A
max. pulse time	$10 \mathrm{~ms}<\mathrm{t}_{\mathrm{ON}}<20 \mathrm{~ms} / \mathrm{t}_{\text {off }}>10 \mathrm{~s}$
switching time	$<20 \mathrm{~ms}$
Typical life	1000 operations at $\mathrm{I}_{\mathrm{N}}$
	2000 operations mechanical


Ambient temperature	$-55 \ldots+75{ }^{\circ} \mathrm{C}$	
Insulation co-ordination	Rated impulse	Pollution
(IEC 664 and 664A)	withstand voltage	degree
	1.5 kV	3


Dielectric strength (IEC 664 and 664A) operating area main circuit to auxiliary contacts	Test voltage AC 1000 V   AC 1000 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	10,000 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	without auxiliary contacts:   $10 \mathrm{~g}(56-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz})$ with auxiliary contacts:   $4 \mathrm{~g} \mathrm{( } 56-500 \mathrm{~Hz}) \pm 0.30 \mathrm{~mm}(10-56 \mathrm{~Hz})$   to VG 95210, sheet 19/IEC 68-2-6, test Fc
Shock	without auxiliary contacts: 50 g ( 11 ms ) with auxiliary contacts: 20 g ( 11 ms ) to VG 95210, sheet 28/IEC 68-2-27, test Ea
Corrosion	96 hours at $5 \%$ salt mist to VG 95210, sheet 2/IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to VG 95210, sheet 7/IEC 68-2-3, test C
Mass	approx. 850 g

## Approvals

Authority	Voltage ratings	Current ratings
Type 449:		
VG 95345, part 15	DC 28 V	$125 \ldots . .500 \mathrm{~A}$
Type 447:	DC 28 V	$125 \ldots . .400 \mathrm{~A}$
QPL Sweden		

## 둠ㅁ. High Performance Thermal-Magnetic Circuit Breakers 446/447/449

## Dimensions



Internal wiring diagrams



Typical time/current characteristics of type 446-...


Circuit breakers with remote disconnection facility will trip 10 \% faster.

## Typical time/current characteristics



## Description

Single pole high performance thermal-magnetic circuit breaker, with tease-free, trip-free, snap action mechanism and push/pull on/off actuation (M-type TM CBE to EN 60934). An indicator band on the push button shows clearly the tripped/off position. Threadneck panel mounted in tracked vehicle and aircraft/general purpose versions, with optional fast acting magnetic characteristics.

## Typical applications

Extra low voltage wiring systems on all types of vehicle for land, sea and air; defence equipment; battery powered machines.

## Accessories

X 20080108 Water splash cover/hex nut assembly. The concertina design is extended when the button trips to the OFF position. Plated finish.
X 20080103 As above but matt black finish.
X 20080201 Splash seal/hex nut assembly, allowing full visibility of the push button actuator. Plated finish
X 20080202 As above but blackened finish.
X 20080301 Screw-tightened clamp-on actuator extension to aid manual operation.

## Ordering information



Standard current ratings and typical volt drop values

Current   rating (A)	Volt drop   $(\mathrm{mV})$	Current   rating $(\mathrm{A})$	Volt drop   $(\mathrm{mV})$
50	100	80	135
60	120	90	145
70	125	100	150
75	130		



452-K...


452-AS...

## Technical data

Voltage rating	AC 115 V ( 400 Hz ); DC 28 V
Current rating range	50... 100 A
Typical life	2,500 operations at $\mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-55 . .+75^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   1.5 kV 3
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	$\begin{aligned} & \text { AC } 115 \mathrm{~V}: 1500 \mathrm{~A} \\ & \text { DC } 28 \mathrm{~V}: 6000 \mathrm{~A} \end{aligned}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$10 \mathrm{~g}(55-2000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz})$ to VG 95210, sheet 19/IEC 68-2-6, test Fc
Shock	$\begin{aligned} & 50 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to VG 95210, sheet } 28 / I E C 68-2-27, \text { test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist to VG 95210, sheet 2/IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to VG 95210, sheet 7/IEC 68-2-3, test C
Explosion	to VG 95210, sheet 10/ MIL-STD-202, meth. 109
Mass	approx. 122 g

## Approvals

Authority	Voltage ratings	Current ratings
VG 95345, part 17	DC 28 V	$60 \ldots 100 \mathrm{~A}$
QPL, Canada	DC 28 V	$60 \ldots .100 \mathrm{~A}$
QPL, Sweden	DC 28 V	$60 \ldots 100 \mathrm{~A}(452-\mathrm{K} 34-\mathrm{FN})$
LRoS, BV	DC 28 V	$50 \ldots .100 \mathrm{~A}$

## 



## 

Internal connection diagram


Typical time/current characteristics

452-... (standard delay)


$-\quad-\quad$| $+75{ }^{\circ} \mathrm{C}$ |
| ---: |
| + |
| $+167^{\circ} \mathrm{F}$ |
| $+23^{\circ} \mathrm{C}$ |
$+-73.4^{\circ} \mathrm{F}$
$-55^{\circ} \mathrm{C}$
$-67^{\circ} \mathrm{F}$


magnetic trip		
temp.   $\left({ }^{\circ} \mathrm{C}\right)$	magn. holding   current (A)	magn. trip   current (A)
	DC	
-55	$\leq 1280$	$\geq 2160$
+23	$\leq 1250$	$\geq 2090$
+75	$\leq 1140$	$\geq 2020$
	AC	
-55	$\leq 1070$	$\geq 1800$
+23	$\leq 1010$	$\geq 1740$
+75	$\leq 950$	$\geq 1680$

452-2-... (fast trip)


## Accessories (approved to VG 95345, part 23)

Splash cover/hex nut assembly with $O$ ring (IP 66)
X 20080108 nickel plated nut, translucent cover
X 20080103 matt black finish nut black cover


Splash cover black/hex nut assembly with $O$ ring (IP 54)
X 20080201 nickel plated nut X 20080202 matt black finish nut


Actuator extension (black) X 20080301


## Description

Single pole compact high performance thermal circuit breaker with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). An indicator band on the push button shows clearly the tripped/off position. Threadneck panel mounted in tracked vehicle and aircraft/ general purpose versions, with optional auxiliary contacts.

## Typical applications

Extra low voltage wiring systems on all types of vehicles for land, sea and air; defence equipment; battery powered machines.

## Accessories

X 20080108 Water splash cover/hex nut assembly. The concertina design is extended when the button trips to the OFF position. Plated finish. X 20080103 As above but blackened finish.
X 20080201 Splash seal/hex nut assembly, allowing full visibility of the push button actuator. Plated finish.
X 20080202 As above but blackened finish.
X 20080301 Screw-tightened clamp-on actuator extension to aid manual operation.

## Ordering information



Previous ordering codes:
482-N-MS $=482-\mathrm{G} 111-\mathrm{K} 1 \mathrm{M} 1-\mathrm{A} 1 \mathrm{SO}-\ldots \mathrm{A}$ vehicle circuit breaker 482-MS $=482-G 212-\mathrm{K} 1 \mathrm{M} 1-\mathrm{A} 1 \mathrm{~S} 0-\ldots \mathrm{A}$ aircraft circuit breaker


482-G1/G2...
without aux. contacts
with aux. contacts

## Technical data

Voltage rating	AC 115 V ( 400 Hz ); DC 28 V
Current rating range	0.1..50 A
Auxiliary circuit	0.5 A, DC 28 V
Typical life	10,000 operations mechanical 5,000 operations at $I_{N}$
Ambient temperature	$-55 . .+75{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   1.5 kV 3
Dielectric strength (IEC 664 and 664A) operating area main to aux. circuit	Test voltage AC 1500 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	$0.1 \ldots 2.5 \mathrm{~A} 15 \times \mathrm{I}_{\mathrm{N}}$   3..3.5 A 250 A DC / 150 A AC   4...7 A 500 A   7.5...50 A 6000 A DC / 1000 A AC   35...50 A 3000 A DC / 1000 A AC
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$10 \mathrm{~g} \mathrm{( } 55-2000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz})$ to VG 95210, sheet 19/IEC 68-2-6, test Fc
Shock	50 g ( 11 ms ) to VG 95210, sheet 28/IEC 68-2-27, test Ea
Corrosion	48 hours at 5 \% salt mist to VG 95210, sheet 2/IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to VG 95210, sheet 7/IEC 68-2-3, test C
Explosion	to VG 95210, sheet 10/MIL-STD-202, meth. 109
Mass	approx. 43 g without aux. contact approx. 46 g with aux. contact

## Approvals

Authority	Voltage ratings	Current ratings
VG 95345, part 21	DC 28 V	$0.1 \ldots 50 \mathrm{~A}$ for 482-MS/-N-MS
QPL, Canada	DC 28 V	$0.5 \ldots 35 \mathrm{~A}$
LRoS	DC 28 V	$0.1 \ldots 50 \mathrm{~A}$

## 

## Dimensions 482-G1/-G2...

482-G111-K1M1-A1S0


482-G111-K1M1-A1S1
482-G111-K1M1-A1S5


Dimensions 482-G3...

482-G...-J2M2-...
location pin current rating in A


Standard current ratings and typical volt drop values

Current   rating $(\mathrm{A})$	Volt drop   $(\mathrm{mV})$	Current   rating $(\mathrm{A})$	Volt drop   $(\mathrm{mV})$
0.1	16,000	5	350
0.2	8,000	7.5	230
0.5	3,000	10	$<200$
0.8	2,000	15	$<200$
1	1,500	20	$<200$
1.2	1,200	25	$<200$
1.5	1,000	30	$<200$
1.8	850	35	$<200$
2	800	40	$<200$
2.5	700	45	$<200$
3	600	50	$<200$
4	430		

## RED『® High Performance Thermal Circuit Breaker 482-...

Internal connection diagrams


Typical time/current characteristics
0.1...2.5 A

3... 50 A


## Accessories (approved to VG 95345, part 23)

Splash cover/hex nut assembly with $O$ ring (IP 66)
X 20080108 nickel plated nut, translucent cover
X 20080103 matt black finish nut, black cover


Splash cover black/hex nut assembly with O ring (IP 54)
X 20080201 nickel plated nut X 20080202 matt black finish nut


Actuator extension (black) X 20080301


## Description

Single pole, miniaturised, aircraft style thermal circuit breaker with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). An indicator band on the push button shows clearly the tripped/off position. Threadneck panel mounted, available in metric and US (MS 3320) configurations. Advanced two-chamber design contributes to fail-safe operation. Temperature compensated from $-55^{\circ}$ to $+125^{\circ} \mathrm{C}$, with optional auxiliary contacts, and fully approved for use on a wide range of aircraft and equipment. Full military specification ensures suitability for the most demanding applications. For three pole version see type 583.

## Typical applications

Aircraft systems and equipment (fixed wing and helicopters); other extra low voltage wiring applications; defence equipment; communications systems.

## Accessories

X 20080108 Water splash cover/hex nut assembly. The concertina design is extended when the button trips to the OFF position. Plated finish.
X 20080103 As above but blackened finish.
X 20080109 As above, but hex nut 7/16-32, black finish
X 20080201 Splash seal/hex nut assembly, allowing full visibility of the push button actuator. Plated finish.
X 20080202 As above but blackened finish.
X 20080301 Screw-tightened clamp-on actuator extension to aid manual operation.

Standard current ratings and typical volt drop values

Current   rating (A) $)$	Volt drop   $(\mathrm{mV})$	Current   rating $(\mathrm{A})$	Volt drop   $(\mathrm{mV})$
1	750	7.5	230
2	520	10	190
2.5	400	15	190
3	360	20	200
4	350	25	170
5	260		

## Approvals

LN 29886
VG 95345, part 06
prEN 2995
MS 3320,



483-...
without auxiliary contact with auxiliary contact

## Technical data

Voltage rating	AC $115 \mathrm{~V}(400 \mathrm{~Hz}$ ); DC 28 V
Current rating range	1... 25 A
Auxiliary circuit	0.5 A, DC 28 V
Typical life	20,000 operations mechanical or 10,000 operations at $\mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-55 . . .+125^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   1.5 kV 3
Dielectric strength (IEC 664 and 664A) operating area main to aux. circuit	Test voltage AC 1500 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	AC $115 \mathrm{~V}(400 \mathrm{~Hz}):$    $\leq 4 \mathrm{~A}$ 1000 A   5 A 2000 A   $7.5 \ldots 25 \mathrm{~A}$ 2500 A   DC $28 \mathrm{~V}: 1 \ldots 25 \mathrm{~A}$ 6000 A
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration (sinusoidal)	$15 \mathrm{~g}(70-2000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(5-70 \mathrm{~Hz})$ to VG 95210, sheet 19/ IEC 68-2-6, test Fc/ISO 7137
Vibration (random)	$16.4 \mathrm{~g} \mathrm{rms}, 0.2 \mathrm{~g}^{2} / \mathrm{Hz} \pm 1.5 \mathrm{~dB}$ to VG 95210, sheet 29/ISO 7137
Acceleration	17 g , to ISO 2669
Shock	75 g (11 ms) to VG 95210, sheet 28/ IEC 68-2-27, test Ea/ISO 7137
Corrosion	96 hours at $5 \%$ salt mist, severity A 48 hours at 20 \% salt mist, severity B to VG 95210, sheet $2 /$ IEC 68-2-11, test Ka/ISO 7137
Humidity	240 hours at 95 \% RH to VG 95210, sheet $7 /$ IEC 68-2-3, test C/ISO 7137
Explosion	to VG 95210, sheet 10/ MIL-STD-202, meth. 109
Altitude	$\leq 25,000 \mathrm{~m}$ above sea level
Mass	max. 29 g with auxiliary contact max. 25 g without auxiliary contact with aluminium threadneck: max. 26 g with auxiliary contact

## Ordering information

## Type No.

483 single pole, with temperature compensation
Mounting

G threadneck panel mounting, standard
L threadneck panel mounting, extended push button
V threadneck panel mounting, high vibration performance
W threadneck panel mounting, extended push button and high vibration performances
Threadneck design
$1 \mathrm{M} 12 \times 1 \times 6.4 \times 8.8$ dia. with mounting plate (aux.contact version)
2 15/32-32UNSx6.4x7.8 dia. (without aux. contact)
$3 \mathrm{MJ} 12 \times 6.4 \times 8.8$ dia. (without aux. contact)
$4 \mathrm{M} 12 \times 1 \times 6.4 \times 8.8$ dia. (without aux. contact)
5 7/16-32UNSx6.4x7.8 dia. (without aux. contact)
$6 \mathrm{M} 12 \times 1 \times 9.4 \times 8.8$ dia. (without aux. contact)
7 7/16-32 UNSx6.4×7.8 dia. with mounting plate (aux.contact version) 8 as 483-G1...but with aluminium threadneck

Hardware for threadneck (washers)
0 without hardware
1 wave washer 12/15-mounted
2 mounted washer 12.1/17.2-mounted
3 mounted washer 11.3/14.9-mounted
4 mounted washer 12/15-mounted
5 tooth washer 12.1/17.2, bulk shipped
Hardware for threadneck (nuts)
0 without hardware
1 hex nut M12x1
2 hex nut 15/32-32UNS
3 hex nut 7/16-32UNS
5 hex nut MJ12x1 (only with threadneck design 3) 6 hex nut M12x1, brass, bulk shipped, threadneck design 1,4,6

Terminal design (main terminals)
K screws terminals with metric thread
1 K 14 (M4, MJ4)
$J$ screw terminals with inch thread
1 J 14 (8-32UNC-2B)
2 J17 (8-32UNC-2B)
3 J25 (6-32UNC-2B)
 thermal, 1.15-1.38 $I_{N}$ for civil aircraf Terminal screws
A Phillips screw M4x6
B Phillips screw 8-32UNC-2Ax6
C Phillips screw 6-32UNC-2Ax6
D slotted flat head screw M4x6
E hex screw with Phillips head 8-32UNC-3A-9.5
K hex screw with Phillips head 8-32UNC-3Ax7.6 (ASN E0736)
L Phillips screw MJ4x6
M as"K" but bulk shipped
Z without accessories
Terminal washers
0 without lock washer
1 lock washer B4
2 lock washer 4.3
3 lock washer B4 and washer 4.4/9.5
4 lock washer 3.7
5 lock washer 4.3/9 (ASN A2553)
Auxiliary contact
S0 without auxiliary contact
S1 with auxiliary contact (connector to NAS1749 and LN 65093, size 20)
S5 with polarized auxiliary contact

## Barrier

Z without barrier (standard)
Colour of the push button blank: black (standard) /white (e.g. 7.5)
A green/white (e.g. 7.5)
G green/white, marking to EN (e.g. 7 1/2 N black/white, marking to EN (e.g. 7 1/2 Current ratings
1... 25 A

5 A ordering example

## Ordering information for approved devices

483-G411-K1M1-A1S0ZN (483-96-TC-K14)
Metric threadneck M12x1 and terminal design -K14 (M4x6), listed by the German Materialamt der Bundeswehr to VG 95345, part 6.

## 483-G111-K1M1-A1S1ZN

Metric threadneck M12x1 and terminal design -K14 (M4x6) and auxiliary contact -Si, listed by the German Materialamt der Bundeswehr to VG 95345, part 6

## 483-G533-J1M1-B2S0Z (MS 3320)

Threadneck size 7/16-32UNSx6.4 and terminal design -J14 (inch thread 8-32), approved to MS 3320.

483-L533-J1M1-B2S0Z (MS 3320-L)
Threadneck size 7/16-32UNSx6.4 and terminal design -J14 (inch thread 8-32), approved to MS 3320-L.

483-V533-J1M1-B2S0Z (MS 3320-V)
Threadneck size $7 / 16-32 \mathrm{UNSx6.4}$ and terminal design -J14 (inch thread 8-32), approved to MS 3320-V

483-W533-J1M1-B2S0Z (MS 3320-VL)
Threadneck size 7/16-32UNSx6.4 and terminal design -J14 (inch thread 8-32), approved to MS 3320-VL.

## 483-G533-J3M1-C4S0Z (483-TC-G11-J25))

Threadneck size $7 / 16-32 \mathrm{UNS} \times 6.4$ and terminal design -J25 (inch thread 6-32), listed by the German Materialamt der Bundeswehr to VG 95345, part 6

## 

Dimensions 483-G411-K1M1-A1S0ZN (483-96-TC-K14)


Dimensions 483-G533-J1M1-B2S0Z (MS 3320)


Dimensions 483-G111-K1M1-A1S1ZN


aux. contact terminals NAS 1748 for connector to NAS 1749

## Mounting holes

Mounting holes without auxiliary contac


Mounting holes with auxiliary contact (Si)


## 

Other main terminal designs

-J3
Terminal distances to MS 26574 (a, b)

-G6

-L2/5/7
-W2/5/7


Internal connection diagrams

with auxiliary contact
with polarized auxiliary contact


Typical time/current characteristics


## Accessories (approved to VG 95345, part 23)

Splash cover/hex nut assembly with
X 20080108 nickel plated nut M 12x1, translucent cover
X 20080103 matt black finish nut M 12x1, black cover
X 20080109 matt black finish nut 7/16-32 black cover


Splash cover black/hex nut assembly with $O$ ring (IP 54)
X 20080201 nickel plated nut X 20080202 matt black finish nut

Actuator extension (black) X 20080301


## Description

Single pole，miniaturised thermal circuit breaker with snap action mechanism and push／pull on／off manual actuation（M－type TO CBE to EN 60934）．Threadneck panel mounted，temperature－compensated， with optional auxiliary contacts．Fully approved for commercial aircraft and similar requirements．

## Typical applications

Extra low voltage wiring systems on all types of vehicles for land，sea and air．

## Accessories

X 20080108 Water splash cover／hex nut assembly．The concertina design is extended when the button trips to the OFF position．Plated finish．
X 20080103 As above but blackened finish．
X 20080301 Screw－tightened clamp－on actuator extension to aid manual operation．

## Ordering information



## Approvals（configurations）

## EN 2495

EN 3773
prEN 2995


## 둠

## Dimensions

4120-G111-K1M1-A1S0ZN (EN2495-...M)


4120-G11.-J2M1-K5SOZN (EN2495-...U, EN3773-004 D...)


4120-G112-J2M1-K5S1ZG - 4120-G112-J2M1-K5S5ZG


Internal connection diagram

with auxiliary contact
with polarized auxiliary contact


Typical time/current characteristics


Accessories (approved to VG 95 345, part 23)

Splash cover/hex nut assembly with O ring (IP 66)
X 20080108 nickel plated nut, translucent cover
X 20080103 matt black finish nut, black cover


Actuator extension (black)
X 20080301


## Description

Single pole high performance version of type 201 (catalogue section 2) thermal-magnetic circuit breaker with tease-free, trip-free, snap action mechanism and two button operation (M-type TM CBE to EN 60934). Standard EN rail mounting, recessed terminals and enhanced short circuit performance.
Complies with CBE standard EN 60934 (IEC 934).

## Typical applications

Control systems, industrial equipment.

## Accessories

X 20040901 Mounting adapters for asymmetric rail (G-profile).

## Ordering information

## Type No.



The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current   rating (A)	Internal   resistance $(\Omega)$	Current   rating (A)	Internal   resistance $(\Omega)$
0.05	447	3	0.19
0.1	131	4	0.090
0.2	39.6	5	0.061
0.3	19.3	6	0.041
0.4	10.4	7	0.034
0.5	7.1	8	$\leq 0.02$
0.6	4.3	10	$\leq 0.02$
0.8	2.5	12	$\leq 0.02$
1	1.67	14	$\leq 0.02$
1.5	0.60	15	$\leq 0.02$
2	0.38	16	$\leq 0.02$
2.5	0.24		



## Technical data

Voltage rating	AC $250 \mathrm{~V}(50 / 60 \mathrm{~Hz})$; DC 28 V
Current rating range	0.05... 16 A
Typical life	4,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 664 and 664A) operating area	Test voltage AC 3000 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration	$\begin{aligned} & 5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6 \text {, test } \mathrm{Fc} \\ & 10 \text { frequency cycles/axis } \\ & \hline \end{aligned}$
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidty	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 60 g

## Approvals

Authority	Voltage ratings	Current ratings
VDE, Demko	AC $250 \mathrm{~V}, \mathrm{DC} 28 \mathrm{~V}$	$0.05 \ldots 16 \mathrm{~A}$

## 



## Description

Three pole, miniaturised, aircraft style thermal circuit breaker with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). An indicator band on the push button shows clearly the tripped/off position. Threadneck panel mounted, available in metric and US (MS 14154) configurations. Advanced two-chamber design minimises contact contamination to provide fail-safe operation. Temperature compensated with optional auxiliary contacts, and fully approved for use on a wide range of aircraft and equipment. For single pole version see type 483.

## Typical applications

Aircraft systems and equipment (fixed wing and helicopters); other extra low voltage wiring applications; defence equipment; communications systems.

## Accessories

X 20080108 Water splash cover/hex nut assembly. The concertina design is extended when the button trips to the OFF position. Plated finish.
X 20080103 As above but blackened finish.
X 20080109 As above, but hex nut $7 / 16$-32, black finish
X 20080201 Splash seal/hex nut assembly, allowing full visibility of the push button actuator. Plated finish.
X 20080202 As above but blackened finish.
X 20080301 Screw-tightened clamp-on actuator extension to aid manual operation.

Standard current ratings and typical volt drop values

Current   rating $(\mathrm{A})$	Volt drop   $(\mathrm{mV})$	Current   rating $(\mathrm{A})$	Volt drop   $(\mathrm{mV})$
1	750	7.5	230
2	520	10	190
2.5	400	15	190
3	360	20	200
4	350	25	170
5	260		

## Approvals

## Approvals:

LN 29887
VG 95345, part 11
prEN 2996
MS 14154
QPL USA, Canada, UK, Sweden


583-...
with auxiliary contact
without auxiliary contact

## Technical data

Voltage rating	3 AC $200 \mathrm{~V}(400 \mathrm{~Hz})$; DC 28 V
Current rating range	1... 25 A
Auxiliary circuit	0.5 A, DC 28 V
Typical life	20,000 operations mechanical 10,000 operations at $I_{N}$
Ambient temperature	$\begin{aligned} & -55 \ldots+125^{\circ} \mathrm{C}(\leq 15 \mathrm{~A}) \\ & -55 \ldots+90^{\circ} \mathrm{C}(>15 \mathrm{~A}) \end{aligned}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   1.5 kV 3
Dielectric strength (IEC 664 and 664A) operating area pole/pole main to aux. circuit	Test voltage AC 1500 V AC 1500 V AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega$ ( DC 500 V )
Interrupting capacity I ${ }_{\text {cn }}$	3 AC $200 \mathrm{~V}(400 \mathrm{~Hz}):$    $\leq 4 \mathrm{~A}$ $1,000 \mathrm{~A}$   5 A $2,000 \mathrm{~A}$   $7.5 \ldots 25 \mathrm{~A}$ $2,500 \mathrm{~A}$   DC $28 \mathrm{~V}: 1 \ldots 25 \mathrm{~A}$ $6,000 \mathrm{~A}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40 terminal area IP 00
Vibration (sinusoidal)	$10 \mathrm{~g}(57-2000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(5-57 \mathrm{~Hz})$ to VG 95210, sheet 19/ IEC 68-2-6, test Fc/ISO 7137
Vibration (random)	$16.4 \mathrm{~g} \mathrm{rms}, 0.2 \mathrm{~g}^{2} \mathrm{~Hz} \pm 1.5 \mathrm{~dB}$ to VG 95210, sheet 29/ IEC 68-2-6, test Fc/ISO 7137
Acceleration	17 g , to ISO 2669
Shock	$\begin{aligned} & 50 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to VG 95210, sheet } 28 / \\ & \text { IEC 68-2-27, test Ea/ISO } 7137 \end{aligned}$
Corrosion	96 hours at $5 \%$ salt mist 48 hours at 20 \% salt mist to VG 95210, sheet 2 / IEC 68-2-11, test Ka/ISO 7137
Humidity	240 hours at 95 \% RH to VG 95210, sheet 7/ IEC 68-2-3, test C/ISO 7137
Explosion	to VG 95210, sheet 10/ MIL-STD-202, meth. 109
Altitude	$\leq 25,000 \mathrm{~m}$ above sea level
Mass	max. 67 g with auxiliary contact max. 63 g without auxiliary contact

## R

## Ordering information

## Type No.

583 three pole, with temperature compensation
Mounting
G threadneck panel mounting
Threadneck design
$1 \mathrm{M} 12 \times 1 \times 6.4 \times 8.8$ dia. with mounting plate (aux. contact version)
2 15/32-32UNSx6.4x7.8 dia. (only without aux. contact)
$3 \mathrm{MJ12} \mathrm{\times 1} \mathrm{\times 6.4} \mathrm{\times 8.8}$ dia. (only without aux. contact) 4 M12x1×6.4×8.8 dia. (only without aux. contact)
5 7/16-32UNSx6.4x7.8 (only without aux. contact)
6 M12x1x9.4×8.8 dia. (without aux. contact)
7 7/16-32 UNS $\times 6.4 \times 7.8$ dia. with mounting plate (aux.contact version)

## Hardware for threadneck (washers)

0 without hardware
1 corrugated washer $12 / 15$, fitted
2 serrated lock washer 12.1/17.2, fitted
3 serrated lock washer 11.3/14.9, fitted
4 serrated lock washer $12 / 15$, fitted
Hardware for threadneck (nuts)
0 without hardware
1 hex nut M12x1
2 hex nut 15/32-32UNS
3 hex nut 7/16-32UNS
5 hex nut MJ12x1 (only with threadneck design 3)
Terminal design (main terminals)
K screw terminals with metric thread
1 K14 (M4, MJ4)
J screw terminals with inch thread
1 J14 (8-32UNC-2B)
2 J 17 (8-32UNC-2B)
3 J25 (6-32UNC-2B)
Characteristic curve
M1 thermal, 1.15-1.38 $\mathrm{I}_{\mathrm{N}}$ for military aircraft
C1 thermal, $1.15-1.38 \mathrm{I}_{\mathrm{N}}$ for civil aircraft
Terminal screws
A Phillips screw M4x6
B Phillips screw 8-32UNC-2Ax6
C Phillips screw 6-32UNC-2Ax6
D slotted flat head screw M5x6
E hex screw with Phillips head 8-32UNC-3A×9.5
K hex screw with Phillips head
8-32UNC-3Ax7.6 (ASN E0736)
L Phillips screw MJ4x6
Z without accessories
Terminal washers
0 without lock washer
1 lock washer B4
2 lock washer 4.3
3 lock washer B4 and washer 4.4/9.5
4 lock washer 3.7
5 lock washer 4.3/9 (ASN A2553)
Auxiliary contact
S0 without auxiliary contact
S1 with auxiliary contact (connector to NAS1749 and LN 65093, size 20
S5 with polarized auxiliary contact

Barrier
T barrier 25.5 mm wide (S0 only) U barrier 19.5 mm wide, 37.7 mm lon
V barrier 25.5 mm wide, colour marking
between the terminals (-SO only)
X barrier 19.5 mm wide, 34.1 mm long
Colour of the push button blank: black (standard) /white (e.g. 7.5)
A green/white (e.g. 7.5)
G green/white to EN (e.g. $71 / 2$ )
$\mathrm{N} \quad$ black/white to EN (e.g. 7 1/2)
Current ratings
$1 \ldots 25$ A
5
5 A ordering example

## Ordering information for approved devices

583-G411-K1M1-A1S0TN (583-96-TC-K14)
Metric threadneck M12x1 and terminal design -K14 (M4x6), listed by the German Materialamt der Bundeswehr to VG 95345, part 11.

## 583-G111-K1M1-A1S1UN

Metric threadneck M12x1 and terminal design - K14 (M4x6) with auxiliary contact - Si , listed by the German Materialamt der Bundeswehr to VG 95345, part 11.

## 583-G533-J1M1-B2S0X (MS 14154)

Threadneck size 7/16-32UNSx6.4 and terminal design -J14 (inch thread 8-32), approved to MS 14154.

## RE『『® High Performance Thermal Circuit Breaker 583－．．．

Dimensions 583－G411－K1M1－A1S0TN（583－96－TC－K14）


Dimensions 583－G533－J1M1－B2S0X（MS 14154）


Other main terminal designs
－J2

－J3

－G6


## 

## Internal connection diagrams


with auxiliary contact

with polarized auxiliary contact


## Accessories (approved to VG 95345, part 23)

Splash cover/hex nut assembly with 0 ring (IP 66) X 20080108 nickel plated nut M12x1, translucent cover X 20080103 matt black finish nut M12x1, black cover X 20080109 matt black finish nut 7/16-32, black cover


Splash cover black/hex nut assembly with O ring (IP 54) X 20080201 nickel plated nut X 20080202 matt black finish nut


Actuator extension (black)
X 20080301


Typical time/current characteristics


## Description

Single, two, three and four pole isolators to EN 60947 / IEC 947 with toggle actuation. Designed for rail, panel or surface mounting. Options include auxiliary contacts and remote electrical disconnection. For circuit breaker versions see types 410, 520, 530.

## Typical applications

Control systems, industrial equipment.

## Accessories

X 21111801 Single pole splash cover with fixing plate.
X 21111901 Two pole splash cover with fixing plate.
X 21170501 Terminal insulation cover for use with types 410, 520 and 530 - two per pole required.

## Ordering information

## Type No.

911	single pole switch
912	double pole switch
913	three pole switch
914	four pole switch

914 four pole switch
Terminal design
K main terminal
up to 32 A: pressure plate B5-DIN 46288
up to 63 A: pressure plate B6-DIN 46288
up to 125 A: terminal screws DIN 46206, form A, thread M6
up to 240 A: terminal screws DIN 46206, form A, thread M10 (single pole only) Mounting
1 surface mounting
2 rail or panel mounting (rail DIN EN 50022-35x7.5)
3 rail or panel mounting (rail DIN EN 50035-G32)
4 panel mounting only
5 mounting brackets- surface mounting
Auxiliary contacts (terminals M3.5)
Si one each N/O and N/C
Si1 one N/C $(11,12)$
Si2 one N/O $(13,14)$
2Si two each N/O and N/C - types 912, 913, 914 only
3Si three each N/O and N/C - types 913, 914 only
4Si four each N/O and N/C - type 914 only
Remote trip (optional)
FA12 remote disconnection, for DC 12 V
FA24 remote disconnection, for DC 24 V Current ratings
32, 63, 125 A (240 A single pole only)
63 A ordering example
The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

## Technical data

Voltage rating	AC 240 V; 3 AC $415 \mathrm{~A} ; 3$ AC $500 \mathrm{~V} ;$   DC 110 V
Current rating range	$32 \mathrm{~A}, 63 \mathrm{~A}, 125 \mathrm{~A}$   (up to 240 A single pole only)
Auxiliary contact rating	6 A at AC 240 V or DC $28 \mathrm{~V} ;$   1 A at DC 110 V


Electrical remote disconnection (FA)		
operating voltage	DC 12 V or DC 24 V	
operating current	approx. 18 A or 12	
max. pulse time	$10 \mathrm{~ms}<\mathrm{t}_{\text {ON }}<20 \mathrm{~ms} / \mathrm{t}_{\text {OFF }}>10 \mathrm{~s}$	
switching time	$<20 \mathrm{msec}$	
Typical life	10,000 operations at $I_{N}$ 20,000 operations mechanical	
Ambient temperature	-40... $75{ }^{\circ} \mathrm{C}$	
Insulation co-ordination (IEC 664 and 664A)	Rated impulse withstand voltage	Pollution degree
	6 kV	

Dielectric strength
(IEC 664 and 664A) Test voltage
operating area AC 3300 V
pole/pole AC 3300 V
main to aux. circuit AC 2200 V
aux. circuit 11-12
to 13-14 AC 1000 V
Insulation resistance $\quad>100 \mathrm{M} \Omega$ (DC 500 V )
Short-circuit protection back up fuse max. 125 A
Degree of protection operating area IP 40
(IEC 529/DIN 40050) terminal area IP 00

Vibration	$5 \mathrm{~g}(57-200 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$   to IEC 68-2-6, test Fc   10 frequency cycles/axis
Shock	25 g ( 11 ms )   to IEC 68-2-27, test Ea
Corrosion	96 hours at $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidty	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 220 g single pole $\leq 125 \mathrm{~A}$ approx. 440 g single pole > 125 A approx. 440 g double pole approx. 660 g three pole approx. 880 g four pole

## Standard current ratings and typical internal resistance values

Current rating   (A)	Internal resistance   $(\Omega)$
32	$\leq 0.002$ pro Pol
63	$\leq 0.002$ pro Pol
125	$\leq 0.002$ pro Pol



## 중ㄹㅁ몽 Isolation Switches 911/912/913/914-...

## Dimensions



Internal connection diagrams

911


911-...-FA


912


914


## Mounting method

Surface mounting suffix: -1


Rail mounting
(EN 50035-G32) suffix: -3


Rail mounting (DIN EN 50022-35x7.5) suffix: -2


Panel mounting suffix: -4


Mounting brackets - surface mounting suffix: -5


## 

## Auxiliary contact arrangement with multi pole switches

## double pole devices


three pole devices

four pole devices


## Accessories

## Terminal insulation cover

(1set = 2 pcs per pole)
X 21170501


## Accessories

For series $911 \leq 125$ A
Water splash cover translucent with fixing plate (IP 54) X 21111801


For series 911 > 125 A, 912
Water splash cover translucent with fixing plate (IP 54) X 21111901


## Description

Single or two pole isolation switches to EN 60947 with toggle actuation. Options include auxiliary contacts, a moulded flame retardant enclosure for added environmental protection (with or without rotary action external operating knob), and remote operation-disconnection only, or disconnection and re-connection. A version for use in hazardous areas (e.g. petroleum and chemical tankers) is available to special order.

## Typical applications

Vehicles of all types (including tankers), boats, battery powered systems.

## Ordering information



921-B31-K12-5-Si2- FA 24- 240 A ordering example
The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

## Approvals

Authority	Voltage rating	Type
LRoS	DC 28 V	921, 922
BASEEFA	DC 12 V, DC 24 V	$922-$ B33-K72-5-...



## Technical data

Voltage rating	DC 12 V , DC 24 V
Current rating range	240 A type 921 , single pole 120 A type 922, double pole
Auxiliary contact rating	6 A at 24 V
Electrical remote disconn operating voltage operating current max. pulse time switching time	ction (-FA):   DC 12 V or DC 24 V   approx. 18 A or approx. 12 A   $10 \mathrm{~ms}<\mathrm{t}_{\text {on }}<20 \mathrm{~ms} / \mathrm{t}_{\text {OFF }}>10 \mathrm{~s}$ $<20 \mathrm{~s}$
Electrical remote re-conn operating voltage operating current max. pulse time switching time	ction (-FC):   DC 12 V or DC 24 V approx. 30 A or approx. 15 A $0.1 \mathrm{~s}<\mathrm{t}_{\mathrm{ON}}<1.2 \mathrm{~s} / \mathrm{t}_{\text {OFF }}>60 \mathrm{~s}$ $<100 \mathrm{~ms}$
Typical life	10,000 operations at $I_{N}$ 20,000 operations mechanical
Ambient temperature	-40... $75{ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   6 kV 3
Dielectric strength (IEC 664 and 664A) operating area pole/pole main to aux. circuit aux. circuits 11-12 to 13-14	Test voltage AC 3300 V AC 3300 V AC 2200 V AC 1000 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Switching capacity	Type 921 Type 922   2500 A for 1 s at $+23^{\circ} \mathrm{C}$ 1500 A for 1 s at $+23^{\circ} \mathrm{C}$   600 A for 1 min at $+23^{\circ} \mathrm{C}$ 600 A for 30 s at $+23^{\circ} \mathrm{C}$   600 A for 2 min at $-23^{\circ} \mathrm{C}$ 600 A for 1 min at $-23^{\circ} \mathrm{C}$   600 A for 90 s at $0^{\circ} \mathrm{C}$ 600 A for 45 s at $0^{\circ} \mathrm{C}$
Degree of protection (IEC 529/DIN 40050)	operating area IP 40   terminal area IP 00   IP 54 with additional enclosure -B..
Vibration	$\begin{aligned} & 5 \mathrm{~g}(57-200 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6 \text {, test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 1000 g with remote disconnection approx. 1400 g with remote disconnection and re-connection

## 

## Dimensions

Enclosure


921-K12-5-...-BC-FA..


921-K60...-FA


922-K72-5-...-FC


M10x25
tightening torque max. 4 Nm


Internal connection diagrams

921


922


Shock directions


## Description

For vehicles carrying dangerous goods the European guideline ADR (European agreement concerning the international carriage of dangerous goods by road) requires that a Battery Emergency Switch should be fitted between the battery and the vehicle electrical system which in an emergency can be operated from the driver's cab. Once the emergency has been remedied or if the switch was operated by error, the switch must also be resettable from the driver's cab.

## Typical applications

Commercial vehicles carrying dangerous goods

## Ordering information



## Approvals

Authority	Requirement	Approval mark No.
TÜV	Appendix B2 of ADR	TÜ.EGG.030-97
	DIN/EN 40050	

## Technical data

Terminals   Main terminals	blade terminals with cable lugs for M10   terminal studs (IP 00)   connector to DIN 72585
Control cable	max. 6 A   (circuit not protected)
Auxiliary contact   for auxiliary relay (D $\pm 31)$	
Mass	approx.. 3500 g with enclosure, single pole   approx. 3700 g with enclosure, double pole



E-1032-...

## Technical data

Voltage rating		DC 24 V	DC 12 V
Voltage range	ON:	$18-32 \mathrm{~V}$	$9-16 \mathrm{~V}$
	OFF:	$15-32 \mathrm{~V}$	$8.5-16 \mathrm{~V}$

The switching function is no longer ensured when the voltage falls below the minimum values. The switch will not change its position when the voltage falls down to 0 V (automatic locking)

Current ratings	240 A single pole   120 A double pole
Overload capacity	$2,500 \mathrm{~A}$ for 1 s at $23^{\circ} \mathrm{C}$, single pole   $1,500 \mathrm{~A}$ for 1 s at $23^{\circ} \mathrm{C}$, double pole
Current consumption   of the electronics	(with the control circuit connected)


Switching current at $\mathrm{U}_{\mathrm{N}}$ ON OFF	approx. $15 \mathrm{~A} / 100 \mathrm{~ms}$ approx. 20A/100 ms approx. 12A/100 ms approx. 10A/100 ms
Control circuit (Ex)   (PTB No.III B/E-29861S)	$\begin{gathered} \text { 0-2 mA OFF } \\ 4-6 \mathrm{~mA} \text { ON } \\ 9-11 \mathrm{~mA} \text { OFF } \\ \text { rated to VDE } 0171, \\ \text { protection (Ex)i G5 ,intrinsically safe" } \end{gathered}$
Control switch (accessory)	to GGVS with coding resistance $\quad$ with coding resistance $1 \mathrm{k} \Omega$ to ADR for external actuation
Temperature range	$-40 . . .+75{ }^{\circ} \mathrm{C}$
Reverse polarity protection	If polarized incorrectly, the Emergency Switch will switch off immediately, disconnecting the entire vehicle electrical system. After approx. 30 s the circuit breaker of the ON coil will trip.
Resettability	When the Battery Emergency Switch is mechanically switched off, it will be reset immediately by the electronics.
Typical life	10,000 operations at $I_{N}$ 20,000 operations, mechanical
Degree of protection IEC 529/DIN40050) with enclosure	IP 54 when connected to GGVS or ADR
Vibration	$5 \mathrm{~g}(57-200 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 68-2-6, test Fc, 10 frequency cycles/axis
Shock	$25 \mathrm{~g}(11 \mathrm{~ms})$ direction $1-4$ $15 \mathrm{~g}(11 \mathrm{~ms})$ direction $5-6$ to IEC 68-2-27, test Ea
Corrosion	96 h at $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidity	240 h at 95 RH to IEC 68-2-3, test Ca

## 

## Dimensions

E-1032-NA1-... 1.. pole


E-1032-NA2-... 2 pole


Rubber cap
supplied with enclosure C


Internal connection diagrams


## Shock direction



female connector jack for female single wire $180^{\circ}$ cover for sheathed cable connector sealing


1. Female connector SW 0Z112Z000146 2-way OZ112Z000127 3-way 0Z112Z000147 4-way

2. Jack for female connector 0Z112Z000126
3. Single wire sealing OZ112Z000134


## 

## Approvals / Certificates




Physikalisch-Technische Bundesanstalt


Prüfungsschein

$$
\text { PTB } \mathrm{Nr} .111 \mathrm{~B} / \mathrm{E}-29861 \mathrm{~s}
$$

Typenprufung des steuerstronkreises der Begrenzerschaitung
Tye 1081-01
der Firma e-T-A. Flektrotechnische Apparato GmbH, Altaorf b. Nurnberg
auf Explosionsschutz fach vFe on


Das Gerat wird in Kraftrahraeuger errichtot.
Dic Rlcktronik ist vergungekapsel

Elektriscle Dater

rsorgung	ruf aus der zugehörigen Fahrzougbattorie betrieusspearu:ag: 12 V orler 24 V max. Sparname $: 26.5 \mathrm{~V}$
kres	i: Schutrart "Eignosicherheit" (EX) i G5 Fetriebswofte: 6 V bzw. 12 V , s 00 mA    rur zum Arschlu, an motions-stoworsohalter Typ $520 / 825 / 78$   max. Thitungslange: 100 m
	-2



Prij fungsunter lagen

1. Beschrejbung (2 Blatt)
2. Zeichrurg Nr. $\begin{aligned} & 10.041 .619 \\ & 10.041 .608 \\ & 5\end{aligned}$
10.041 .608
10.032 .278
$520.825 / 78$
3. Prúcmuster
 siegci der Physikalisch-Tlechnischen bundesanstalt versehen.

## Bourceilung

Der Steuerstromkreis der Begrenzerschaltung 'Yp
in seincr Eauart den Bestimungen Vot 0171/1.69; er ist ohne Einschrankung durch cine Explosionsklasse oder Zúnćgruppe zum Einsatz ahrdeten Betriebsstatten geeignct.
Da nur der Stouerstromkreis eigensichor ist, mus die Begrenzer-
schalung allacrhal des oxplosionsgefahrdeten Bereiches errichtet
tur dije Erydohtung des cigensichexen Steuerstromkroises sind die
 vare Induklivilät und Rapazităt)
Weiverhir ist bei der frrichtung des eigensicheren Steuerstron-
krei ses zu bearhten, dob die Grenztcnperatur der jeweiligen zür it unter angeschiossener. Fetricbsnittel infolqe Stromwarme nicht überscheitten werden dart.
 te: "ryps fur die eine
durebjeruhrt worden ist.


## Description

Single pole circuit breaker type 437 or single/two pole isolation switches types 921/922 featuring an additional electronic function module which limits the duration of the supply to the remote disconnect and reconnect coils, avoiding damage in the event of unusual operating circumstances. Available with undervoltage monitoring option to protect batteries from the effects of deep discharge, status output for undervoltage, auto reset feature.

## Typical applications

Battery and cable protection for all types of vehicle (including electric), battery powered systems.

## Ordering information

## Type No.

E-1073 control unit for types 921/922 and 437 with remote contro

Voltage rating
0 DC 12 V

1 DC 24 V

## Control mode

1 ON/OFF control input
Additional function
00 none
02 with undervoltage protection and status output
12 with autoreset, undervoltage protection and status output (921/922 only) 2 ON and OFF buttons

33 with control current supply and ON/OFF test input

## Circuit Breaker/Isolation Switch

437 single pole circuit breaker
921 single pole battery isolation switch
922 double pole battery isolation switch
Enclosure design (optional)
blank = without housing
B3 moulded housing, for use with single pole devices B32 moulded housing, for use with double pole devices B34 moulded housing, external operating knob, for use with double pole devices (not with auto reset)
B35 moulded housing, external operating knob, for use with single pole devices (not with auto reset)

## Terminal design

K12 flat screw terminals angled $90^{\circ}$, for single pole version K60 straight flat screw terminals, for single pole version, without housing
K72 flat screw terminals angled $90^{\circ}$, for double pole version Characteristic curve (type 437 only)
06 fast magnetic trip
07 delayed magnetic trip (standard) Auxiliary contacts
Si01 one N/C, two N/O
(one N/C, one N/O with autoreset option) Current ratings $\begin{aligned} & 437: 40,50,63,80,100 \\ & 160,200,240 ~ A\end{aligned}$
921: 240 A
922: 120 A
E-1073 -1102-437-B3-K12 - $07-$ Si01- 240 A ordering example
The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.


E-1073-437

## Technical data - Electronic module

Voltage rating	DC 12 V DC 24 V
Voltage rating range ON OFF	$10.3-16 \mathrm{~V}$ $18-32 \mathrm{~V}$   $9-16 \mathrm{~V}$ $16-32 \mathrm{~V}$   Correct switching performance is not guaranteed if the voltage falls below the minimum value.
Temperature range electronic control unit	$-40 \ldots+80^{\circ} \mathrm{C}$
Operating current ON    OFF	approx. 30 A approx. 15 A   approx. 10 A approx. 20 A
$\begin{array}{ll}\text { Excitation time } & \text { ON } \\ & \text { OFF }\end{array}$	typically 100 ms typically 20 ms
Switching frequency	0.1 Hz max.
Power consumption of electronic control unit	typically $<1 \mathrm{~mA}$ (when switched off or button operated)
Control inputs	E-1073-.1..: 'E/A'(ON/OFF), 'U-AUS' (undervoltage protection OFF), 'A-W' (auto reset) E-1073-.2..: 'T-EIN', (button ON) 'T-AUS', (button OFF)

Voltage
ON (high)
OFF (low)
Power consumption
EMC
Reverse polarity
protection

Undervoltage protection	optional with $\mathrm{E}-1073-.1 .$.
switching thresholds	$11.0 \mathrm{~V} \pm 0.2 \mathrm{~V} \quad 22.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$
hysteresis	typically 0.5 V
trip time	typically 40 sec

max. 32 V
$>8 \mathrm{~V}$
$<3 \mathrm{~V}$
typically $1 \mathrm{~mA} \quad$ typically 5 mA according to DIN 40839/ISO 7637
If polarized incorrectly, the Battery Isolation Switch will operate immediately. The circuit breaker will trip after a few seconds. optional with E-1073-.1..
$11.0 \mathrm{~V} \pm 0.2 \mathrm{~V} \quad 22.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$
typically 0.5 V
typically 40 sec

Undervoltage status output('UST'), optional with E-1073-.1..
transistor output
current load
minus switching
corresponding to 2 W lamp load, shortcircuit proof

Automatic reset ('A-W'),
optional with E-1073-.1.., with series 921/922 only)
Reset after mechanical disconnection is provided by the integral electronic control after approx. 100 ms .

Control current supply ('+US2'), with E-1073-.2.. for T-EIN/T-AUS May be connected to 20 control intputs. Noise-voltage proof, short-circuit proof

## Terminals

control terminals
blade terminals $6.3 \times 0.8 \mathrm{~mm}$
Mass, with circuit breaker approx. $2,000 \mathrm{~g}$ without enclosure or isolation switch approx. 2,500 g with enclosure

## Technical data of switch or circuit breaker

## Features

- Multiple functions in one unit
- High performance circuit breaker providing battery and cable protection from overloads and short-circuits.
- Master switch for ON/OFF operation
- Electrical remote control
- Undervoltage protection with status output
- Auxiliary contacts (e.g. for generator disconnection)
- Active reverse polarity protection of the entire vehicle electrical system
- Current ratings to 240 A
- Closed-circuit current consumption $<1 \mathrm{~mA}$


## Technical description

E-T-A circuit breaker/battery isolation switches combined with electronic control unit E -1073 will meet a wide range of requirements.

## Circuit breaker/Battery Isolation switches

The main switching contacts will open the plus, the minus or both poles according to model and application.

- Series E-1073-.... 437

Single pole thermal-magnetic circuit breaker for current ratings up to 240 A, to protect the vehicle electrical system from overloads and short circuits.

- Series E-1073-...-921

Single pole battery isolation switch for current ratings up to 240 A.

- Series E-1073-... 922

Double pole battery isolation switch for current ratings up to 120 A .

## Electronic control unit

An electronic control unit enables the basic on/off function and two additional functions. The system voltage is connected across terminals + UB/-UB to provide the supply to the control unit and a feed is taken from +US1 for the remotely sited operating switch(es). The quiescent current drain is typically less than 1 mA , with a short duration excursion during excitation of the ON/OFF coils.

## Basic function

Switch ON/OFF
Operation of the ON control switch will energise the switch-on coil for approximately 100 ms causing the main switching contacts to latch closed. Operation of the OFF control switch will cause the disconnect coil to trigger the release of the switching mechanism within approximately 20 ms . Both coil circuits are current limited to prevent damage through overheating

## Manual operation

An optional external operating knob is available to provide manual control in addition to electrical ON/OFF operation.

## Reverse polarity protection

In the event of reverse polarity connection, the electronic control unit will immediately operate the battery switch to isolate the entire electrical system. The circuit breaker will trip after a short delay to protect the operating coils and must be re-set once the fault has been corrected.

## Control functions

## Type 1 E-1073-.1.. with ON/OFF switch

## ON/OFF control switch input ("E/A")

The battery isolation switch can be operated on or off by an external control switch to plus.
Undervoltage protection (optional)
This optional feature protects the battery from deep discharge should electrical loads be left on.
The battery is automatically disconnected whenever the voltage falls below a critical value for more than 40 s . The unit is reset by operation of the control switch. Sustained undervoltage after reconnection causes the unit to disconnect again after approx. 40 s .
Overriding the undervoltage protection ("U-AUS")
Undervoltage protection may be overridden if required by connecting control output "U-AUS" to plus terminal or terminal 15.
Undervoltage status output ("UST")
Undervoltage is signalled immediately via the minus-switching, short-circuit proof transistor output (2 W lamp load).
Auto reset ("A-W"), optional with series 921 and 922
Immediate reset after unwanted mechanical disconnection (e.g. upon excessive vibration) is provided by the integral electronic control.

## Type 2 E-1073-.2... with ON/OFF button

ON/OFF control inputs ("T-ON/T-OFF")
ON/OFF function is provided by two external switches with a central control function, i.e. several systems can be operated simultaneously.

Additional control current supply ("+US2")
If several circuit breakers/battery isolation switches are operated in parallel, switches can be supplied with control current from any of the electronic control units available. This power source is short-circuit proof, protected from noise voltages and will operate for 20 inputs.

Additional control input "ON/OFF Test" ("E/A")
This control input can be used for maintenance purposes. The battery isolation switch is switched on when plus voltage is applied, and switched off when plus voltage is removed.

## Note

The circuit breaker should be in the OFF condition when connecting or replacing the battery.

Observe Instructions for Installation TM 9/9.3 D/E!

## Re『『『® Battery Isolation Switches E－1073－437 and E－1073－921／－922

## Dimensions



1073－．．．－922－．．．－K72－．．．


## Dimensions Enclosures

－B3，single pole

－B35，single pole with operating knob

－B32，double pole

－B34，double pole，with operating knob


## Connection diagrams

E－1073－．1．．．－437／－921／－922 control function for ON／OFF switch


E－1073－．2．．．－437／－921／－922 control function for ON／OFF switch


## Typical applications

## For road vehicles, e.g. buses and coaches

Series E-1073-1102-437-B3-K12-07-Si01-240 A
In this application, the E-T-A combined battery switch/circuit breaker has several functions:

- High performance circuit breaker rated at 40 A, providing battery and cable protection from overloads and short circuits
- Isolation switch, for ON/OFF operation (e.g. for main system disconnection).
- Remote control via external, low-current circuit.
- Untervoltage protection from battery deep discharge should electrical loads be left on
- Early under voltage signalisation via a warning lamp (undervoltage status output), located as required.
- Undervoltage operation can be overridden if required.
- Auxiliary contact to disconnect the generator field.
- Reverse polarity protection through immediate disconnection of the entire vehicle electrical system if the battery is incorrectly connected.

These functions allow the number of components and cables required to be reduced, with significant space and weight saving benefits.


For rail vehicles, e.g. underground carriages
Series E-1073-1233-437-K60-06-Si01-200 A
In this application, the E-T-A combined battery switch/circuit breaker has two functions:

- High performance circuit breaker providing battery and cable protection from overloads and short circuits.
- Isolation switch between battery and loads

In this application, an ON/OFF remote control switch can be provided in both the first and last carriages. This will enable all batteries to be disconnected from the power distribution system by the operation of one control, irrespective of its location. In the same way, all batteries can be re-connected by the operation of a single control switch.
This is extremely helpful during coupling/de-coupling of carriages for example. In addition the E/A test input permits the operation of individual battery switch/circuit breakers during maintenance.


## Description

Single pole remote control circuit breaker (RCCB), temperature compensated, either with or without auxiliary contacts, and featuring a bimetal actuator which trips the circuit breaker mechanism within a specified time under overcurrent conditions. The switching contact latching system is operated by a bi-stable linear motor controlled by electronic circuitry incorporated within the device. Applying the system voltage across the input will switch the RCCB ON, disconnection of the input will cause it to switch OFF. Remote control is achieved through the use of a conventional single pole manually operated aircraft style thermal circuit breaker to connect the supply to the control input of the RCCB. Complies with the requirements of MIL-C-83383.

## Typical applications

Aircraft electrical systems and equipment, and other high performance applications.

## Ordering information

Type No.
4910 single pole remote control circuit breaker (RCCB)


4910-01-5 -5 ordering example

Standard current ratings and typical voltage drop values

Current   ratings (A)	Voltage drop at   rated current( mV )	Current   ratings (A)	Voltage drop at   rated current $(\mathrm{mV})$
5	450	40	200
7.5	360	50	200
10	347	60	200
15	225	75	200
20	200	80	200
25	200	100	200
35	200		

## Approvals

[^5]

4910 (RCCB)

## Technical data

Voltage rating	DC 28 V (DC 18... 36 V )
Current rating range	5... 100 A
Auxiliary circuit	$3 \mathrm{~A}, \mathrm{DC} 28 \mathrm{~V}$, AC $115 \mathrm{~V}(400 \mathrm{~Hz})$
Bias current	2.5 mA max
Switching current/ switching period	2.8 A/ 25 ms
Trigger current for ICU ("TRIP FREE"-mode)/ duration	approx. 3.2 A /5 s max
Typical life	50,000 operations at $I_{N}$ (inductive or resistive)
Ambient temperature	$-54 \ldots+71^{\circ} \mathrm{C}$
Dielectric strength (IEC 664 and 664A) between main terminals main terminal to mounting area	Test voltage AC 1500 V   AC 1500 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity	DC $28 \mathrm{~V}: 6000 \mathrm{~A}$
Vibration (sinusoidal)	$10 \mathrm{~g}(55-2000 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz})$ to MIL-STD 202, method 204, condition C
Vibration (random)	$10-2000 \mathrm{~Hz}$, spectral power density $0.15 \mathrm{~g}^{2} / \mathrm{Hz}$, rms value 13.5 g ; $5 \mathrm{~h} / \mathrm{axis}$ loaded with $0.9 \mathrm{I}_{\mathrm{N}}$
Shock	25 g (11 ms)   to MIL-STD 202, method 213, condition J ISO 7137 (RTCA/DO-160 C, part 7)
Corrosion	48 hours at $5 \%$ salt mist to MIL-STD 202, method101, condition B ISO 7137 (RTCA/DO-160 C, part 14, category S)
Humidity	240 hours at 95 \% RH to MIL-STD 202, method 106/ISO 7137 (RTCA/DO-160 C, part 6, category B)
Altitude	< 15,000 m above sea level
Mass	approx. 300 g

## 



#  

Door Locking Relays<br>Time Delay Relays<br>Motor Protection Controls<br>Motor Start Switches

## Voltage ratings max. 3 AC 400 V, AC 250 V DC 28 V

Current ratings 0.1 ... 16 A

## Door Locking Relays

E-T-A door locking relays are designed to increase the safety of washing machines, dishwashers, microwave ovens and similar appliances. By ensuring that their doors cannot be opened whilst the machine is operating, users are protected from moving parts, high temperatures, steam, harmful radiation and other hazards.

Suited both to domestic and heavy duty professional equipment, these relays offer a choice of thermal or magnetic sensing element, with versions for current and voltage control.

Energising the relay activates the door locking mechanism, while de-energisation keeps the door locked for a predetermined time until it is safe to be opened again.

The E-T-A door locking relay series 6510 has been specifically developed to comply with the requirements of IEC 335-2-25 (Safety for Household and Similar appliances). The product is in modular form and offers door closed signalling and locking possibilities for applications such as microwave ovens with pyrolytic cleaning.

The choice of door locking relays available provides flexibility for the designer while ensuring that the legislative demands of different markets can be successfully satisfied.


## Time Delay Relays

The E-T-A series 664 is a voltage activated thermal time delay relay suitable for a wide range of applications and process control applications. The excitation circuit and load switching changeover contacts are electrically separate. Delay times can be specified in fixed steps up to sixty seconds.

## Motor Protection Controls

Series 2-6500 and 2-6700 over current protection devices with automatic reset actuation are particularly suitable for motor control and similar applications. They are designed to distinguish between temporary overloads, for example motor start conditions, and sustained faults such as locked rotor. A reset delay provides an opportunity for the equipment protected to cool before power is re-applied, and the need for operator intervention is avoided.

## Motor Start Switches

E-T-A Motor Start Switches offer a simple and rugged method of disconnecting the auxiliary windings and start capacitors of single phase AC motors. Featuring current sensitive bimetal controlled mechanisms, their switching time is a function of the starting current and its duration.

## 

Type No.	664-...	683-...	6110-...
Description	Bimetal operated voltage activated time delay relay, with change over contact and snap action mechanism. Excitation circuit and switching circuit are electrically separate	Bimetal operated voltage or current activated door locking relay. Choice of actuator lengths. Aux. contact optional	Bimetal operated voltage activated door lock for washing machines
Max. voltage rating	AC $250 \mathrm{~V}(50 / 60 \mathrm{~Hz}$ ); DC 24 V	AC $250 \mathrm{~V}(50 / 60 \mathrm{~Hz}$ )	AC $250 \mathrm{~V}(50 / 60 \mathrm{~Hz}$ )
Current rating of switching circuit/auxiliary contact	5 (2A)	$\begin{aligned} & 2 \text { (0.3) A } \\ & 16 \text { (4) A switch on only } \end{aligned}$	$4-5 / 6-7 \quad 6 A(6 A)$ switch-on only
Operating voltages or currents	AC 4... 240 V	$\begin{aligned} & 0.1 \ldots 5 \mathrm{~A} \\ & \text { AC } 24 \ldots 240 \mathrm{~V} \end{aligned}$	AC 120... 240 V
Typical life	100,000 operations with $1 \times I_{N}$	10,000 operations with $1 \times \mathrm{I}_{\mathrm{N}}$	5,000 operations with $1 \times I_{N}$ for circuit 4-5 5,000 operations with $1 \times I_{N}$ for circuit 6-7
Overexcitation or interrupting capacity	$1.4 \mathrm{U}_{\mathrm{N}}$ continuously up to $3 U_{N}$ short-time		
Approvals		VDE, Demko, Nemko, Semko, Fimko, Kema, SEV, ÖVE, IMQ, UTE	VDE, KEMA, SEV, Fimko, Demko, Nemko, IMQ
Available options	see pages 267-268	see pages 269-270	see pages 271-272
Dimensions			
Internal wiring diagrams		current-activated	6110-...1-...

## 



## 

Type No.	2-7000-...
Description	Current sensitive bimetal operated relay for disconnecting auxiliary windings and start capacitors
Max. voltage rating	AC $250 \mathrm{~V}(50 / 60 \mathrm{~Hz}$ )
Current rating of switching circuit	10 (5) A
Operating voltages or currents	0.2... 10 A
Typical life	100,000 operations at $1 \times I_{N}$
Interrupting capacity	$4 \mathrm{I}_{\mathrm{N}}, \max .20 \mathrm{~A}$
Approvals	VDE
Available options	see pages 279-280
Dimensions	
Internal wiring diagrams	

## Description

Voltage activated bimetal operated time delay relay with changeover contact and snap action mechanism, excitation circuit and switching circuit electrically separate, operation independent of mounting attitude. High shock resistance. Delay times can be factory-preset as desired. The continuous excitation voltage may be up to 1.4 times the rated value. To shorten the switching time the excitation voltage may be increased to 3 times the rated value but only for that switching time period.

## Typical applications

Process control, diesel engine pre-heaters

## Ordering information


*Please indicate the desired switching time, reset time and operating voltage when ordering. The sum of switching and reset time should be between 60 and 120 s .

Standard operating voltages and typical internal resistance values

Operating   voltage (V)	Internal   resistance ( $\Omega$ )	Operating   voltage $(\mathrm{V})$	Internal   resistance $(\Omega)$
4	3.4	24	200
6	7.6	48	725
8	16	60	1,200
10	26.5	115	4,000
12	40	230	16,700
16	73	240	16,700
20	134		



664-...

## Technical data

Voltage rating	AC $250 \mathrm{~V}(50 / 60 \mathrm{~Hz}$ ); DC 24 V
Current rating of switching circuit	5 (2) A
Operating voltages	AC 4... 240 V
Switching/ reset times in sec	approx. 20 approx. 40   approx. 25 approx. 50   approx. 30 approx. 60   The sum of switching time and reset time should be between 60 and 120 s
Typical life	100,000 operations at $1 \mathrm{xl}_{\mathrm{N}}$
Ambient temperature	$-30 . .+60^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 3
Dielectric strength (IEC 664 and 664A) excitation circuit/ switching circuit	Test voltage $\text { AC } 2,000 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Overexcitation	$1.4 \mathrm{U}_{\mathrm{N}}$ continuously up to $3 \mathrm{U}_{\mathrm{N}}$ short-time
Degree of protection (IEC 529/DIN 40050)	housing IP 30 terminal area IP 00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 68-2-6, test Fc,   10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	48 hours at $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH test to IEC 68-2-3, test Ca
Mass	approx. 31 g

## 

Dimensions

664-P10


664-P19


Internal wiring diagram


## Description

Voltage or current activated bimetal operated door locking relay in creepage resistant and flame retardant housing．Choice of actuator lengths．Auxiliary contacts optional．

Typical applications
Washing machines

## Ordering information



## Approvals

Authority	Voltage rating	Current rating
VDE，Demko，Nemko，	AC 250 V	$2(0.3) \mathrm{A}, 16$（4）A
Semko，Fimko，Kema，		
SEV，ÖVE，IMQ，UTE		



## 

## Dimensions

## 683-P10-KF-... current activated



683-P10-Si50-KF-... voltage activated


## Internal wiring diagrams

683-P10-KF current activated


683-P10-Si1-KF current activated


683-P10-Si50-KF voltage activated, without physical isolation


683-P10-Si2-KF current activated


683-P10-Si50-KF voltage activated, with physical isolation

## Installation drawings



683-P10-Si50-KF-... voltage activated


Application circuit 683-P10


## Description

Bimetal operated voltage activated door lock for washing machines, ensuring compulsory and permanent contact separation when the door is forced open. With standard keyed connectors.

## Typical applications

Washing machines

## Ordering information



## Approvals

Authority	Voltage ratings	Current ratings
VDE, Kema, SEV,	AC 250 V	16 (6) A
Fimko,Demko, Nemko,		
IMQ		



## Technical data

Voltage rating	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Current ratings for circuit 4-5 ( $\mu$ ) for circuit 6-7	6 A (6A) switch on only 6 A (6A) switch on only
Operating voltages 3-4	AC 120...AC 240 V
Typical life for circuits 4-5 for circuits 6-7	5,000 operations at $1 \times I_{N}$ 5,000 operations at $1 \mathrm{xI}_{\mathrm{N}}$
Ambient temperature	$0 . . .+80^{\circ} \mathrm{C}$ T 80
Insulation co-ordination (IEC 664 and 664 A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 3   reinforced insulation at locking aperture
Dielectric strength (IEC 664 and 664A locking aperture circuit 3-4-5/6-7	Test voltage AC $4,000 \mathrm{~V}$ AC $2,000 \mathrm{~V}$
Insulation resistance	>100 M 2 (DC 500 V )
Degree of protection (IEC 529/DIN 40050)	locking aperture IP 33 terminal area IP 00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{z}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 68-2-6, test Fc,   10 frequency cycles/axis
Shock	$\begin{aligned} & 15 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	48 hours at $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 68-2-3, test Ca
Operating force	$\begin{aligned} & \text { F1: } 3 \ldots 10 \mathrm{~N} \\ & \text { F3: }<68 \mathrm{~N} \end{aligned}$
Locking force	$\begin{aligned} & \text { F1: } \geq 400 \mathrm{~N} \\ & \text { F3: } \geq 200 \mathrm{~N} \\ & \hline \end{aligned}$
Mass	approx. 46 g

## 莌局可込 Door Locking Relay 6110－F10．－P1X．－．．．

Dimensions 6110－F10－．．．for door pin
standard keyed connectors code W
for thermal door locking
blade terminals DIN 46244－A6．3－0．8－Ms

engaged length of the door catch


## Installation drawing



Dimensions 6110－F30－．．．for door catch
standard keyed connectors code W
for thermal door locking
blade terminals DIN 46244－A6．3－0．8－Ms

door pin in closed position （not part of our product） pin form to drawing Y 30642800
door pin direction


## Circuit variants

6110－．．．1－．．．


6110－．．．3－．．．


6110－．．．6－．．．


## Description

Safety systems for cookers with pyrolytic cleaning facility and microwave ovens according to IEC Standard 335－2－25．
6510－F2：contact system for application in microwave ovens，with one or two auxiliary contacts to monitor latching of the door striker．
6510－F1：same basic unit as type 6510－F2，with an additional bistable electro－magnetic locking mechanism to ensure that the door is closed during pyrolytic cleaning．
Operating temperatures up to $+120^{\circ} \mathrm{C}$ ．

## Typical applications

Cookers with or without pyrolytic cleaning facility，microwave ovens

## Ordering information



## Approvals

Authority	Voltage ratings	Current ratings
VDE	AC 230 V	16 （6）A，10（4）A
Kema，Demko，Nemko，		
Fimko，ÖVE，IMQ		
Semko（only－F2）		



6510－F1．．．


6510－F2．．．

## Technical data

Voltage rating	AC $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ （other voltages to special order）
Current ratings circuits 13－14（－F1／－F2） and 33－34（－F1） circuit 23－24	$\begin{aligned} & 16 \mathrm{~A}(6 \mathrm{~A}) \\ & 10 \mathrm{~A}(4 \mathrm{~A}) \\ & \hline \end{aligned}$
Coil（－F1 only） excitation 41－42／44 duty cycle	AC 230－240 V，approx． 8 A 1 \％ON duty／10 s
Typical life（VDE 0630）	100,000 operations at $1 \mathrm{xl}_{\mathrm{N}}$ for circuits 13－14 and 23－24
Typical life（ VDE 0435）	500 operations at $1 \mathrm{xI}_{\mathrm{N}}$ for circuit 33－34（－F1 only）－pyrolysis
Ambient temperature	$0 . .150^{\circ} \mathrm{C}$（T 150） coil function temp．（－F1 only）：$+80 \ldots+120^{\circ} \mathrm{C}$
Temperature at mounting means	max．$+180^{\circ} \mathrm{C}$
Insulation co－ordination （IEC 664 and 664A）	Rated impulse Pollution   withstand voltage degree   2.5 kV 3   reinforced insulation at locking aperture
Dielectric strength （IEC 664 and 664A） locking aperture circuits 13－14／23－24 between circuits 13－14／23－24 and 33－34（－F1 only） between circuits and energization（－F1 only）	Test voltage AC $4,000 \mathrm{~V}$ AC $2,000 \mathrm{~V}$   AC $4,000 \mathrm{~V}$   AC $2,000 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega$（DC 500 V ）
Degree of protection （IEC 529／DIN 40050）	locking aperture IP 33 terminal area IP 00
Vibration	$\begin{aligned} & 5 \mathrm{~g}(57-500 \mathrm{z}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC 68-2-6, test Fc, } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 15 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 68-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at $5 \%$ salt mist to IEC 68－2－11，test Ka
Humidity	240 hours at 95 \％RH   to DIN 40046，sheet 5，test Ca
Locking strength（－F1）	$\geq 200 \mathrm{~N}$
Mass	－F1：approx． $75 \mathrm{~g} \quad$－F2：approx． 36 g

## Re『『『® Door Locking Relay 6510－．．．



Installation drawing 6510－F1

Internal wiring diagrams 6510－F1．．

6510－F101－．．．6510－F102－．．．6510－F103－．．．


Dimensions 6510－F2


Installation drawing 6510－F2


Internal wiring diagrams 6510－F2．．

6510－F201－．．
6510－F202－．．．

14
14
13
$1----1$

## Description

Bimetal operated motor protection controls with automatic reset actuation, small physical size, reliable snap-action mechanism.

Caution: In specifying these products, care should be taken to ensure that automatic motor re-start does not represent a safety hazard.

## Typical applications

Motors, transformers, extra low voltage wiring

## Ordering information

Type No.			
2-6500 surface type with flange			
2-6700	surface type without flange		
- $\quad$ Terminal design			
	P10 blade terminals 6.3-0.8		
		Shunt terminal (optional)	
		A3 blad	erminals or solder t
		Curr	t ratings
		0.1..	
2-6500	P10	-6A	ordering example

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current   rating (A)	Internal   resistance ( $\Omega$ )	Current   rating (A)	Internal   resistance ( $\Omega$ )
0.1	140	2	0.47
0.2	47.5	2.5	0.33
0.3	20.5	3	0.212
0.4	11.4	3.5	0.155
0.5	7.25	4	0.107
0.6	5.35	4.5	0.095
0.7	3.8	5	0.072
0.8	2.95	6	0.054
1	1.92	7	0.032
1.2	1.32	8	0.02
1.5	0.85	9	$<0.02$
1.8	0.59	10	$<0.02$

## Approvals

Authority	Voltage rating	Current rating
VDE	AC 250 V	$0.1 \ldots 10 \mathrm{~A}$
UL	AC 250 V, DC 28 V	$0.1 \ldots 15 \mathrm{~A} \mathrm{(2-6500} \mathrm{only)}$
Semko	AC 250 V	$0.1 \ldots 10 \mathrm{~A} \mathrm{(2-6500} \mathrm{only)}$



2-6500-...


2-6700-...

## Technical data

Voltage rating	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 28 V
Current ratings	$0.1 \ldots 10 \mathrm{~A}$
Typical life	100,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$   Protection is ensured for 18 days of   continuous locked rotor condition with   $\mathrm{I}_{\mathrm{k}} \leq 6 \times \mathrm{I}_{\mathrm{N}}$, max. 30 A, (unsupervised duty)
Ambient temperature	$-10 \ldots+60^{\circ} \mathrm{C}$
Insulation co-ordination   (IEC 664 and 664 A)	Rated impulse Pollution   withstand voltage degree   2.5 kV
Dielectric strength	
(IEC 664 and 664A)	Test voltage AC 2,000 V

## 冨㢄可込 Motor Protection Controls 2－6500－．．．／2－6700－．．．

## Dimensions

## 2－6500－P10（A3）



## 2－6700－P10



Accessories for type 2－6500

## Water splash cover Y 30215101

with flange and holes that may be filed out for cable entry


## Internal wiring diagram

2－6500－．．．


2－6700－．．．


Typical time／current characteristics at $23^{\circ} \mathrm{C}$


The time／current characteristic curve depends on the ambient temperature prevailing．In order to eliminate nuisance tripping，please multiply the circuit breaker current ratings by the derating factor shown below

Ambient temperature ${ }^{\circ} \mathrm{C}$	-10	0	+10	+23	+30	+40	+50	+60
Multiplication factor	0.84	0.92	1	1	1	1.08	1.16	1.24

## Description

Three pole, voltage-sensitive thermal relay with bimetal operation auxiliary circuit and manual reset button. Suitable for PCB mounting.

## Typical applications

Motor protection

## Ordering information




3620-10

## Technical data

Voltage rating	$3 \mathrm{AC} 400 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
Current rating	$\leq 10 \mathrm{~A}$
Auxiliary circuit	1 A AC 230 V
Excitation voltage	$\leq \mathrm{AC} 230 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
Typical life	1,000 operations at $\mathrm{I}_{\mathrm{N}}$
Ambient temperture	$0 . .+100^{\circ} \mathrm{C}$
nsulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 664 and 664 A) operating area mounting area circuit/circuit circuit/excitation	Test voltage AC 4000 V   AC 2000 V   AC 2000 V   AC 2000 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Trip time at $23{ }^{\circ} \mathrm{C}$	$<30 \mathrm{sec}$
Reset time at $23^{\circ} \mathrm{C}$ (without load period)	< 80 sec
Interrupting capacity	300 operations with 20 A
Degree of protection (IEC 529/DIN 40050)	IP 00 terminal area IP 40 operating area
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$   to IEC 68-2-6, test Fc   10 frequency cycles/axis
Shock	$15 \mathrm{~g}(11 \mathrm{~ms})$   to IEC 68-2-27, test Ea
Corrosion	48 hours in $5 \%$ salt mist to IEC 68-2-11, test Ka
Humidity	168 hours at 95 \% RH to IEC 68-2-3, test Ca
Mass	approx. 25 g

## 

## Dimensions


mounting dimensions


Installation drawing
operating area


## Description

Bimetal operated current sensitive relay for disconnection of auxiliary windings and start capacitors of single phase AC motors. The operating time of the auxiliary winding is a function of the starting current and its duration. High contact pressure reduces sensitivity to shock and vibration - no contact sticking.
Other features: independent of mounting position and location. Under stalled motor conditions the auxiliary winding and/or the starting capacitor will remain disconnected avoiding damage to the motor. See page 281 for additional information.

## Typical applications

Single phase AC motors

## Ordering information

Type No.
2-7000 motor start switch
Terminal design
P10 blade terminals 6.3-
Housing (optional)
KF for tropical and high humidity conditions
Current ratings
$0.2 \ldots . .10 \mathrm{~A}$
2-7000- $\mathrm{P} 10-\mathrm{KF}-6 \mathrm{~A}$ ordering example

Standard current ratings and typical internal resistance values

Current   rating (A)	Internal   resistance $(\Omega)$	Current   rating (A)	Internal   resistance $(\Omega)$
0.2	91	2.5	0.53
0.5	16	3	0.435
0.8	6	4	0.342
1	3.65	5	0.27
1.3	2.17	6	$<0.02$
1.5	1.62	7	$<0.02$
1.8	1.10	8	$<0.02$
2	0.97	10	$<0.02$


	2-7000-...
Technical data	
Voltage rating	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Current rating of switching circuit	10 (5) A
Current rating of excitation circuit	0.2... 10 A
Typical life	100,000 operations at $1 \times \mathrm{l}_{\mathrm{N}}$
Ambient temperature	0...+60 ${ }^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 664 and 664A)	Rated impulse Pollution   withstand voltage degree   2.5 kV 3
Dielectric strength (IEC 664 and 664A)	Test voltage AC 2,000 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V )
Interrupting capacity	$4 \times \mathrm{I}_{\mathrm{N}}$ (co-co-co)
Degree of protection (IEC 529/DIN 40050)	housing IP 30 terminal area IP 00
Vibration	$\begin{aligned} & 5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 68-2-6 \text {, test Fc, } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { test to IEC 68-2-27, Test Ea } \end{aligned}$
Corrosion	48 hours at 5 \% salt mist to IEC 68-2-11, test Ka
Humidity	240 hours at 95 \% RH test to IEC 68-2-3, test Ca
Mass	approx. 18 g

## Approvals

Authority	Voltage rating	Current rating
VDE	AC 250 V	$0.1 \ldots 10 \mathrm{~A}$

## 

## Dimensions



## Accessory

## Water splash cover

Y 30215101
with flange and holes that may be filed out for cable entry


Internal wiring diagram


Typical time/current characteristics at $23^{\circ} \mathrm{C}$


The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below

 |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplication factor | 0.84 | 0.92 | 1 | 1 | 1 | 1.08 | 1.16 | 1.24 |

## Selection of the device

The contacts of type 2-7000 will open when energized so that the lowest possible motor current (e.g. the running current of the motor unloaded) must not be less than the current rating of the motor start switch to ensure that the switch will reconnect the auxiliary phase after completion of the starting process.

The current rating will determine both the switching characteristics and ratings of the contacts.

At the same time the highest possible motor current (short-circuit current at overvoltage) must not exceed 6 times the motor start switch current rating. Normally the A-P-S current rating should be approx. $1 / 5$ of the running current of the motor (see the examples below).

Either wiring a or wiring $b$ should be chosen, giving due consideration to these two extreme conditions.

## Wiring information

## Wiring with motor start switch (A-P-S)

1. Wiring „a":

For this standard connection please observe the following:

Mains input: terminal 1
Main phase: terminal 2
Auxiliary phase: terminal 3
The overall starting current of the motor determines the switching time of the motor start switch and must not exceed its max. current capacity.
2. Wiring „b":

This special connection is suitable for motors with relatively high short circuit currents:

Mains input: terminal 2 Main phase: terminal 1 Auxiliary phase: terminal 3

In this case it is only the main phase current that determines the switching time of the motor start switch.

Wiring with Motor Protection Control (M-R):
Once the motor has stopped, if
 an attempt is made to start it again before the motor start switch has reset, a stall condition will result causing the motor protection control to disconnect the supply. The motor start switch contacts will reset, and the motor may be re-started once the motor start switch has closed again automatically.


## Example for wiring "a":

Current of the motor unloaded $\quad I_{0}=2.6 \mathrm{~A}=\mathrm{I}_{\text {min }}$ (current rating of the motor)

$$
\left.I_{N}=3.0 \mathrm{~A}\right)
$$

Short-circuit current of the main phase
$\mathrm{I}_{\mathrm{kHa}}=7 \mathrm{~A}$
of main and auxiliary phase $I_{\mathrm{kHa}+\mathrm{Hi}}=12 \mathrm{~A}=\mathrm{I}_{\text {max }}$

## Formula for the motor start switch:

Current rating $=1 / 5 I_{\max }=1 / 5 \quad 12=2.4 \mathrm{~A}$
i.e. a motor start switch current rating of 2.5 A (e.g. 2-7000-P10-KF-2.5 A) should be selected.
With wiring ",a" the overall current of the motor flows through the bimetal heater (terminal 1). The max. possible current of 12 A is lower than $6 \times 2.5=15$ A, the highest admissible load for the motor start switch. Furthermore the lowest possible motor current (2.6 A) is higher than the motor start switch current rating, ensuring that the auxiliary phase will remain disconnected even when the motor is unloaded.

## Example for wiring „b":

Current of the motor unloaded: $I_{\circ}=1.5 \mathrm{~A}=I_{\text {min }}$
Other motor data as indicated in example "a".
As in this case the motor start switch current rating must be selected according to the lower minimum current value, only the short-circuit current of the main phase ( 7 A ) may flow through the bimetal heater (terminal 1) in order to prevent overloading.
Current rating $=1 / 5 \mathrm{I}_{\mathrm{kHa}}=1 / 5 \quad 7=1.4 \mathrm{~A}$.
i.e. a motor start switch current rating of 1.5 A (e.g. 2-7000-P10-KF-1.5 A) should be selected.
The motor start switch rated at 1.5 A must be connected according to wiring „b". In this case the max. possible load is 7 A , i.e. it is lower than $6 \times 1.5 \mathrm{~A}=9 \mathrm{~A}$.
The current of the motor unloaded (1.5 A) equals the motor start switch current rating - the auxiliary phase will again remain disconnected.

## Wiring with E-T-A Circuit Breaker:

This configuration is recommended where the function of the device or equipment is supervised and resetting should only be made manually (e.g. circular saws). Operation of the motor start switch is otherwise the same.



## E-T-A Solid State Remote Power Controllers (SSRPCs)

E-T-A solid state remote power controllers combine solid state switching with electronic overload protection and current limiting characteristics. Selected models also include electro-mechanical switching for applications which demand physical contact separation.

These products have been designed for the protection of programmable controller outputs, instrumentation, and process control switching circuits. Their performance characteristics are especially suitable for limiting the high in-rush currents associated with solenoids and other high resistance or inductive loads. Versions are also available for power management control in vehicles and marine craft.

Physical isolation between control and load circuits is assured through inclusion of an opto-coupler in most models, and all types provide fault status and wire break indication. Advanced thickfilm and hybrid circuitry specially developed and manufactured by E-T-A in-house make a significant contribution to the reliability of these products while ease of installation is achieved through convenient industry standard rail or socket mounting.

There is a suitable E-T-A solid state remote power controller for most process control and DC power distribution requirements and characteristics may also be tailored to special circumstances as necessary.

## R R

Type No.	E-1048-600..	E-1071-073-..	E-1071-128-...
Voltage rating of load	DC 24 V	DC 24 V	DC 24 V
Current rating of load	$\begin{array}{r} 0.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2 \mathrm{~A} \\ 4 \mathrm{~A} \end{array}$	0.2-3.0 A	0.2-3.0 A
Short-circuit limitation	25 A (0.5A/1A rating) 75 A (2 A/4 A rating)	approx. $2.5 \times \mathrm{I}_{\mathrm{N}}$	approx. $2.5 \times \mathrm{I}_{\mathrm{N}}$
Hold current of magnetic coil	N/A	N/A	N/A
Operating voltage of SSRPC	DC $18 \ldots 36 \mathrm{~V}$	DC $20 \ldots 48 \mathrm{~V}$	DC $20 \ldots 48 \mathrm{~V}$
Display	ON indication fault indication	control current load current	control current minimum current ON indication fault indication
Status outputs	fault indication via opto coupler (N/O contact)	fault indication via auxiliary contact (N/O contact)	ON and fault indication via opto coupler
Physical isolation of load circuit (after electronic overload disconnection)		after approx. 5 s	after approx. 5 s
Temperature range	$0^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Housing - mounting dimensions (W/H/D)	12/50/65 mm (without socket)   12/80/89 mm (with socket type 17)	$45 / 74$ / 128 mm	45/74/128 mm
- mounting	rail to EN 50022-35x7.5 when used with socket $17-\mathrm{P}-\mathrm{Si}$ (accessory)	rail to EN 50022-35x7.5	rail to EN 50022-35x7.5
Other data	suitable for lamp load		monitoring of minimum current, adjustable between 0.1 and 2.1 A
Technical data	see pages 287-289	see pages 291-293	see pages 295-297


approx $2.5 \times I_{N}$
approx. $2.5 \times \mathrm{I}_{\mathrm{N}}$
approx. $3.5 \times \mathrm{I}_{\mathrm{N}}$
approx. $3.5 \times I_{N}$

N/A
N/A
adjustable between
adjustable between
0.06 A and 0.18 A 0.06 A and 1.85 A
0.1 A and 0.3 A 0.25 A and 0.75 A 0.5 A and 1.5 A 0.75 A and 2.25 A
$\max . \mathrm{DC} 60 \mathrm{~V}$

control current load current	control current load current	control current O.K.   wire break fault	control current load current wire break
fault indication via auxiliary contact (N/O)	fault indication via auxiliary contact (N/O)	ON and fault indication via opto coupler	fault indication via auxiliary contact (N/O)
after approx. 5 s			
$0^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$			
45 / 74 / 128 mm	45 / 74 / 128 mm	45 / 74 / 128 mm	$45 / 74 / 128 \mathrm{~mm}$
rail to EN 50022-35×7.5	rail to EN 50022-35x7.5	rail to EN 50022-35x7.5	rail to EN 50022-35x7.5

## 

Selector chart

Type No.	8 0 0 0 ó $\vdots$ $\vdots$		$\stackrel{\sim}{\sim}$		$\begin{aligned} & \text { గ్ల } \\ & \stackrel{1}{+} \\ & \stackrel{\rightharpoonup}{+} \\ & \stackrel{\rightharpoonup}{U} \end{aligned}$			
Control circuit								
Control voltage DC 24 V	$\bullet$	$\bullet$	$\bullet$	$\bigcirc$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bullet$
Max. switching frequency $f_{\text {max }}$						$\bullet$	$\bullet$	$\bullet$
			-					
		-		-	-			
	-							
Load circuit								
PNP transistor output, plus switching	-							
NPN transistor output, minus switching		$\bullet$	$\bullet$	$\bullet$	-	$\bullet$	$\bullet$	-
Current rating	-							
	-							
	-							
		-	$\bullet$	$\bullet$	-			
	-							
Load current (adjustable, pulse-controlled hold current)								-
								-
								-
								-
								-
						-	$\bullet$	
Short-circuit current, self-limiting	-	-	$\bullet$	$\bullet$	-	-	-	-
Physical isolation under fault conditions (short-circuit, overload)		$\bullet$	$\bullet$	$\bullet$	-	$\bullet$	$\bullet$	-
Physical isolation by hand release		$\bullet$	$\bullet$	$\bullet$	-	-	$\bullet$	-
Reverse polarity protection $\mathrm{U}_{\mathrm{B}}$ (terminal 1 - terminal 2)		$\bullet$	$\bullet$	$\bullet$	-	$\bullet$	$\bullet$	-
Fault signal output								
Opto coupler	-		$\bullet$			$\bullet$	$\bullet$	
Auxiliary contact (N/O)		$\bullet$		$\bullet$	-			-
LED	$\bullet$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bigcirc$	$\bullet$	$\bullet$	$\bullet$
Constructional features								
Double unit				$\bullet$	-			
Current measuring terminals		$\bigcirc$	$\bullet$	$\bigcirc$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bullet$
Connection								
Blade terminals	-							
Screw terminals		$\bullet$	$\bullet$	$\bullet$	-	$\bullet$		-
Screw-less connectors							$\bullet$	

## Description

The E-T-A Solid State Remote Power Controller (SSRPC) E-1048-600 is an opto decoupled transistorised switching device providing both protection and signalisation.
It may be used wherever safe switching and protection of resistive, inductive or lamp loads in DC voltage systems is required.

## Typical applications

Automation

- interface module providing inexpensive power amplification at PLC outputs
- optimum protection of individual loads by monitoring the load circuit
Protection and control of
- motors
- solenoids
- lamps


## Features

- Optimum load protection. Available in current ratings of 0.5 A; 1 A; 2 A; 4 A.
- Fast short-circuit limitation and disconnection
- Time/current dependent overload disconnection
- Remote control
- Fault indication: LED and signal output for overload/short-circuit signalization, and wire break indication in the OFF condition.
- Physically isolated fault indication.
- Compact plug-in type


## Ordering information



Where wire break and LED indication is not required, please contact us for a thermal-magnetic circuit breaker (e.g. types 2210, 3600, 3900).


E-1048-600

## Technical data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$; at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Load circuit	
Voltage rating $\mathrm{U}_{\mathrm{B}}$	DC 24 V (18... 36 V )
Current rating $\mathrm{I}_{\mathrm{N}}$	$0.5 \mathrm{~A} ; 1 \mathrm{~A} ; 2 \mathrm{~A}, 4 \mathrm{~A}$ (other ratings to special order)
Closed-circuit current $\mathrm{I}_{\text {S }}$	typically 0.3 mA
Min. load current	$>1 \mathrm{~mA}$
Voltage drop U ${ }_{\text {DSmax }}$	$0.15 \mathrm{~V} ; 0.3 \mathrm{~V} ; 0.1 \mathrm{~V} ; 0.2 \mathrm{~V}$
Overload disconnection	approx. $1.4 \times \mathrm{I}_{\mathrm{N}}$ after approx. 100 ms
Short-circuit current (self-limiting)	max. 25 A (with 0.5 A and 1 A current ratings)
	max. 75 A (with 2 A and 4 A current ratings)
Short-circuit disconnection	<250 $\mu \mathrm{s}$
Control circuit	
Voltage rating	DC 24 V
Voltage controlled input $\mathrm{U}_{\mathrm{E}}$	DC 0 V < low level $<5 \mathrm{~V}$
	DC 8.5 V < high level < 36 V
Input current $\mathrm{I}_{\mathrm{E}}$	1... 10 mA (18... 36 V )
Max. switching frequency $f_{\text {max }}$	500 Hz
Reset time after shortcircuit/overload disconnection	1 ms
Fault indication output (opto coupler)	
Voltage rating range	DC 5... 36 V
Max. load current	$100 \mathrm{~mA}(\Delta \mathrm{U}<2 \mathrm{~V})$, with reverse polarity protection
Wire break indication	< $100 \mu \mathrm{~A}$ load current
General data	
Temperature range	$0^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Insulation voltage (IEC 664/VDE 0110)	2.5 kV rms
Mass	28 g

## Connection diagram



## 

## Technical description

At the appropriate input level ( $>8.5 \mathrm{~V}$ ), the opto decoupled input in the SSRPC will switch on a power transistor to connect the load to the plus pole of the load circuit supply $\left(\mathrm{U}_{\mathrm{B}}\right)$.
The transistor will switch off when

- the control voltage $\left(U_{E}\right)$ is removed
- there is a short-circuit/overload in the load circuit.

Status indication is provided by two LEDs (red and green).
Thermal-magnetic overload protection occurs at approx. 1.4 times rated current. See time/current characteristic curves.
The SSRPC is fitted with blade terminals DIN 46244-A6.3-0.8 and is suitable for plug-in mounting with various E-T-A sockets.

## Control circuit

## ON condition:

If a voltage higher than 8.5 V is applied to the input terminals $(-\mathrm{IN},+\mathrm{IN})$, the control current (from the PLC) will flow through the opto coupler. The output transistor will be conductive.

## OFF condition:

A control voltage lower than 5 V will switch the output transistor off.

## Load circuit

The load circuit switches depending on the control signal ("0" or " 1 "). It is electronically monitored for faults. In the event of a short-circuit the circuit is disconnected after max. $250 \mu \mathrm{~s}$ whilst upon inadmissible overload it is disconnected according to the time/current curves shown.

## Fault indication output

The fault indication circuit (F+, F-) is opto decoupled from the load and control circuit.
In the OFF condition (i.e. $0<\mathrm{U}_{\mathrm{E}}<5 \mathrm{~V}$ ), this circuit will provide wire break indication, with the transistor output being open.
In the ON condition, the circuit will provide short-circuit and overload monitoring and indication.

## Status indication

Status indication	Fault indication output (opto coupler)	$\begin{aligned} & \text { LED } \\ & \text { green } \end{aligned}$
Non-conductive, no duty	-	$\bigcirc \bigcirc$
Conductive, normal duty	-	$\otimes \bigcirc$
Overload or short circuit at the output	$\square$	$\otimes \otimes$
Wire break, in the OFF condition	-	$\bigcirc$

## Dimensions



## Derating curve



Typical time/current characteristics
0.5 A and 1 A

$2 A$ and 4 A



## Description

The E－T－A Remote Power Controller E－1071－073 is an electronic ON／ OFF control module with protective functions and is suitable for resistive and inductive loads such as solenoids in rolling mills and other large plant applications．It is specifically used in plant modernization where the load circuit supply should be maintained at DC 24 V ．

## Typical applications

Control of hydraulic and pneumatic sytems in production lines and chemical plants．

## Features

－Solid－state relay with protective functions
－Solid－state switching avoids contact arcing and welding
－Inrush current limitation
－Overload and short－circuit proof output
－Low control power
－Control current indication by LED
－Auxiliary contact

Ordering information



E－1071－073

## Technical data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}\right)$

Voltage rating $\mathrm{U}_{\mathrm{N}}$	DC 24 V
Operating voltage $\mathrm{U}_{\mathrm{B}}$	DC 20．．． 48 V
Current rating $\mathrm{I}_{\mathrm{N}}$	3 A
Current consumption $\left(U_{B}=D C 24 \mathrm{~V}, U_{s}=" 0 "\right)$	typically 17 mA
Residual ripple for all voltages	max． 5 \％（3 phase bridge）
Reverse polarity protection $\mathrm{U}_{\mathrm{B}}$ （terminal 1 －terminal 2）	double pole relay
Physical isolation	2－pole   －by circuit breaker hand release   －approx． 5 s after overload disconnection
Load circuit	
Load output	NPN transistor，minus switching
Load rating	DC $24 \mathrm{~V} / 0.2 . .3$ A
Voltage drop at $I_{N}$	max． 1.75 V
Overload disconnection	approx． $1.1 \times \mathrm{IN}$
	typically 20 ms （see storage time curve）
Short－circuit limitation	approx． $2.5 \times \mathrm{I}_{\mathrm{N}}$
Short－circuit response delay	approx． $4 \mu \mathrm{~s}$
Load current monitoring	GREEN LED（lights at $\mathrm{l}_{\text {load }}>0.2 \mathrm{~A}$ ）
Current measuring terminals	$2 \times 2 \mathrm{~mm}$ dia．（shunt $0.1 \Omega \pm 1 \%$ ）
Leakage current（ $\mathrm{U}_{\mathrm{s}}=$＂ O ＂）	max． 3 mA
Free－wheeling diode	integral
Control circuit	
Control	opto coupler in control input
Control voltage $\mathrm{U}_{\mathrm{s}}$	$\begin{aligned} & " 0 "=0 \ldots 5 \mathrm{~V} \\ & " 1 "=8.5 \ldots 35 \mathrm{~V} \end{aligned}$
Control current Is	typically 5 mA
Switching frequency $f_{\text {max }}$	100 Hz
Control signal（ $\mathrm{U}_{\mathrm{S}}=$＂1＂）	YELLOW LED lights（ $\mathrm{I}_{\mathrm{s}}$ flowing）
Protection	reverse polarity protection（diode）
Signal output	
Fault indication	auxiliary contact（N／O）
	－max．DC 30 V／3 A
	－physically isolated
	－closed with the circuit breaker tripped
General data	
Ambient temperature	$0 . . .+60^{\circ} \mathrm{C}$（without condensation）
Terminals	screw terminals $2 \times 2.5 \mathrm{~mm}^{2}$ to DIN 46288
Housing	clamping plate：polycarbonate GV，blue cover：polycarbonate，black
Mounting	top－hat rail to DIN 50022－35
Self－extinguishing properties	to UL 94：V＝0；VDE 0304：grade 1
Degree of protection	IP 20 housing，terminals （IEC 529／DIN 40050）
Mounting dimensions	$45 \times 74 \times 128 \mathrm{~mm}$
Mass	approx． 240 g

## 

## Technical description

In principle, the E-T-A SSRPC E-1071-073 operates like conventional electro-mechanical relays, with additional protective and signal functions. The control input replaces the magnetic coil and the power transistor replaces the main contact.

## Control circuit

The control current flows through the LED and the opto coupler immediately a voltage higher than 8.5 V is applied at the input terminals ( 6 and 7). The opto coupler transmits the signal to the load circuit, at the same time switching the load transistor on. This signal is transmitted as a status signal to all monitoring circuits. The input protection diode protects the control voltage from incorrect polarization. Control current limitation is provided by a constant current diode.

## Load circuit

The load circuit is switched ON or OFF according to the control signal ("0" or "1"), with electronic circuits monitoring the load circuit for faults such as overload or short-circuit. Should one of these faults occur, the monitoring circuitry will immediately react, causing the load transistor to disconnect and the circuit breaker to trip. Transistor disconnection occurs according to the storage time characteristics. The storage time increases noise immunity avoiding disconnection of non-harmful peaks such as those caused by inrush currents from lamp load connection. Storage time is not a constant quantity but is inversely proportional to the overcurrent factor.

## Status indication

Status indication is provided by 2 LEDs (yellow and green) on the front of the housing.

YELLOW LED = correct control voltage
The LED indicates when the control voltage is higher than 8.5 V , with control current flowing.
GREEN LED $=$ correct load current
The green LED indicates when the load current is higher than 0.2 A.

Faults such as too high a load resistance, wire break, poor contact, or overload/short-circuit, are available when only the yellow LED indicates. SSRPC E-1071-073 includes two current measuring terminals (2 mm dia.) on the front. These terminals provide for load current measurement in terms of voltage drop at the 0.1 shunt in the load circuit.

## Operating modes

Operating status	Fault-free   operation		Short-circuit   of the load	Wire break	
Control input Us	$" 0 "$	$" 1 "$	$" 1 "$	$" 0 "$	$" 1 "$
YELLOW LED -   control current	0	1	1	0	1
GREEN LED -   load current monitoring	0	1	0	0	0
Auxiliary contact	open	open	closed	open	open
Remarks	load   OFF	load   ON	circuit breaker   tripped		

1 = LED indicates
0 = LED does not indicate

Storage time characteristic curve


## 



Basic circuit diagram


## Terminal selection



## Terminal

1 operating voltage $+U_{B}$ : DC $20 \ldots 48 \mathrm{~V}$
2 operating voltage $-U_{B}$
3 load (+)
load (-)
not used
control voltage $+\mathrm{U}_{\mathrm{s}}$ : max. DC 35 V
control voltage - $\mathrm{U}_{\mathrm{s}}$
auxiliary contact
auxiliary contact
not used

## Description

The E-T-A Solid State Remote Power Controller E-1071-128 is an electronic ON/OFF control module with protective and signalling functions. It is suitable for inductive loads (solenoids, magnetic brakes) when the load circuit supply cannot be increased to the voltage level required for the adjustable controller E-1071-603. The operating status of the controller/load connected is continuously indicated and signalled via opto coupler.

## Typical applications

Control of hydraulic and pneumatic sytems in production lines and chemical plants where check-back signals for process control systems are needed.

## Features

- Overcurrent and short-circuit proof switching output by electronic current limitation
- Switch-off current largely independent of operating voltage
- Inrush current limitation
- Physical isolation between control and load circuit via opto coupler
- Low control power; control current indication by LED
- Solid state switching avoids contact arcing and welding
- 2-pole physical isolation upon overload or when tripped manually
- Opto decoupled ON and fault indication by LED
- Setting of minimum current on front of housing, with minimum current indication (set at approx. $50 \%$ of the load current rating)
- Current measuring terminals on front of housing
- Reverse polarity protection in control and load circuit

Ordering information



E-1071-128

## Technical data $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}\right)$

Voltage rating $\mathrm{U}_{\mathrm{N}}$	DC 24 V
Operating voltage $\mathrm{U}_{\mathrm{B}}$	DC 20... 48 V
Current rating $\mathrm{IN}_{N}$	3 A
Current consumption $\left(U_{B}=D C 24 \mathrm{~V}, \mathrm{U}_{\mathrm{S}}=" 0 "\right)$	typically 15 mA
Residual ripple for all voltages	max. 5 \% (3 phase bridge)
Reverse polarity protection $U_{B}$ (terminal 1 - terminal 2)	double pole relay
Physical isolation	2-pole   - by manual release (circuit breaker)   - approx. 5 s after overload disconnection
Load circuit	
Load output	NPN transistor, minus switching
Load rating	DC $24 \mathrm{~V} / 0.2 . .3$ A
Voltage drop at $I_{N}$	max. 2 V
Overload disconnection	approx. $1.1 \times \mathrm{I}_{\mathrm{N}}$
Storage time ts (at $2 \mathrm{xl}_{\mathrm{N}}$ )	typically 20 ms (see storage time curve)
Short-circuit limitation	approx. $2.5 \times \mathrm{I}_{\mathrm{N}}$
Short-circuit response delay	approx. $4 \mu$ s
Load current monitoring $\mathrm{Imin}^{\text {m }}$	GREEN LED lights at $\mathrm{l}_{\text {load }}>0.2 \mathrm{I}_{\text {min }}$.
(MIN monitoring, to be set by	switch position I: $0.1 . .1 .1 \mathrm{~A}$
potentiometer at $50 \%$ of the load current rating)	switch position II: 1.1 ...2.1 A
Current measuring terminals	$2 \times 2 \mathrm{~mm}$ dia. (shunt $0.1 \Omega \pm 1 \%$ )
Leakage current ( $\mathrm{U}_{\mathrm{s}}=$ " O ")	max. 3 mA
Free-wheeling diode	integral
Control circuit	
Control	opto coupler in control input
Control voltage $\mathrm{U}_{\mathrm{s}}$	$" 0 "=0 \ldots 5 \mathrm{~V}$
	"1" = 8.5... 35 V
Control current	typically 5 mA
Switching frequency $\mathrm{f}_{\text {max }}$	10 Hz
Control signal ( $\mathrm{U}_{\mathrm{S}}=$ "1")	YELLOW LED lights ( $\mathrm{I}_{\mathrm{s}}$ flowing)
Protection	reverse polarity protection (diode)
Status outputs	
2 signal outputs	ON indication/fault indication   - physically isolated by opto coupler   - transistor outputs plus switching   - max. DC 33 V/100 mA per output   - integral free-wheeling diode   - 20 ms time delay (eliminating false signals before the minimum current is reached)
ON indication (terminal 8)	$\mathrm{U}_{\mathrm{S}}=$ " 0 ": output non-conductive   $\mathrm{U}_{\mathrm{S}}=$ "1": output connecting plus potential (terminal 10) to terminal 8
Fault indication (terminal 9)	fault: output non-conductive no fault: output connecting plus potential (terminal 10) to terminal 9

## 

## Technical data

## General data

Ambient temperature
Terminals
Housing
Mounting
Burning behaviour (housing)
Degree of protection
Mounting dimensions
Mass
$0 . . .+60^{\circ} \mathrm{C}$ (without condensation) screw terminals $2 \times 2.5 \mathrm{~mm}^{2}$ to

## DIN 46288

clamping plate: polycarbonate GV, blue cover: polycarbonate, black
top-hat rail to DIN 50022-35
to UL 94: V = 0; VDE 0304: grade 1
IP 20 housing, terminals
(IEC 529/DIN 40050)
$45 \times 74 \times 128 \mathrm{~mm}$
approx. 320 g

## Technical description

In principle, the E-T-A SSRPC E-1071-128 operates like conventional electro-mechanical relays, with additional protective and signalling functions. The control input replaces the magnetic coil and the power transistor replaces the main contact.
ON and fault indication outputs have more complex functions and may not be compared with auxiliary contacts.

## Control circuit

The control current flows through the LED and the opto coupler immediately a voltage higher than 8.5 V is applied at the input terminals ( 6 and 7). The opto coupler transmits the signal to the load circuit, at the same time switching the load transistor on. This signal is transmitted as a status signal to all monitoring circuits. The input protection diode protects the control voltage from incorrect polarization. Control current limitation is provided by a constant current diode.

## Load circuit

The load circuit is switched ON or OFF according to the control signal (" 0 " or " 1 "), with electronic circuits monitoring the load circuit for faults such as overload or short-circuit. Should one of these faults occur, the monitoring circuitry will immediately react, causing the load transistor to disconnect and the circuit breaker to trip. Transistor disconnection occurs according to the storage time characteristics. The storage time increases noise immunity avoiding disconnection of non-harmful peaks such as those caused by inrush currents from lamp load connection. Storage time is not a constant quantity but is inversely proportional to the overcurrent factor.

## Signal circuit

The signal circuit includes two opto couplers signalising either correct ON duty or a fault. These signals may be computer processed.

- The ON signal output indicates correct operating in the ON condition. This output is conductive


## when control voltage is available

AND the load current is higher than the set minimum current
AND the circuit breaker has not tripped
AND there is no wire break.

- The fault signal output signalises the fault source which must be eliminated. This output is non-conductive when
the circuit breaker has tripped on overload or short-circuit OR there is a wire break
OR control voltage is available AND the minimum current has not been reached
OR no control voltage is applied although the load current is available.

The fault signal output operates on the closed-circuit principle, i.e. it carries plus potential during fault-free operation.

## Storage time characteristic curve



## Operating modes

Operating status	Fault-free operation		Short-circuit of the load		Wire break		Load current <minimum current	
Control input $\mathrm{U}_{\text {S }}$	"0"	"1"	"0"	"1"	"0"	"1"	"0"	"1"
YELLOW LED control current	0	1	0	1	0	1	0	1
GREEN LED min. current indication	0	1	0	0	0	0	0	0
GREEN LED ON indication	0	1	0	0	0	0	0	0
RED LED fault indication	1	1	1	0	0	0	1	0
Remarks	load OFF	load ON	phys.   after appro	olation $5 \mathrm{~s}$	no conn wire	ted, eak		

1 = LED indicates
$0=$ LED does not indicate

## Status outputs

ON   Terminal 8	Fault   Terminal 9	Remark
0	0	wire break or   load current < minimum current (switched on) or   short-circuit (switched on)
0	1	fault-free operation (switched off)
1	1	fault-free operation (switched on)

1 - status output carries plus potential
0 - status output carries minus potential

## 

## Dimensions



## Basic circuit diagram



## Terminal selection



## Terminal

operating voltage $+\mathrm{U}_{\mathrm{B}}$ : $\mathrm{DC} 20 \ldots 48 \mathrm{~V}$
operating voltage $-U_{B}$
load (+)
load (-)
auxiliary voltage $-\mathrm{U}_{\mathrm{A}}$ for status outputs control voltage $+\mathrm{U}_{\mathrm{s}}$ : max. DC 35 V
control voltage $-\mathrm{U}_{\mathrm{s}}$
ON status output (max. 100 mA )
fault status output (max. 100 mA )
auxiliary voltage $+\mathrm{U}_{\mathrm{A}}$ for status outputs: max. DC 33 V

## Description

The E-T-A Solid State Remote Power Controller E-1071-343 is a double relay with protective function both for resistive and inductive DC 48 V loads. It is particularly suitable to control upward/downward and forward/ backward movements. Failure of one channel will also cause the other channel to disconnect.

## Typical applications

- Valve timing gears for forward/backward or upward/downward movements (overlapping operation is possible)
- Parallel circuits which must be completely disconnected after failure of one of the circuits.


## Features

- Small double relay with protective function
- Overcurrent and short-circuit proof outputs
- Two pole physical isolation of both channels
- approx. 5 s after electronic fault disconnection
- by manual release
- Both part units are disconnected upon isolator tripping
- Current load of each unit: max. 3 A; total current max. 4 A
- Electrical isolation between control and load circuit by means of opto coupler
- Control current indication by RED LED
- Load current indication by GREEN LED
- With auxiliary contact (fault indication)
- Temperature disconnection


## Ordering information




E-1071-343

## Technical data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 48 \mathrm{~V}\right)$

Voltage rating $\mathrm{U}_{\mathrm{N}}$	DC 48 V
Operating voltage $U_{B}$	DC 36... 60 V
Current rating $\mathrm{I}_{\mathrm{N}}$	$3 \mathrm{~A} / 3 \mathrm{~A}(2 \mathrm{~A}+2 \mathrm{~A})$
Current consumption $\left(U_{\mathrm{B}}=\mathrm{DC} 48 \mathrm{~V}, \mathrm{U}_{\mathrm{S}}=" 0 "\right)$	typically 21 mA
Residual ripple for all voltages	max. 5 \% (3 phase bridge)
Reverse polarity protection $\mathrm{U}_{B}$ (terminal 1 - terminal 2)	double pole relay
Physical isolation	2-pole
	- by manual circuit breaker release
	- approx. 5 s after overload disconnection
	- upon thermal response (approx. $130^{\circ} \mathrm{C}$ )
Load circuits (I/II)	
Load output	NPN transistor, minus switching
Load rating	DC 48 V/0.2... 3 A per channel parallel duty max. 4 A (e.g. $2 \mathrm{~A}+2 \mathrm{~A}$ )
Voltage drop at $\mathrm{I}_{\mathrm{N}}$	max. 1.8 V
Overload disconnection	approx. $1.1 \times \mathrm{I}_{\mathrm{N}}$
Storage time ts (at $2 \times 1{ }_{N}$ )	typically 20 ms (see storage time curve)
Short-circuit limitation	approx. $2.5 \times \mathrm{I}_{\mathrm{N}}$
Short-circuit response delay	approx. $4 \mu$ s
Load current monitoring	GREEN LED lights at $\mathrm{l}_{\text {load }}>0.1 \mathrm{~A}$ )
Current measuring terminals	$3 \times 4 \mathrm{~mm}$ dia. ( $0.1 \Omega$ shunt)
Leakage current ( $\mathrm{U}_{\mathrm{s}}=$ " O ")	max. 3 mA
Free-wheeling diode	integral
Control circuits (I/II)	
Control	opto coupler in control input
Control voltage $\mathrm{U}_{\mathrm{S}}$	"0" $=0 \ldots 5 \mathrm{~V}$
	$" 1 "=8.5 \ldots 35 \mathrm{~V}$
Control current	typically 5 mA
Switching frequency $f_{\text {max }}$	100 Hz
Control signal ( $\mathrm{U}_{\mathrm{S}}=$ „1")	RED LED lights ( $\mathrm{I}_{\mathrm{s}}$ flowing)
Protection	reverse polarity protection (diode)
Signal output	
Fault indication	auxiliary contact (N/O)
	- max. DC $30 \mathrm{~V} / 3 \mathrm{~A}$
	- physically isolated
	- closed when the circuit breaker has tripped
General data	
Ambient temperature	$0 . . .+60^{\circ} \mathrm{C}$ (without condensation)
Terminals	screw terminals $2 \times 2.5 \mathrm{~mm}^{2}$ to DIN 46288
Housing	clamping plate: polycarbonate GV, blue; cover: polycarbonate, black
Mounting	top-hat rail to DIN 50022-35
Self-extinguishing properties	to UL 94: V = 0; VDE 0304: grade 1
Degree of protection (IEC 529/DIN 40050)	IP 20 housing, terminals
Mounting dimensions	$45 \times 74 \times 128 \mathrm{~mm}$
Mass	approx. 320 g

## 

## Technical description

Under normal operating conditions, the E-T-A SSRPC E-1071-343 allows the connection and disconnection of the load outputs of two channels independent of each other.

## Control circuits (I/II)

The control current flows through the LED and the opto coupler immediately a voltage higher than 8.5 V is applied at the input terminals ( 6 and 7 , or 10 and 7 ). The opto coupler transmits the signal to the load circuit, at the same time switching the load transistor on. This signal is transmitted as a status signal to all monitoring circuits. The input protection diode protects the control voltage from incorrect polarization. Control current limitation is provided by a constant current diode.

## Load circuits (I/II)

The load circuit is switched ON or OFF according to the control signal ("0" or " 1 "), with electronic circuits monitoring the load circuit for faults such as overload or short-circuit. Should one of these faults occur, the monitoring circuitry will immediately react, causing the load transistor to disconnect and the circuit breaker to trip. Transistor disconnection occurs according to the storage time characteristics. The storage time increases noise immunity avoiding disconnection of non-harmful peaks such as those caused by inrush currents from lamp load connection. Storage time is not a constant quantity but is inversely proportional to the overcurrent factor.

After expiration of the storage time (see diagram) the load circuit transistor will become non-conductive. After approx. 5 s the isolator will switch off so as to disconnect the two load circuits. The common auxiliary contact closes signalling the fault. After removal of the fault, the SSRPC can be reactivated by pushing the isolator button.

## Status outputs

Status indication is provided by 4 LEDs ( $2 \times$ RED, $2 \times$ GREEN $)$.
RED LED
ON indication (I/II)
The red LED indicates when the control voltage is higher than 8.5 V , with control current flowing.

## GREEN LED

Current flow indication (I/II)
The green LED indicates when the load current is above 0.1 A .
Faults such as too high a resistance, wire break, poor contact, or overload/short-circuit, are available when only the red LED indicates.

The SSRPC E-1071-343 includes three current measuring terminals (4 mm dia.) on the front. These terminals provide for load current measurement in terms of voltage drop at the $0.1 \Omega$ shunt in the load circuit (I/II).

## Storage time characteristic curve



## Operating modes

Operating status	Fault-free   operation		Short-circuit   on the load	Wire break	
Control input	$" 0 "$	$" 1 "$	$" 1 "$	$" 0 "$	$" 1 "$
RED LED -   Control current	0	1	1	0	1
GREEN LED -   Load current monitoring	0	1	0	0	0
Auxiliary contact	open	open	closed	open	open
Remarks	load   OFF	Ioad   ON	both load circuits   disconnected		

1 - LED indicates
0 - LED does not indicate

## 



## Basic circuit diagram



## Terminal selection



## Terminal

1 operating voltage $+U_{B}$ : $\mathrm{DC} 36 \ldots 60 \mathrm{~V}$
2 operating voltage $-U_{B}$
3 load (+) (carrying plus potential) CAUTION: Do not connect to GND/-U
4 load I (-)
5 load II (-)
6 control voltage I $+\mathrm{U}_{\mathrm{s}}$ : max. DC 35 V
7 control voltage I, II -US
8 auxiliary contact
9 auxiliary contact
10 auxiliary voltage II + Us : max. DC 35 V

## Description

The E－T－A Solid State Remote Power Controller E－1071－353 is a double relay with protective function both for resistive and inductive DC 24 V loads．It is particularly suitable to control upward／downward and forward／ backward movements．Failure of one channel will also cause the other channel to disconnect．

## Typical applications

－Valve timing gears for forward／backward or upward／downward movements（overlapping operation is possible）
－Parallel circuits which must be completely disconnected upon failure of one of the circuits．

## Features

－Small double relay with protective function
－Overcurrent and short－circuit proof outputs
－Two pole physical isolation of both channels
－approx． 5 s after electronic disconnection of a fault
－by manual release
－Both part units are disconnected upon the isolator tripping
－Current load of each unit：max． 3 A ；total current max． 4 A
－Electrical isolation between control and load circuit by means of opto coupler
－Control current indication by RED LED
－Load current indication by GREEN LED
－With auxiliary contact（fault indication）
－Temperature disconnection

## Ordering information




E－1071－353

## Technical data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}\right)$

Voltage rating $\mathrm{U}_{\mathrm{N}}$	DC 24 V
Operating voltage $\mathrm{U}_{\mathrm{B}}$	DC 20．．． 48 V
Current rating $\mathrm{IN}^{\text {}}$	$3 \mathrm{~A} / 3 \mathrm{~A}(2 \mathrm{~A}+2 \mathrm{~A})$
Current consumption $\left(U_{B}=D C 24 \mathrm{~V}, U_{S}=" 0 "\right)$	typically 30 mA
Residual ripple for all voltages	max． 5 \％（3 phase bridge）
Reverse polarity protection UB double pole relay （terminal 1 －terminal 2）	
Physical isolation	2－pole
	－by manual circuit breaker release
	－approx． 5 s after overload disconnection
	－upon thermal response（approx． $130^{\circ} \mathrm{C}$ ）
Load circuits（I／II）	
Load output	NPN transistor，minus switching
Load rating	DC 24 V／0．2．．． 3 A per channel parallel duty max． 4 A （e．g． $2 \mathrm{~A}+2 \mathrm{~A}$ ）
Voltage drop at $\mathrm{I}_{\mathrm{N}}$	max． 1.8 V
Overload disconnection	approx． $1.1 \times \mathrm{I}_{\mathrm{N}}$
Storage time $\mathrm{t}_{\text {S }}\left(\right.$ at $2 \mathrm{xl}_{\mathrm{N}}$ ）	typically 20 ms （see storage time curve）
Short－circuit limitation	approx． $2.5 \times \mathrm{I}_{\mathrm{N}}$
Short－circuit response delay	approx． $4 \mu \mathrm{~s}$
Load current monitoring	GREEN LED lights at $\mathrm{l}_{\text {load }}>0.1 \mathrm{~A}$
Current measuring terminals	$3 \times 4 \mathrm{~mm}$ dia．（shunt $0.1 \Omega \pm 1 \%$ ）
Leakage current（ $\mathrm{U}_{\mathrm{S}}=$＂ O ＂）	max． 3 mA
Free－wheeling diode	integral
Control circuits（I／II）	
Control	opto coupler in control input
Control voltage $\mathrm{U}_{\text {S }}$	$" 0 "=0 \ldots 5 \mathrm{~V}$
	$" 1 "=8.5 . .35 \mathrm{~V}$
Control current $\mathrm{I}_{\text {S }}$	typically 5 mA
Switching frequency $f_{\text {max }}$	100 Hz
Control signal（ $\mathrm{U}_{\mathrm{s}}=$＂ 1 ＂）	RED LED lights（ $\mathrm{I}_{\mathrm{s}}$ flowing）
Protection	reverse polarity protection（diode）
Signal output	
Fault indication	auxiliary contact（N／O）
	－max．DC 30 V／3 A
	－physically isolated
	－closed when the circuit breaker has tripped
General data	
Ambient temperature	$0 . . .+60^{\circ} \mathrm{C}$（without condensation）
Terminals	screw terminals $2 \times 2.5 \mathrm{~mm}^{2}$ to DIN 46288
Housing	clamping plate：polycarbonate GV，blue； cover：polycarbonate，black
Mounting	top－hat rail to DIN 50022－35
Self－extinguishing properties to UL 94：V＝0；VDE 0304：grade 1	
Degree of protection （IEC 529／DIN 40050）	IP 20 housing，terminals
Mounting dimensions	$45 \times 74 \times 128 \mathrm{~mm}$
Mass	approx． 320 g

## 

## Technical description

Under normal operating conditions, the E-T-A SSRPC E-1071-353 allows the connection or disconnection of the load outputs of two channels independent of each other.

## Control circuits (I/II)

The control current flows through the LED and the opto coupler immediately a voltage higher than 8.5 V is applied at the input terminals ( 6 and 7 , or 10 and 7). The opto coupler transmits the signal to the load circuit, at the same time switching the load transistor on. This signal is transmitted as a status signal to all monitoring circuits. The input protection diode protects the control voltage from incorrect polarization. Control current limitation is provided by a constant current diode.

## Load circuits (I/II)

The load circuit is switched ON or OFF according to the control signal (" 0 " or " 1 "), with electronic circuits monitoring the load circuit for faults such as overload or short-circuit. Should one of these faults occur, the monitoring circuitry will immediately react, causing the load transistor to disconnect and the circuit breaker to trip. Transistor disconnection occurs according to the storage time characteristics. The storage time increases noise immunity avoiding disconnection of non-harmful peaks such as those caused by inrush currents from lamp load connection. Storage time is not a constant quantity but is inversely proportional to the overcurrent factor.

After expiration of the storage time (see diagram) the load circuit transistor will become non-conductive. After approx. 5 s the isolator will switch off so as to disconnect the two load circuits. The common auxiliary contact closes signalling the fault. After removal of the fault, the SSRPC can be reactivated by pushing the isolator button.

## Status outputs

Status indication is provided by 4 LEDs ( $2 \times$ RED, $2 \times$ GREEN $)$.

## RED LED

ON indication (I/II)
The red LED indicates when the control voltage is higher than 8.5 V , with control current flowing.

## GREEN LED

Current flow indication (I/II)
The green LED indicates when the load current is above 0.1 A .
Faults such as too high a resistance, wire break, poor contact, or overload/short-circuit, are available when only the red LED indicates.

The SSRPC E-1071-353 includes three current measuring terminals ( 4 mm dia.) on the front. These terminals provide for load current measurement in terms of voltage drop at the $0.1 \Omega$ shunt in the load circuit (I/II).

## Storage time characteristic curve



## Operating modes

Operating status	Fault-free   operation		Short-circuit   on the load	Wire break	
Control input	$" 0 "$	$" 1 "$	$" 1 "$	$" 0 "$	$" 1 "$
RED LED -   control current	0	1	1	0	1
GREEN LED -   Load current monitoring	0	1	0	0	0
Auxiliary contact	open	open	closed	open	open
Remarks	load   OFF	Ioad   ON	both load circuits   disconnected		

[^6]
## 



## Basic circuit diagram



## Terminal selection

$\bigcirc \bigcirc^{1} \bigcirc^{3} \bigcirc^{4} \bigcirc^{5}$	
e	
Doppelhalbleiterrelais 1071-353	$0.1 \Omega$
$0$	O ॥
24 V $3 / 3 \mathrm{~A}$	
$\bigcirc_{6} \bigcirc_{7} \bigcirc_{8} \bigcirc_{9} \bigcirc_{10}$	

## Terminal

1 operating voltage $+U_{B}$ : DC $20 \ldots 48 \mathrm{~V}$
2 operating voltage $-U_{B}$
3 load (+) (carrying plus potential) CAUTION: Do not connect to GND/-U
4 load I (-)
5 load II (-)
6 control voltage I $+\mathrm{U}_{\mathrm{s}}$ : max. DC 35 V
7 control voltage I, II - $\mathrm{U}_{\mathrm{S}}$
8 auxiliary contact
9 auxiliary contact
10 auxiliary voltage II $+\mathrm{U}_{\mathrm{s}}$ : max. DC 35 V

## Description

The E-T-A Solid State Remote Power Controllers E-1071-603/607 are electronic control modules suitable for inductive loads such as solenoids, magnetic brakes etc.
They are used

- for safe and quick switching of loads
- for monitoring the electrical condition of the loads
- for compensating different cable lengths

The load connected to the relay should be operated with a voltage higher than its rated voltage (DC 24 V ) because the load current is controlled electronically (pulse-controlled characteristics). This is to ensure that in industrial plants with different cable lengths (supply cables, load cables) an increased inrush current can be applied to each load. During hold duty the load current is reduced to a smaller value (approx. $60 \%$ of the current rating), thus reducing the operating temperature and extending the life of the loads.

## Typical applications

Circuits with inductive load such as

- solenoids
- magnetic brakes etc.
in large plants, e.g. rolling mills where a very high availability is required.


## Features

- Designed for inductive loads (DC 24 V)
- Individual adjustment to various load currents ( $\mathrm{I}_{\mathrm{N}}=0.1 \ldots 3.1 \mathrm{~A}$ )
- Significant reduction of power loss in the load by pulse-controlled characteristics
- Short-circuit proof (short-circuit limitation); physical disconnection from supply after approx. 5 s
- Inrush current monitoring
- Physical isolation:
- opto coupler in the control circuit
- physical disconnection from supply
- opto coupler for status outputs
- Reverse polarity and overvoltage protection in the control, load and status circuits
- Control current indication by YELLOW LED
- O.K. indication by GREEN LED
- Wire break indication by RED LED (load circuit)
- Fault indication by RED LED (incorrect setting etc.)
- Two status outputs for PLCs for function indication (function signal, ON signal)
- Temperature disconnection
- Quick disconnection (do not connect free-wheeling diodes to the load as the free-wheeling current is controlled electronically!)


## Ordering information




E-1071-603

## Technical data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 36 \mathrm{~V}\right)$

Max. operating voltage $\mathrm{U}_{\mathrm{B}}$	DC 60 V
	( $\mathrm{U}_{\mathrm{Bmin}}$ see Technical description)
Current rating $\mathrm{I}_{\mathrm{N}}$	adjustable between 0.1 and 3.1 A (switch and potentiometer)
Current consumption $\left(U_{B}=D C 36 \mathrm{~V}, \mathrm{U}_{\mathrm{S}}=" 0 "\right)$	typically 35 mA
Residual ripple for all voltages	max. 5 \% (3 phase bridge)
Reverse polarity protection $\mathrm{U}_{\mathrm{B}}$ (terminal 1 - terminal 2)	double pole relay
Physical isolation	2-pole
	- by manual circuit breaker release
	- approx. 5 s after overload disconnection
	- approx. 15 s after fault indication (RED
	- approx. 0.5 s after thermal response
Load circuit	
Load output	NPN transistor, minus switching, pulse-controlled (approx. 180 Hz )
Load rating	DC $24 \mathrm{~V} / \mathrm{adjustable} \mathrm{betw}$.0.1 and 3.1 A
Switch-on current $\mathrm{I}_{\mathrm{E}}$ (with short-circuit limitation)	$\mathrm{U}_{\mathrm{B}} / \mathrm{R}_{\text {total }}$ for approx. 400 ms
Hold current $\mathrm{I}_{\mathrm{H}}$	typically $60 \%$ of the set current rating
Short-circuit limitation	approx. $3.5 \times \mathrm{IN}$
Short-circuit current $I_{K(r m s)}$ (depending on $U_{B}$ and $I_{N}$ )	typically 10... 400 mA
Wire break monitoring	in the ON and OFF condition (RED LED)
Current measuring terminals	$2 \times 2 \mathrm{~mm}$ dia. (shunt $0.1 \Omega \pm 1 \%$ )
Leakage current ( $\mathrm{U}_{\mathrm{s}}=0$ )	typically 1 mA
Free-wheeling circuitry (see Technical description)	integral electronic control with quick disconnection

## Control circuit

Control
Control voltage $U_{S}$
Control current $\mathrm{I}_{\mathrm{S}}$
Switching frequency $f_{\text {max }}$
Control signal ( $\mathrm{U}_{\mathrm{s}}=$ " 1 ")
Protection

## Status outputs <br> 2 signal outputs

ON indication (terminal 8)

Function indication
(terminal 9)

## 

## Technical data

## General data

Ambient temperature
Terminals
E-1071-603:
E-1071-607:
Connection:
Housing
Mounting
Self-extinguishing properties
Degree of protection
(IEC 529/DIN 40050)
Mounting dimensions
Mass

## Technical description

The max. admissible operating voltage of the SSRPC is approx. DC 60 V . The min. operating voltage is a function of the overall ohmic resistance in the load circuit. The switch-on current is reduced by

- the voltage drop on the load cable
- the load resistance increasing with the operating temperature of the load.

Minimum operating voltage $U_{B \text { min }}$

$\mathrm{I}_{\mathrm{N}}$	Cable length	Cable size	$\mathrm{U}_{\mathrm{B} \min }$
A	$2 \times 50 \mathrm{~m} / 2 \times 100 \mathrm{~m} / 2 \times 200 \mathrm{~m} / 2 \times 300 \mathrm{~m}$	$1.5 \mathrm{~mm}^{2}$	$33 / 35 / 37 / 40 \mathrm{~V}$
		$2.5 \mathrm{~mm}^{2}$	$32 / 33 / 35 / 37 \mathrm{~V}$
2 A	$2 \times 50 \mathrm{~m} / 2 \times 100 \mathrm{~m} / 2 \times 200 \mathrm{~m} / 2 \times 300 \mathrm{~m}$	$1.5 \mathrm{~mm}^{2}$	$35 / 38 / 44 / 49 \mathrm{~V}$
		$2.5 \mathrm{~mm}^{2}$	$34 / 35 / 39 / 42 \mathrm{~V}$
3 A	$2 \times 50 \mathrm{~m} / 2 \times 100 \mathrm{~m} / 2 \times 200 \mathrm{~m} / 2 \times 300 \mathrm{~m}$	$1.5 \mathrm{~mm}^{2}$	$37 / 41 / 50 / 58 \mathrm{~V}$
		$2.5 \mathrm{~mm}^{2}$	$35 / 38 / 42 / 48 \mathrm{~V}$

The load capacity is no longer ensured when the minimum operating voltage is under limits. The RED LED (fault) will indicate and the circuit breaker will trip after approx. 15 s .

Resistance increase in the load circuit:
1.5 mm 2 cable approx. $2.8 \Omega / 100 \mathrm{~m}$ distance
2.5 mm 2 cable approx. $1.6 \Omega / 100 \mathrm{~m}$ distance

## Switch-on current

To reach the max. inrush current the output transistor connects the operating voltage to the inductive load for approx. 400 ms . After this period the load current is set back to hold current


Rated current $I_{N}$, hold current $I_{H}$
The current rating of the applicable load at its rated voltage should be set between 0.1 and 3.1 A .
The hold current of the load is internally adjusted to $60 \%$ of the set current rating. This hold current should be measured by means of a voltmeter connected to the 2 mm current measuring terminals $(0.1 \Omega$ shunt).

## Technical description (cont'd)

## Setting the current rating

The current rating is set by means of a rotary switch (switch setting $0 \mathrm{~A}-1 \mathrm{~A}-2 \mathrm{~A}$ ) and a $270^{\circ}$ potentiometer (setting range between 0.1 and 1.1 A).
The sum of the two settings should equal the current rating of the load.
Example: $\quad 24 \mathrm{~V}$ load with $\mathrm{I}_{\mathrm{N}}=1.1 \mathrm{~A}$
Setting: switch $0 \mathrm{~A}+$ potentiometer 1.1 A , or switch $1 \mathrm{~A}+$ potentiometer 0.1 A


- Operating voltage (terminals 1 and 2): reverse polarity protected by means of a relay. The relay will only pick up and apply voltage to the device if the operating voltage is correctly polarised. This relay will then remain permanently energized, without being influenced by the control input.
- Control circuit (terminals 6 and 7): reverse polarity protected by means of a diode.
- Auxiliary voltage status outputs (terminals 10 and 5): reverse polarity protected by means of a diode.
- The load output (terminals 3-4) or the inductive load must not be fitted with a free-wheeling diode as the free-wheeling current is controlled electronically. This control also causes a very short fall time of the inductive load.
The solenoid connector may be provided with means of visual indication (LED).


## Operating modes

Operating status	Fault-free   operation		Short-circuit   on the load	Wire break	$U_{\mathrm{B}}$ too low/transistor   short-circuit/   incorrect setting	
control input	$" 0 "$	$" 1 "$	$" 1 "$	$" 0 "$	$" 1 "$	$" 1 "$
YELLOW LED -   control current	0	1	1	0	1	1
GREEN LED - O.K.	1	1	0	0	0	0
RED LED -   wire break	0	0	0	1	1	0
RED LED -   fault	0	0	0	0	0	1
Functional status   (terminal 9)	1	1	0	0	0	0
Operating status   (terminal 8)	0	1	0	0	0	0
Remarks	load   OFF	load   ON	physical iso-   lation after   approx. 5 s	no load   connected/   wire break	physical isolation   after   approx. 15 s	

1 = LED lights; status output carries plus potential
$0=$ LED does not light; status output is non-conductive

## Status outputs

Operating   status	Functional   status	Remark
0	0	not operable   no operation   - CAUTION: FAULT
0	1	operable   not switched on   - O.K. - GREEN LED indicates
1	0	- CAUTION: FAULT
1	1	operable   switched on   - O.K. - GREEN LED lights

1 - status output carries plus potential
0 - status output is non-conductive

## Dimensions



## Terminal selection



## Terminal

$$
\begin{aligned}
& \text { operating voltage }+\mathrm{U}_{\mathrm{B}} \text { : max. DC } 60 \mathrm{~V} \\
& \text { operating voltage }(-) \\
& \text { load }(+) \\
& \text { load (-) } \\
& \text { auxiliary voltage }-\mathrm{U}_{\mathrm{A}} \text { for status outputs } \\
& \text { control voltage }+\mathrm{U}_{\mathrm{S}} \text { : max. } 35 \mathrm{~V} \\
& \text { control voltage }-\mathrm{U}_{\mathrm{S}} \\
& \text { status output "operation" (max. } 50 \mathrm{~mA}) \\
& \text { status output "function" (max. } 50 \mathrm{~mA}) \\
& \text { auxiliary voltage }+\mathrm{U}_{\mathrm{A}} \text { for status outputs: max. } \\
& \mathrm{DC} 60 \mathrm{~V} / 100 \mathrm{~mA})
\end{aligned}
$$

## Basic circuit diagram



## Description

The E-T-A Solid State Remote Power Controllers E-1071-803 are electronic control modules suitable for inductive loads (DC 24 V ) such as solenoids, magnetic brakes etc.
They are used

- for safe and quick switching of loads
- for monitoring the electrical condition of the loads
- for compensating for different cable lengths

The load connected to the relay should be operated with a voltage higher than its rated voltage (DC 24 V ) because the load current is controlled electronically (pulse-controlled characteristics). This is to ensure that in industrial plants with different cable lengths (supply cables, load cables) an increased inrush current can be applied to each load. During hold duty the load current is reduced to a smaller value (between $25 \%$ and $75 \%$ of the current rating), thus reducing the operating temperature and extending the life of the loads.

## Typical applications

Circuits with inductive load such as

- solenoids
- magnetic brakes etc.
where fast switching of inductive loads is required.


## Features

- Designed for inductive loads (DC 24 V)
- Individual adjustment to various load currents ( $\mathrm{I}_{\mathrm{N}}=0.25 \mathrm{~A} ; 0.4 \mathrm{~A}$; 1 A; 2 A; 3 A)
- Significant reduction of power loss in the load by pulse-controlled characteristics
- Short-circuit proof; short-circuit limitation and physica disconnection from supply after approx. 5 s
- Inrush current monitoring
- Overload protection (current control)
- Fast disconnection (do not connect a free wheeling diode to the load as the the free wheeling current is controlled electronically!)
- Physical isolation:
- opto coupler in the control circuit
- relay contacts in the load circuit
- fault indication by means of auxiliary contact (N/O)
- Reverse polarity protection in the control and load circuits
- Control current indication by YELLOW LED
- Wire break indication by RED LED (load circuit)
- Minimum current indication by GREEN LED


## Ordering information




E-1071-803

## Technical data $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 36 \mathrm{~V}\right)$

Operating voltage $\mathrm{U}_{\mathrm{B}}$	$\mathrm{DC} 36 \mathrm{~V}(28 \ldots . .60 \mathrm{~V})$   (function maintained up to DC 18 V$)$   Current rating $\mathrm{I}_{\mathrm{N}}$
$0.25 \mathrm{~A} / 0.4 \mathrm{~A} / 1 \mathrm{~A} / 2 \mathrm{~A} / 3 \mathrm{~A}$   Current consumption   typically 30 mA	
$\left(\mathrm{U}_{\mathrm{B}}=\mathrm{DC} 36 \mathrm{~V}, \mathrm{U}_{\mathrm{S}}=\right.$ " 0 ")	
Residual ripple for all voltages	max. $5 \%$ (3 phase bridge)
Reverse polarity protection $\mathrm{U}_{\mathrm{B}}$	double pole relay
(terminal 1 - terminal 2)	2-pole
Physical isolation	- by manual circuit breaker release

- approx. 5 s after short-circuit disconnection


## Load circuit

Load output
Load rating

Switch-on current $I_{E}$ (with short-circuit limitation)
Minimum current $I_{\text {min }}$
( $\hat{=}$ hold current $\mathrm{I}_{\mathrm{H}}$ )
Short-circuit limitation Short-circuit current $\mathrm{I}_{\mathrm{K}(\mathrm{ms})}$
(depending on $U_{B}$ and $I_{N}$ )
Wire break indication
NPN transistor, minus switching
pulse-controlled (approx. 180 Hz )
DC $24 \mathrm{~V} / 0.25 \mathrm{~A}$ ( $3 . . .6 \mathrm{~W}$ )
DC $24 \mathrm{~V} / 0.4 \mathrm{~A}$ (6... 10 W )
DC $24 \mathrm{~V} / 1 \mathrm{~A} \quad$ (15... 30 W )
DC $24 \mathrm{~V} / 2 \mathrm{~A} \quad$ ( $30 \ldots 50 \mathrm{~W}$ )
DC $24 \mathrm{~V} / 3 \mathrm{~A}$ (50... 75 W )
$\mathrm{U}_{\mathrm{B}} / \mathrm{R}_{\text {total }}$ for approx. 400 ms

Current measuring terminals $2 \times 2 \mathrm{~mm}$ dia. (shunt $0.1 \Omega \pm 1 \%$ )
Leakage current $\left(U_{s}=\right.$ " 0 ") typically 1 mA
Free-wheeling circuitry integral electronic control with quick

## Control circuit

Control
Control voltage $U_{S}$
Control current Is
Switching frequency $f_{\text {max }}$
Control signal ( $\mathrm{U}_{\mathrm{S}}=$ " 1 ")
Protection
Status outputs
Fault indication auxiliary contact (N/O)

## General data

Ambient temperature
Terminals
Housing
Mounting
Self extinguishing propertes
Degree of protection
(IEC 529/DIN 40050)
Mounting dimensions
Mass
disconnection

- max. DC 30 V/3 A
- physically isolated
- closed when the circuit breaker has tripped
opto coupler in control input
$" 0 "=0 \ldots 5 \mathrm{~V}$
$" 1 "=8.5 \ldots 35 \mathrm{~V}$
typically 5 mA
1 Hz
YELLOW LED lights (I flowing)
reverse polarity protection (diode)
$75 \% l_{N}$
(e.g. 0.5...1.5 A with the 2 A version)
approx. $2 \times I_{N}$
typically 10 mA
in the ON and OFF condition (RED LED)
... $+60^{\circ} \mathrm{C}$ (without condensation) screw terminals $2 \times 2.5 \mathrm{~mm}^{2}$ to DIN 46288 clamping plate: polycarbonate GV, blue; cover: polycarbonate, black on top-hat rail to DIN 50022-35 to UL 94: V = 0; VDE 0304: grade 1
IP 20 housing, terminals
$45 \times 74 \times 128 \mathrm{~mm}$ approx. 240 g


## 

## Technical description

## Operating voltage $U_{B}$

The max. admissible operating voltage of the SSRPC is approx. DC 60 V . The min. operating voltage is a function of the overall ohmic resistance in the load circuit. The switch-on current is reduced by

- the voltage drop on the load cable
- the load resistance increasing with the operating temperature of the load.

The function as shown below is no longer ensured when the minimum operating voltage (DC 28 V ) is under limits. The output will then be continuously conductive, and the set minimum current may no longer be reached.

## Switch-on current $\mathrm{I}_{\mathrm{E}}$

To reach the max. inrush current the output transistor connects the operating voltage to the inductive load for approx. 400 ms . After this period the load current is set back to hold current (= minimum current).


## Setting of hold current $I_{H}$ (= minimum current)

The hold current of the load is set between $25 \%$ and $75 \% \mathrm{I}_{\mathrm{N}}$ by the $270^{\circ}$ potentiometer on the front. This hold current should be measured by means of a voltmeter connected to the 2 mm current measuring terminals ( $0.1 \Omega$ shunt).

## Technical description (cont'd)

- Operating voltage (terminals 1 and 2 ): reverse polarity protected by means of a relay. The relay will only pick up and apply voltage to the device if the operating voltage is correctly polarised. This relay will then remain permanently energized, without being influenced by the control input.
- Control circuit (terminals 6 and 7):
reverse polarity protected by means of a diode.
- The load output (terminals 3-4) or the inductive load must not be fitted with a free-wheeling diode as the free-wheeling current is controlled electronically. This control also causes a very short fall time of the inductive load.
The solenoid connector may be fitted with a visual indication means (LED).


## Operating modes

Operating status	Fault-free operation		Short-circuit on the load	Wire b	break	$\mathrm{U}_{\mathrm{B}}$ too low/ incorrect setting
control input	"0"	"1"	"1"	"0"	"1"	"1"
YELLOW LED control current	1	1	0	1	1	1
GREEN LED minimum current	0	1	0	0	0	0
RED LED wire break	0	0	0	1	1	0
Auxiliary contact	open	open	closed	open	open	open
Remark	load   OFF	load   ON	physical isolation after approx. 5 s	no loa conne wire b	d   cted   reak	current cannot be adjusted

1 - LED lights
$0=$ LED does not light


## 



## Basic circuit diagram



## Terminal selection



## Terminal:

1 operating voltage $+U_{B}$ : max. DC 60 V 2 operating voltage $-U_{B}$
3 load (+)
4 load (-)
5 not used
6 control voltage $+\mathrm{U}_{\mathrm{s}}$ : max. 35 V
7 control voltage $-U_{s}$
8 auxiliary contact
9 auxiliary contact
10 not used

## 

## E-T-A Flow Meters and Flow Monitors

The E-T-A range of electronic flow metering and monitoring systems has been designed to measure and supervise the flow rate of gases and liquids in pipelines.
Models operating on the calorimetric principle avoid the need for moving parts in the flow stream and are therefore especially suitable for use with liquids of high viscosity, or containing particles or contaminants. Alternatively high precision turbine sensors are available for applications which demand accurate volumetric measurement.
Calorimetric models comprise a monitoring sensor head, installed in the pipeline, and an electronic controller which may be either integrated with the monitoring head or remotely sited, according to type. These systems provide an output to signal deviation of flow from a pre-set level. Temperature monitoring and continuous analogue output are additional functions which can be selected on some models.
The E-T-A flow meter/monitor programme offers a choice of specification, performance, size and cost to meet a wide variety of different uses and budget requirements. All models are maintenance-free ensuring fit-and-forget reliability, and benefit from E-T-A's investment in process sensor research and development spanning over 25 years.

## Condensed Selector Chart

\(\left.\begin{array}{ll}For liquids: \& SW 118, SW 119, (B)SFW 120, SFW 120-E, <br>

\& SW 201, SFW 209, FM 1\end{array}\right\}\)\begin{tabular}{ll}
<br>
For air/gas: \& SW 112, SW 118, SW 119, SLW 120-E, <br>
\& SW 201, FM 1

, 

FM1-Ex
\end{tabular}

For granules (powders): SW 201-F, SFW 209, SW 118, SW 119


## Typical applications

Applications for E-T-A flow monitors and meters extend across the entire industrial spectrum including:

- Air conditioning systems, radiators and filtration equipment
- Gas and exhaust monitoring systems in heating and power plants, blast furnaces, and gas supply systems
- Welding equipment
- Food processing, brewing and dairy product applications
- Water and waste treatment plant
- Paper manufacturing
- Petrochemical processing
- Pump monitoring and protection
- Control of lubricating, hydraulic and cooling systems
- Agricultural equipment
- Marine and transportation requirements


Type No.	FM 1-...	Monitoring heads for FM 1-...
		Turbine head monitoring heads   TST-...-HM2   TST-...-AM1/WM1
Media		gases, oil, liquids, powder
Features	menu contro   linear analogue outputs   optional temperature monitoring medium temperature up to $+125^{\circ} \mathrm{C}$ (up to $+250^{\circ} \mathrm{C}$ with turbine head) relay outputs   LED/bargraph display	linear analogue outputs optional temperature monitoring medium temperature up to $+130^{\circ} \mathrm{C}$
Flow rate range	0... $3 \mathrm{~m} / \mathrm{s}$ for water 0... $5 \mathrm{~m} / \mathrm{s}$ for oil $0 . . .20 \mathrm{~m} / \mathrm{s}$ for air/gases	
Temperature range of medium/ monitoring head		$-40^{\circ} \mathrm{C} \ldots+130^{\circ} \mathrm{C}$ (calorimetric head)   $-30^{\circ} \mathrm{C} \ldots+140^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C} \ldots+250^{\circ} \mathrm{C}$ (turbine head)
Temperature range of electronic control unit	$+10^{\circ} \mathrm{C} . . .+50^{\circ} \mathrm{C}$	
Outputs	analogue outputs:   $0 / 4-20 \mathrm{~mA}$ or $0 / 2-10 \mathrm{~V}$ or 0/1-5 V   relay or transistor outputs	
Input voltage	$\begin{aligned} & \text { DC } 24 \mathrm{~V}(19 . . .32 \mathrm{~V}) \\ & \text { AC } 24 \mathrm{~V} \pm 10 \% \end{aligned}$	
Type and size of monitoring head		CSF: flange-mounted heads to DIN 2500 or DIN/ISO 2825   CST, TST: thread-mounted heads G $1 / 2 \mathrm{~A}$, G 3/4A, 1/2"NPT or 3/4"NPT
Materials of monitoring head		sensor and fitting: 1.4571/AISI 316 Ti
Cable to electronic control unit		2 m standard, 100 m max.
Data sheet	see CPI cat. pages 13-15	see CPI cat. pages 16-18
Dimensions		

## 둠ㄹㅁㅁㅅㅗ Electronic Flow Monitors




SFW/SLW 120-E-...


SW 201..
SWT 201.
liquids
1 switch point (MIN or MAX)
transistor output
LED status indication
SFW 120: industrial applications (MIN)
BSFW 120: marine applications (MAX)
gases, liquids
1 switch point
$\begin{array}{ll}\text { (MIN or MAX) } & \text { non-linear analogue output } \\ \text { relay output } & \text { relay outputs }\end{array}$
LED status indication
gases (air), liquids, powder
1 switch point (MIN) status indication by 2 LEDs medium selector switch
gases (air), liquids, powder
1 switch point (MIN) non-linear analogue output relay outputs
status indication by 3 LEDs temperature monitoring medium selector switch

$0.01 \mathrm{~m} / \mathrm{s} \ldots 2 \mathrm{~m} / \mathrm{s}$	liquids: $0.1 \mathrm{l} / \mathrm{min} \ldots 10 \mathrm{I} / \mathrm{min}$   gases: $2.5 \mathrm{I} / \mathrm{min} \ldots . .250 \mathrm{I} / \mathrm{min}$	air: $0.5 \mathrm{~m} / \mathrm{s} \ldots .100 \mathrm{~m} / \mathrm{s}$   liquids: $0.01 \mathrm{~m} / \mathrm{s} \ldots 5 \mathrm{~m} / \mathrm{s}$	air: $0.5 \mathrm{~m} / \mathrm{s} \ldots . .100 \mathrm{~m} / \mathrm{s}$   liquids: $0.01 \mathrm{~m} / \mathrm{s} \ldots 5 \mathrm{~m} / \mathrm{s}$
$-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$

PNP transistor
max. load: 0.3 A (DC12V)
max. load: $50 \mathrm{~mA}(\mathrm{DC} 24 \mathrm{~V}$ )

DC $12 \mathrm{~V}(10.7 \ldots 16 \mathrm{~V})$
DC 24 V (12...26.4 V)

G 3/4 A or 3/4"NPT
sealing: Viton, teflon coated

1 relay
(change over contact) AC/DC $28 \mathrm{~V}: 1 \mathrm{~A}$
a) 2 relays (change over contacts), AC 250 V , DC 28 V : 1 A overvoltage category II
b) analogue output non-linear 0/4... 20 mA
a) 3 relays (change over contacts) AC 250 V , DC 28 V : 1A overvoltage category II
b) analogue output: non-linear 0/4... 20 mA

$\begin{aligned} & \text { DC } 12 \mathrm{~V}(10.7 \ldots 16 \mathrm{~V}) \\ & \text { DC } 24 \mathrm{~V}(12 \ldots 26.4 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { DC } 24 \mathrm{~V}(18 . . .32 \mathrm{~V}) \\ & \text { AC } 24 \mathrm{~V}+10 \% /-15 \% \end{aligned}$	$\begin{aligned} & \text { AC } 230 / 115 / 24 \mathrm{~V}+10 \% /-15 \% \\ & \text { DC } 24 \mathrm{~V} \pm 10 \% \end{aligned}$	$\begin{aligned} & \text { AC } 230 / 115 / 24 \mathrm{~V}+10 \% /-15 \% \\ & \text { DC } 24 \mathrm{~V} \pm 10 \% \end{aligned}$
G 3/4 A or 3/4"NPT sealing: Viton, teflon coated	Ermeto sizes EF6 to EF12, 1/4"   NPT, G 3/8A sensor and electronic control unit comprised in one housing	monitoring heads G1/2A, G3/4A, 1/2"NPT or 3/4"NPT	monitoring heads G1/2A, G3/4A, 1/2"NPT or 3/4"NPT
sensor and fitting material: SFW 120: 1.4571/AISI 316 Ti; BSFW 120: AP1D	sensor material: AP1D   sensor: PVDF; sealing rings: Viton ${ }^{\circledR}$	sensor and fitting: 1.4571/AISI 316 Ti ,	sensor and fitting: 1.4571/AISI 316 Ti ,
without cable (standard) max. cable length 25 m , at transistor output	without cable (standard) max. cable length 25 m , at relay output	2 m cable (standard), max. cable length 100 m , between monitoring head and electronic control unit	2 m cable (standard), max. cable length 100 m , between monitoring head and electronic control unit
see CPI cat. pages 27-28	see CPI cat. pages 29-30	see CPI cat. pages 31-34	see CPI cat. pages 31-34

## 둠ㄹㅁㅁㅅㅗ Electronic Flow Monitors



FM 1－Ex


PTB approval；in conformance with EN 50014 and EN 50020 （EEx ibll）

## CST－Ex



PTB approval No．Ex－88－B－2034 in conformance with EN 50014 and EN 50020 for EEx ib II C／II B

## gases，liquids

menu control
two analogue outputs
relay or transistor outputs
for connection of calorimetric monitoring
heads

water：	$0 \ldots 3 \mathrm{~m} / \mathrm{s}$
oil：	$0 \ldots 5 \mathrm{~m} / \mathrm{s}$
gases／air：	$0 \ldots 20 \mathrm{~m} / \mathrm{s}$

$40^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$
$+5^{\circ} \mathrm{C} \ldots+33^{\circ} \mathrm{C}$

Analogue outputs：
$0 / 4-20 \mathrm{~mA}$ or $0 / 2-10 \mathrm{~V}$ or $0 / 1-5 \mathrm{~V}$
relay or transistor outputs

DC 24 V （19．．． 32 V ）
AC 230 V＋10\％／－15\％
AC $24 \mathrm{~V} \pm 10 \%$


## 



## E-T-A Capacitive Level Sensors

E-T-A level sensors are of high quality, practically maintenance free and have a wide operating temperature range. They respond to the change of capacitance occurring when an electrode surrounded by air is immersed into the medium to be monitored. This capacitance change causes a circuit to oscillate which is processed electronically.

The different versions can be used as MIN/MAX sensors with closed circuit principle. Power failure and wire break are indicated the same way as incorrect medium level.

Models NR 150, NR 160 and NR 200 allow the selection of minimum or maximum switching by means of an integral selector switch, whereas models NR 80, NR 60 and NR 100 are factory-preset as a minimum or maximum sensor.

Model NR 200 features a potential-free relay change over contact, models NR 100, NR 150 and NR 160 a shortcircuit proof plus switching transistor output, and models NR 60 and NR 80 a minus switching transistor output.


## First installation

The Level Sensors are factory preset for water.

1. Install the Level Sensor and connect it as shown on the connection diagram.
2. For sensitivity setting turn the potentiometer screw until the LED changes.
3. Adjust the potentiometer screw another half turn to compensate for any tolerances and to eliminate deposits on the sensor (allow for response delay!).

For other media it is necessary to readjust the sensors (make sure the medium to be monitored is available!).

These instructions do not apply to model NR 60 because its sensitivity is factory preset.

For installation details please see the applicable Installation Instructions.

[^7]
## 둠 ${ }^{5}$ 可込 Level Sensors

Type No.	NR 60-...	NR 80-...	NR 100-...
Description	water, oil, fuels	water and liquids with similar electrical conductivity	powder, water and liquids with similar electrical conductivity, aggressive media
Input voltage/ power consumption	DC 9... 36 V typically 6 mA or with power supply NG 03	DC 6... 36 V   typically 5 mA or with power supply NG 03	DC $24 \mathrm{~V} \pm 25 \%$   typically 30 mA or with power supply NG 03
Output	NPN transistor, low side switching, short-circuit and overload protected, with free-wheeling diode, voltage drop $<300 \mathrm{mV}$	NPN transistor, low side switching, max. 100 mA , with free-wheeling diode, voltage drop approx 2 V	PNP transistor, high side switching, max. 0.3 A , short-circuit and overload protected, with free-wheeling diode, voltage drop approx. 2 V
Ambient temperature	$-30^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$
Medium temperature	$-30^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$   (max. $80^{\circ} \mathrm{C}$ short-time)	$\begin{aligned} & -20^{\circ} \mathrm{C} . .+130^{\circ} \mathrm{C} \\ & \left(\max .+150^{\circ} \mathrm{C}\right. \text { short-time) } \end{aligned}$
Pressure resistance	25 bar/367.5 PSI	N/A	2 bar/29.4 PSI (25 bar/367.5 PSI to special order)
Material   probe   fitting sealing ( $O$ ring) or sensor and fitting housing housing cover connector	Tefzel ${ }^{\oplus}$ ETFE   nickel-plated brass, Ms CuZn39Pb3   Viton ${ }^{\circledR}$   nickel-plated brass, Ms CuZn39Pb3	-   ABS = Acrylonitrile butadine styrene	PTFE $=$ Teflon ${ }^{\circledast} /$ Polytetrafluoroethylene   PTFE $=$ Teflon ${ }^{\circledR} /$ Polytetrafluoroethylene   -   -   PBTP gv = Polybutylene Terephtalate with glass fibre
Technical data	see CPI cat. pages 57-58	see CPI cat. pages 59-60	see CPI cat. pages 61-62
Dimensions			
324 © Germ	y (091 87) 10-0 - USA (847) 827	600 - UK (01296) 420336 - www	acbe.com   Issue C



## 

## Selector chart

	¢   ¢   $\frac{1}{2}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{z} \end{aligned}$	$\begin{aligned} & \stackrel{0}{n} \\ & \frac{\dot{r}}{z} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \frac{\underset{\sim}{x}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \frac{\underset{\sim}{z}}{} \end{aligned}$	으N $\stackrel{\sim}{2}$ ¢
Medium						
water	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
oil	$\bullet$			$\bullet$		$\bullet$
powder			$\bullet$		-	
Sensitivity setting						
no	$\bullet$					
yes		$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
Mounting method						
invasive	-		$\bullet$	$\bullet$	$\bullet$	$\bullet$
non-invasive		-1)				
Function						
MIN or MAX	$\bullet$	$\bullet$	$\bullet$			
MIN/MAX   selector switch				$\bullet$	$\bullet$	$\bullet$
Output						
relay						$\bullet$
PNP transistor			$\bullet$	$\bullet$	$\bullet$	
NPN transistor	$\bullet$	$\bullet$				
LED display						
yes		$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$
no	-					

${ }^{1)}$ non-metallic containers

${ }^{2}$ ) short-time
O on request


## E-T-A Digital Panel Instruments

E-T-A digital panel meters are designed to measure, monitor and display electrical, thermal and mechanical values for a wide range of industrial applications.

The panel mounted instruments provide a choice of front face dimensions of $96 \mathrm{~mm} \times 48 \mathrm{~mm}, 96 \mathrm{~mm} \times 24 \mathrm{~mm}$ or $48 \mathrm{~mm} \times 24 \mathrm{~mm}$ with a 2.5 to 5 digit 7 -segment nonreflective LED display, designed for clarity under all lighting conditions.

The instruments are available for different supply voltages. Their versatility is further assured through optional features which include adjustable set points for alarm or control purposes and analogue output. Versions for current and voltage measurement can also provide true RMS readings.

E-T-A pressure meters are suitable for use with all commercially available pressure transducers with standard signal output. A DC $24 \mathrm{~V} / 20 \mathrm{~mA}$ output, physically isolated from the measuring input of the meter's power supply, ensures an interference-free auxiliary power supply for the transducers.

The E-T-A MDZ 480 is an intelligent frequency measuring instrument which can be connected to a wide range of circuit control sensors such as proximity switches, NAMUR sensors and tachogenerators. The appropriate function is user-selected at the time of installation.

All E-T-A panel meters are designed to internationally recognised DIN, VDE and IEC specifications.

## 



## 

Type No.
MDA 245-...
MDV 245-...
MDC 245-...
1338

## 1623

$27=$

Description	Instrument for standard signals (DC current)	Instrument for standard signals   (DC voltage)	Temperature measuring instrument with temperature sensor KTY16-6
Accuracy	0.1\% of span	0.1\% of span	0.8 \% of span
Supply voltage	$\begin{aligned} & \text { DC: } 4 \ldots 7 \mathrm{~V} \\ & 7 \ldots 16 \mathrm{~V} \\ & 16 \ldots 28 \mathrm{~V} \text { (standard) } \end{aligned}$	$\begin{aligned} & \text { DC: } 4 \ldots 7 \mathrm{~V} \\ & 7 \ldots 16 \mathrm{~V} \\ & 16 \ldots 28 \mathrm{~V} \text { (standard) } \end{aligned}$	$\begin{aligned} & \text { DC: } 4 \ldots 7 \mathrm{~V} \\ & 7 \ldots 16 \mathrm{~V} \\ & 16 \ldots 28 \mathrm{~V} \text { (standard) } \end{aligned}$
Temperature range	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Measuring range	$\begin{array}{ll} \text { Input: } & 0 \ldots \pm 20 \mathrm{~mA} \\ & 4 \ldots 20 \mathrm{~mA} \end{array}$	$\begin{array}{ll} \text { Input: } & 0 \ldots \pm 5 \mathrm{~V} \\ & 0 \ldots \pm 10 \mathrm{~V} \end{array}$	$-30^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}$


Display	$31 / 2$ digit   10 mm 7-segment LED   selectable display range	$31 / 2$ digit   10 mm 7 -segment LED   selectable display range	$21 / 2$ digit   10 mm 7 -segment LED
Dimensions	$48 \times 24 \times 85 \mathrm{~mm}$	$48 \times 24 \times 85 \mathrm{~mm}$	$48 \times 24 \times 85 \mathrm{~mm}$
Technical data	see CPI cat. pages $81-82$	see CPI cat. pages $81-82$	see CPI cat. pages $81-82$

## 屋码部 Digital Panel Instruments

Type No．
MDA 480－．．．
MDV 480－．．．
MDC 480－．．．
MDK 480／MDR 480－．


Description	AC or DC current measuring instrument． Version for rms measure－ ment for non－sinusoidal curves available．Special calibration if display needs to deviate from input quantity．	AC or DC voltage measuring instrument． Version for rms measure－ ment for non－sinusoidal curves available．Special calibration if display needs to deviate from input quantity．	Temperature measuring instrument for RTDs or thermocouples．	Measuring instrument with normalized inputs and freely selectable display range．Pressure measuring instrument MDR 480 with transmitter supply $24 \mathrm{~V} / 25 \mathrm{~mA}$ or for measuring bridge 1 mA or 10 V const．
Options	2 limit values   4 limit values   2 limit values ＋analogue output analogue output	2 limit values   4 limit values   2 limit values ＋analogue output analogue output	2 limit values   4 limit values   2 limit values ＋analogue output analogue output	2 limit values   4 limit values   2 limit values ＋analogue output analogue output
Supply voltage	AC $240 / 230 / 115 \mathrm{~V}$ AC 120 ／ 60 ／ 48 ／ 24 V   DC 12．．． 28 V physically isolated	AC 240 ／ 230 ／ 115 V AC 120 ／ 60 ／ 48 ／ 24 V   DC 12．．． 28 V physically isolated	AC 240 ／ 230 ／ 115 V AC 120 ／ 60 ／ 48 ／ 24 V   DC 12．．． 28 V physically isolated	AC 240 ／ $230 / 115 \mathrm{~V}$ AC 120 ／ 60 ／ 48 ／ 24 V   DC 12．．． 28 V physically isolated
Temperature range	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$			
Measuring range	individual：   $0 . . .2 \mathrm{~mA}$   0．．． 20 mA   0．．． 200 mA   0．．． 2 A   0．．． 10 A   multiple（DC only）：   $0 . . .2 \mathrm{~mA}+0 . . .20 \mathrm{~mA}+$   $0 . . .200 \mathrm{~mA}$   0．．． 2 A＋0．．． 10 A   special measuring ranges	individual：   0．．． 200 mV   $0 . . .2 \mathrm{~V}$   0．．． 20 V   0．．． 200 V   $0 . . .600$ V   multiple（DC only）：   0．．． $200 \mathrm{mV}+0 . . .2000 \mathrm{mV}$   $0 . . .20 \mathrm{~V}+0 . . .200 \mathrm{~V}$   special measuring ranges	IEC 584：   $\mathrm{Cu}-\mathrm{CuNi}$   $\mathrm{Fe}-\mathrm{CuNi}$   $\mathrm{NiCr}-\mathrm{CuNi}$   $\mathrm{NiCr}-\mathrm{Ni}$   Pt 13 \％Rh－Pt   Pt 10 \％Rh－Pt   DIN 43 710：   $\mathrm{Cu}-\mathrm{CuNi}$   $\mathrm{Fe}-\mathrm{CuNi}$   IEC 751：   Pt 100   DIN 43 760：   Ni100	Input： $0 \ldots 20 \mathrm{~mA}$    $4 \ldots .20 \mathrm{~mA}$    $0 \ldots .10 \mathrm{~V}$   $0 \ldots 5 \mathrm{~V}$     $1 \ldots 5 \mathrm{~V}$    $2 \ldots .10 \mathrm{~V}$    $0 \ldots .200 \mathrm{mV}$    special measuring ranges
Display	$31 / 2$ or $41 / 2$ digit 13 mm 7－segment LED	$31 / 2$ or $41 / 2$ digit 13 mm 7－segment LED	3 1／2 digit 13 mm 7－segment LED	$31 / 2$ digit 13 mm 7－segment LED
Dimensions	$96 \times 48 \times 166 \mathrm{~mm}$			
Technical data	see CPI cat．pages 83－90	see CPI cat．pages 83－90	see CPI cat．pages 91－98	MDR：   see CPI cat．pages 99－106   MDK：   see CPI cat．pages 107－114

## 

## Type No.

MDZ 480-F...
MDZ 480-V...


Description

Instrument measuring the frequency of bipolar signals in the voltage ranges:
AC 15 ... 50 V
AC $50 \ldots 150 \mathrm{~V}$
AC 150 ... 430 V

Instrument measuring frequency, velocity or events (counting) of digital signals: TTL, 24 V-PLC, open collector, NAMUR Adjustable: function, input, measuring time, parameter (e.g. number of teeth), display

Options	---	2 limit values (1 relay)   2 peak values
Voltage supply	AC $230 \mathrm{~V}, \mathrm{AC} 115 \mathrm{~V}$	AC $230 \mathrm{~V}, \mathrm{AC} 115 \mathrm{~V}$


Temperature range	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Measuring range	$0.1 \mathrm{~Hz} \ldots 10 \mathrm{kHz}$	$0.1 \mathrm{~Hz} \ldots$ 100 kHz (frequency measurement)    6 $\ldots$. $99999 \mathrm{~min}^{-1}$ (velocity measurement)   1 $\ldots$ 9999 ms (period measurement)   0 $\ldots .499999$ (forward/backward      counter, $f_{\max }=1 \mathrm{kHz}$ )   $0.1 \mathrm{~Hz} \ldots 100 \mathrm{kHz}$   (special function)


Display	4 digit   13 mm 7 -segment LED	5 digit   13 mm 7 -segment LED
Dimensions	$96 \times 48 \times 166 \mathrm{~mm}$	$96 \times 48 \times 166 \mathrm{~mm}$
Technical data	see CPI cat. pages $115-120$	see CPI cat. pages $115-120$

## 

Selector chart

Version	Type No.	$\stackrel{1}{\sim}$ $\underset{y}{c}$ $\vdots$ $\Sigma$	$\begin{aligned} & \stackrel{L}{N} \\ & \text { Ǹ } \\ & \Sigma \end{aligned}$	$\stackrel{\text { No }}{\stackrel{1}{\text { N}}}$	$\begin{aligned} & \underset{\sim}{\underset{~}{C}} \\ & \underset{\Sigma}{\Sigma} \end{aligned}$	$\begin{aligned} & \text { ᄃ } \\ & \text { ভ́ } \\ & \Sigma \end{aligned}$	$\begin{aligned} & \underset{\sim}{\Sigma} \\ & \underset{\Sigma}{\Sigma} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \\ & \Sigma \end{aligned}$	$\stackrel{\underset{\sim}{\Sigma}}{\underset{\Sigma}{\Sigma}}$	$\begin{aligned} & \circ \\ & \stackrel{\infty}{4} \\ & \stackrel{1}{\Sigma} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { O } \\ & \text { O } \\ & \Sigma \end{aligned}$	$\begin{aligned} & \text { ob } \\ & \stackrel{\infty}{4} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\infty}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\infty}{\infty}_{\substack{\infty \\ \Sigma}}$	O N N ¢
Front dimensions	$48 \mathrm{~mm} \times 24 \mathrm{~mm}$	-	-	$\bullet$											
	$96 \mathrm{~mm} \times 24 \mathrm{~mm}$				$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$						
	$96 \mathrm{~mm} \times 48 \mathrm{~mm}$									$\bullet$	$\bullet$	$\bullet$	-	$\bullet$	$\bullet$
Current measurement	DC 0 .. 2 mA				$\bullet$					$\bullet$					
	DC $0 \ldots 20 \mathrm{~mA}$	-			$\bullet$		-	$\bullet$		$\bullet$		$\bigcirc$	-		
	DC $4 \ldots 20 \mathrm{~mA}$	$\bullet$					$\bullet$	$\bullet$				$\bullet$	$\bullet$		
	DC 0 ... 200 mA				$\bullet$					$\bullet$					
	DC $0 . . .2$ A				$\bullet$					$\bullet$					
	DC $0 \ldots 10 \mathrm{~A}$									$\bullet$					
	AC $0 \ldots 2 \mathrm{~mA}$				$\bullet$					-					
	AC $0 \ldots 20 \mathrm{~mA}$				$\bullet$					$\bullet$					
	AC $0 \ldots 200 \mathrm{~mA}$				$\bullet$					$\bullet$					
	AC $0 \ldots 2 \mathrm{~A}$				$\bullet$					-					
	AC $0 \ldots 10 \mathrm{~A}$									$\bigcirc$					
Voltage measurement	DC 0... 200 mV								-					-	
	DC $0 \ldots 2 \mathrm{~V}$								$\bullet$					$\bullet$	
	DC $0 \ldots 10 \mathrm{~V}$			$\bigcirc$			$\bigcirc$	$\bullet$				$\bullet$	$\bullet$		
	DC $0 \ldots 20 \mathrm{~V}$								$\bullet$					$\bullet$	
	DC $0 \ldots 200 \mathrm{~V}$								$\bigcirc$					$\bullet$	
	DC $0 \ldots 600 \mathrm{~V}$								$\bigcirc$					$\bullet$	
	AC $0 \ldots 200 \mathrm{mV}$								$\bigcirc$					$\bullet$	
	AC $0 \ldots 2 \mathrm{~V}$								$\bullet$					$\bigcirc$	
	AC $0 \ldots 20 \mathrm{~V}$								$\bullet$					$\bullet$	
	AC $0 \ldots 200 \mathrm{~V}$								$\bullet$					$\bullet$	
	AC $0 \ldots 600 \mathrm{~V}$								$\bullet$					$\bullet$	
Temperature measurement	Pt100					$\bullet$					$\bullet$				
	Ni100										$\bigcirc$				
	thermocouple										$\bullet$				
	temperature sensor		-												
Frequency measurement	AC signals														$\bullet$
	digital input														$\bullet$
Display	$21 / 2$ digit		$\bigcirc$												
	$31 / 2$ digit	$\bigcirc$		$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bullet$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	$41 / 2$ digit									$\bullet$				$\bullet$	
	5 digit														-
Voltage supply	AC									$\bullet$	$\bullet$	$\bigcirc$	$\bullet$	$\bullet$	$\bigcirc$
	DC	$\bullet$													
Sensor supply	DC 24 V							$\bigcirc$					$\bigcirc$		$\bigcirc$
Options	true rms measurement									$\bullet$				$\bullet$	
	calibration of display	$\bigcirc$		$\bullet$			$\bigcirc$	$\bullet$				$\bullet$	$\bullet$		$\bigcirc$
	peak value storage														$\bigcirc$
	analogue output $0 \ldots 10 \mathrm{~V}$									$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	
	analogue output $0 \ldots 20 \mathrm{~mA}$									$\bigcirc$	$\bigcirc$	$\bigcirc$	-	$\bigcirc$	
	analogue output $4 \ldots 20 \mathrm{~mA}$									-	-	-	-	-	
	2 limit values with relay									$\bigcirc$	$\bullet$	$\bullet$	-	$\bullet$	$\bullet$
	4 limit values with relay									$\bullet$	$\bullet$	-	-	$\bullet$	



## E-T-A Sensors

E-T-A Velocity Sensors MSZ... provide contactless sensing of mechanical motion such as the rotational speed of drives or rotating shafts. Pulses are generated at ferromagnetic pick-up wheels (i.e. gears) whose teeth pass by the sensor. The electronic control circuitry and the sensor head are designed as an integral unit. The rectangular signal provided by the electronic control circuitry is independent of the pick-up geometry.
The instruments are available in a wide voltage supply and temperature range, and various dimensions and connection methods to allow a wide spread of applications in general and automotive industries.

E-T-A Pressure Sensors MSR 400 and MSR 450 are designed to convert nominal pressures up to $400 \mathrm{bar} / 5880$ PSI into standard signals. The robust design of model MSR 400 (voltage supply, EMC, environmental protection, connector to DIN 72585) is perfectly suited to its application in commercial equipment and machinery/plant for the construction industry etc. Model MSR 450 featuring a stainless steel enclosure is designed for general industria applications (connection method according to DIN 43650). Available with various threads (metric, imperial, NPT) fitting all commercial process connections.

## 莌㢄可込 Sensors



## E-T-A Current and Voltage Monitors

E-T-A Current and Voltage Monitors series E-107.. are designed to monitor electrical circuits for current or voltage over limits.

- E-T-A Zero Current Monitors E-1076-SR signal a current flowing in the monitoring circuit when fixed current limits are exceeded. They feature a 17 mm wide rail mounted housing and may also be used to switch on an elapsed-hour meter. Internal power supply is by means of the input signal so that no additional wiring is needed.
- E-T-A Current Monitors E-1077 offer the possibility to individually set the MAX and/or MIN limit values by means of the digital switches provided on the front of the housing. The response delay may be selected. Relay contacts provide for potential-free signalization. Relay status and adjustment error is indicated by LEDs.
- E-T-A Current Protector E-1078 is designed for low voltage lighting systems. It monitors the lighting system rated current that is stored, when it is switched on, in the primary circuit of the low-voltage transformer. The rated load is stored either by operation of the push button on the device or via the light switch. A shortcircuit in the lamp circuit or an overload will cause the Current Protector to immediately disconnect the system. The product is available with a rail mounted housing (for consumer unit installation) or in a housing for surface mounting at or in the transformer.

- E-T-A Combi Safety Protection E-1078-911 allows the simultaneous connection of two powerful loads such as a washing machine and a dryer to a 16 A socket with earthing contact. One of the two sockets has priority and is connected to the washing machine. When the current required by the washing machine exceeds a set limit of approx. 15.5 A (during heating), the second socket is disconnected, and reconnected only when the current falls to the set lower limit. Appliance combinations such as dishwasher and hot-water heater may also be operated this way.
- E-T-A Voltage Monitor E-1079 monitors set MAX and/or MIN voltage limits in a circuit. Limit value setting is by means of the digital switches provided on the front of the housing. Additional features are relay outputs, selectable response delay, LED status indication, and rail mounted housings.
- E-T-A Voltage Monitor E-1079-600 is available in a 12 mm wide housing for plug-in mounting utilising $\mathrm{E}-\mathrm{T}-\mathrm{A}$ socket $17-\mathrm{P} 10-\mathrm{Si}$. It is designed to monitor typical AC and DC supply voltages with set tolerances, e.g. DC $24 \mathrm{~V} \pm 25$ \%. The actual voltage is indicated by two LEDs and a MOS output. This system, too, saves additional wiring by taking its internal power supply from the input signal.


## 



Type No.

E 1078-421-/ 431-...


E 1078-422-/ 432-/ 482-...


Protection of lighting systems

- Available housing variants:
- track mountable on 35 mm EN rails
- housing for surface mounting in transformers
Suitable for dimmer systems.
- Detecting defective terminal connections
- Line resistances, transformer and lamp tolerances are compensated for by the adjustment.
- VDE approval in place
- Option: load storage via light switch.

Variants	$\begin{array}{ll} \text { E 1078-421 } & \text { (up to } 400 \mathrm{~W} \text { ) } \\ \text { E 1078-431 } & \text { (up to } 600 \mathrm{~W} \text { ) } \end{array}$	E 1078-422 (up to 400 W )   E 1078-432 (up to 600 W )   E 1078-482 (up to 600 W ) load storage via light switch
Protection from	short-circuit, overload, underload	short-circuit, overload, underload
Lamp capacity	$\begin{array}{r} 60-300 \mathrm{~W} \\ 100-400 \mathrm{~W} \\ 300-600 \mathrm{~W} \end{array}$	$\begin{array}{r} 60-300 \mathrm{~W} \\ 100-400 \mathrm{~W} \\ 300-600 \mathrm{~W} \end{array}$
Voltage rating	AC $230 \mathrm{~V} \pm 10 \% / 50 \mathrm{~Hz}$	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \pm 10 \% / 50 \mathrm{~Hz} \\ & \mathrm{AC} 120 \mathrm{~V} \pm 10 \% / 60 \mathrm{~Hz} \end{aligned}$
Suitable for lighting systems with dimmers	yes	yes
Temperature range	$0 \ldots+45{ }^{\circ} \mathrm{C}$	$0 \ldots+60{ }^{\circ} \mathrm{C}$
Overload response	steplessly adjustable	steplessly adjustable
Typical trip times overload short-circuit underload	200 ms to 2 s (depending on overload) $200 \mathrm{~ms}$   3 s	200 ms to 2 s (depending on overload) $200 \text { ms }$ $3 \mathrm{~s}$
Technical data	see CPI cat. pages 139-140	see CPI cat. pages 141-142
Dimensions	Track-mountable housing	Surface housing

## 

Type No.	E-1078-911
Description	Two powerful appliances such as a washing machine and a dryer may be connected to a European style 16 A household socket without overloading the circuit. The E-T-A Combi Safety Protector E-1078-911 connects one of the appliances continuously to power. The second appliance is disconnected from the supply for a short time when the total current consumption reaches approx. 15.5 A - during water haeating for example. Upon completion of the heating cycle of the first appliance, the second one will be automatically reconnected.
Upper response threshold	typically 15.5 $\mathrm{A} \pm 1 \mathrm{~A}$
Lower response threshold	typically $2.0 \mathrm{~A} \pm 1 \mathrm{~A}$
Supply voltage	N/A
Temperature range	$0 \ldots+45{ }^{\circ} \mathrm{C}$
Environmental duty	for normal dry, clean domestic conditions
Dimensions	$255 \times 60 \times 40 \mathrm{~mm}$
Technical data	see CPI cat. page 143


Type No.	E-1079-51-...	E-1079-60.-...	

## 

Current and Voltage Monitors - Selector chart

Description Type				$\begin{aligned} & \stackrel{\Gamma}{c} \\ & \stackrel{1}{\hat{O}} \\ & \stackrel{1}{1} \end{aligned}$		$\begin{aligned} & \text { iop } \\ & \stackrel{N}{\mathrm{O}} \\ & \stackrel{i}{1} \end{aligned}$	$\stackrel{-}{\sim}$ $\stackrel{1}{\infty}$ $\stackrel{\rightharpoonup}{\circ}$ $\stackrel{1}{4}$	$\bar{m}$ $\stackrel{1}{+}$ $\stackrel{0}{6}$ $\stackrel{1}{\dot{u}}$		$\tilde{m}$ $\underset{\sim}{\infty}$ $\stackrel{1}{+}$ $\bar{u}$		$\stackrel{\Gamma}{\sigma}$ $\infty$ $\stackrel{1}{6}$ $\stackrel{1}{6}$ $\dot{山}$				
Current Monitor			-	-	-	-										
Current Protector							-	-	-	-	-					
Combi Safety Protector												$\bullet$				
Voltage Monitor													$\bullet$	-	-	$\bigcirc$
Function	MIN limit value		-		-		-	-	-	-	-			-		
	MAX limit value			-								$\bullet$	$\bullet$			
	MIN and MAX limit value					$\bullet$									$\bullet$	$\bigcirc$
Limit value adjustment	digital switches			$\bullet$	$\bullet$	$\bullet$							$\bullet$	$\bullet$	$\bullet$	
	button						-	-	$\bullet$	$\bullet$						
	light switch										$\bullet$					
	factory preset		$\bullet$									$\bullet$				$\bullet$
Measuring ranges	AC 0... 5 A		$\bullet$													
	AC 0... 16 A		$\bullet$									$\bullet$				
	AC 0... 1.99 A			-	$\bullet$	-										
	AC 0... 19.99 A			-	-	$\bullet$										
	DC 0... 19.9 mA			$\bullet$	$\bullet$	$\bullet$										
	DC 0... 199.9 mV												$\bullet$	-	-	
	DC 0... 1.99 V												$\bullet$	-	-	
	DC 0... 19.9 V												$\bullet$	-	$\bullet$	
	DC $12 \mathrm{~V} \pm 25$ \%															-
	DC $24 \mathrm{~V} \pm 25$ \%															-
	DC $48 \mathrm{~V} \pm 25$ \%															$\bullet$
	DC $110 \mathrm{~V}+10$ \% / -15 \%															-
	DC $220 \mathrm{~V}+10$ \% / -15 \%															-
	AC $115 \mathrm{~V}+10$ \% /-15 \%															$\bullet$
	AC $230 \mathrm{~V}+10$ \% / -15 \%															-
Low voltage lamp load	60... 300 W						-	-	$\bullet$	$\bullet$	$\bullet$					
	100... 400 W						$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$					
	300... 600 W						$\bullet$	$\bullet$	$\bullet$	-	$\bullet$					
Priority circuit	I $>15.5$ A AC											$\bullet$				
Outputs	relay			$\bullet$	-	-						$\bullet$	$\bullet$	-		
	transistor		$\bullet$													
	MOS															$\bullet$
	triac		$\bullet$													
Supply voltage	AC 230 V			-	-	-							$\bullet$	-	-	
	AC 115 V			-	-	-							-	-	-	
	= input signal		-				$\bullet$	-	$\bullet$	-	-	$\bullet$				$\bullet$

## 



## 



E-T-A Electronic	Flow Monitors, Level Sensors etc.
Type	PTB
FM1-Ex	GL
BSFW 120	
NR 100 GL	
NR 150 GL	



## Corporate Headquarters

## Germany

E－T－A Elektrotechnische
Apparate GmbH
P．O．Box 1061
D－90514 Altdorf
©＋＋49（＋9187）10－0
Facsimile＋＋49（＋9187） 10397
www．etacbe．com

## Order Form

## Europe

## Austria

Herndl Electric－Handels－
gesellschaft m．b．H．
Südstadtzentrum 1／20
A－2344 Maria Enzersdorf
훙＋43（＋22 36） 24123
Facsimile $++43(+2236) 2$ 41 23 － 40

## Belgium／Luxemburg

E－T－A Elektro Technik s．a．／n．v．
Avenue G．Stassart laan， 109
B－1070 Bruxelles
－＋＋32（＋2） 5233097
Facsimile＋＋32（＋2） 5239906

## Bulgaria／Croatia

Slovenia／Romania
H．Balla
Breitenfurter Str． 382 a
A－1235 Wien
T＋＋43（1） 8885251
Facsimile＋＋43（1） 888515151

## Czech Republic

## Slovakian Republic

E－T－A Elektrotechnische Apparate GmbH Ladislav Bojarsky
Industriestr．2－8，D－90518 Altdorf， Postfach 1061，D－90514 Altdorf
T＋＋49（＋9187） 10423
Facsimile＋＋49（＋9187） 10222

## Denmark

H．Jørgensen \＆Co ApS
Præstemarksvej 8 B DK－4000 Roskilde
©＋＋45（46） 756322
Facsimile＋＋45（46） 756140
e－mail：info＠h－jorgensen．dk

## Finland

Suomen Elektrolind Oy
Jan Barck
Vesitorninpolku 5b
FIN－02700 Kauniainen
T／Facsimile＋＋358（＋9）－5 050110
Mobiltelefon＋＋358（40） 5437898
e－mail：jan．barck＠elektrolind．fi

## France

ETA Appareils électrotechniques
S．A．R．L．
40－62，Rue du Général Malleret－Joinville F－94400 Vitry－sur－Seine
－ $\mathbf{-}+33(+1) 46810273$
Facsimile＋＋33（＋1） 46826569
e－mail：e－t－afrance＠magic．fr

## Greece

Panagiotis Sp．Dimoulas＂Biomat＂
Kritis Str． 26
GR－10439 Athen
주＋＋30（1） 8833337
Telex 218529
Facsimile＋＋30（1） 8834436
Holland／Netherlands
Jacs．Koopman B．V．
Postbus 150
NL－3960 BD Wijk bij Duurstede
－＋＋31（＋3 43） 592222
Facsimile＋＋31（＋3 43） 592333

## Italy

E－T－A Apparecchi Elettrotecnici s．r．I．
Via Giulio Cesare Procaccini Nr． 7
I－20154 Milano
ㅈ﹎＋39（02） 314156
Facsimile＋＋39（02） 314181
Abteilungsverkauf：
C．so Buenos Aires， 75
I－20129 Milano
－＋＋39（02）66 988123
Facsimile＋＋39（02） 66984470
e－mail：INFO＠ETAITALIA．COM

## Norway

Elis Elektro A／S
Postboks 38
indeberg Gr．
N －1007 Oslo
（ $\mathbf{~ + + 4 7 ( + 2 ) ~} 2905670$
Facsimile＋＋47（＋2） 2905671
e－mail：post＠eliselektro．no

## Poland

Electronics \＆Cable Sp．zo．o．
ul．Przemyslowa 12
62－095 Murowana Goslina
（ $\quad$＋＋48（61） 8112064
＋＋48（61） 8112065
Facsimile＋＋48（61） 8112066

## Portuga

AUTOMA
Av．Vasco da Gama，652－660
P－4100 Porto
－＋＋351（＋2） 6174239
Facsimile＋＋351（＋2 ） 6171987
Telex 2681

## Spain

ELPO－ELECTRIC S．A
José Lobo
Apartado 2503
28080 Madrid
$\mathbf{\sim}++34$（91） 41513 48－4 153911
Facsimile＋＋34（91） 4130238

## Sweden

Österlinds El－Agentur AB
Gribbylundvägen 11－13
S－18762 Täby
Box 96
S－18321 Täby
T $++46(+8) 7328075$
Facsimile＋＋46（＋8） 7326030

## Switzerland

$\mathrm{E}-\mathrm{T}-\mathrm{A}$ general agents：
Henri Grandjean AG
Niederbergstr． 1
Postfach 677
CH－4153 Reinach BL
주 ++41 （＋61） 7110202
Facsimile ++41 （＋61） 7110411
e－mail：info＠grandjean－AG．CH

## Switzerland

For E－T－A Electronic devices：
Rudolf Flach Elektronik AG
Emil Frey－Strasse 166
CH－4142 Münchenstein
$\boldsymbol{\sigma}$＋＋41（＋61） 4179494
Facsimile＋＋41（＋61） 4179495

## Switzerland

For Pressure and Level Sensors
and Flow Monitors：
Vögtlin Instruments AG
Langenhagstr． 1
CH－4147 Aesch BL
『＋＋41（＋61） 7566300
Facsimile＋＋41（＋61） 7566301

## Turkey

MESAN Elektrik Müm．
ve Sanayi Ltd．Sti
Refik Saydam Caddesi No．： 167
Dilber Apartmani Kat：4－5 Daire：12－14
TR－80020 Sishane－Istanbul
－＋＋90（2 12） 2925849
Facsimile＋＋90（2 12） 2516030
e－mail：mesanelk＠hotmail．com
United Kingdom／Ireland
E－T－A Circuit Breakers Ltd Telford Close
GB－Aylesbury，Bucks HP 193 DG
－++44 （＋12 96） 420336
Facsimile ++44 （＋12 96） 488497
e－mail：info＠etacbe．co．uk
For E－T－A Electronic devices：
E－T－A Electronic
a division of
E－T－A Circuit Breakers Ltd
Address as above

## 

## Brazil

Paulo Viehmann Representacoes
Rua Olavo, 450 Praia Vermelha -

## Eldorado

BR 09971-500 Diadema - SP
지 / Facsimile ++55 (+11) 713-5294
© ++55 (+11) 713-5512
e-mail: viehmann@mandic.com.br

## Canada

E-T-A Circuit Breakers Ltd.
236 Hood Road
CDN-Markham
Ontario L 3R 3K8

- ++1 (905) 475-5886

Facsimile ++1 (905) 475-5889

## Chile

Electrónica Industrial
Schädler y Cia Ltda
Antonio Varas 1871
RCH-Providencia.-Santiago
주 ++56 (+2) 2747430
Facsimile ++56 (+2) 2049338
United States of America
ETA Circuit Breakers
1551 Bishop Court
USA-Mount Prospect, IL 60056
T ++1(847) 827-7600
Facsimile ++1(847) 827-7655
e-mail: usinfo@etacbe.com
Asia

## India

M/s. R. G. Keswani
Post Box No. 16552
WORLI
IND-Bombay-400 018

- (022) 4932805
- ++91 (+22) 4939246

Facsimile ++91 (+22) 4938474

## Japan

E-T-A Components K.K.
Suzushoo Bldg. 4 F
No. 6-13-9, Shinbashi
Minato-ku
Tokyo 105
주 ++81 (+3) 34 34-1626
Facsimile ++81 (+3) 34 34-16 27
e-mail: etajpn@ibm.net

## Singapur / Singapore

Malaysien / Malaysia
Hongkong / Hong Kong
Indonesien / Indonesia
Brunei, Thailand, Korea, Taiwan,
Mainland China, Philippinen
E-T-A Asia Pacific Pte Ltd
No. 46 Lorong 17 Geylang
\#08-01 Enterprise Industrial Building
SGP-Singapore 388568
주 ++65/8414484
Facsimile ++65 / 8414474
e-mail: etaap@mbox3.singnet.com.sg

## Africa

## South Africa

RADEL Electrical and Electronic Components cc
P.O.Box 4364

ZA-Cresta 2118

- $\mathbf{T}+27$ (+11) 888-6696

Facsimile ++27 ( +11 ) 888-2390
e-mail: radel@genix.com

## Australia

Australia / New Zealand RUBIN GROUP PTY. LIMITED
73-77 Whiting Street
AUS-Artarmon, N. S. W. 2064 P.O. Box 82
© ++61 (+2) 99065608
Facsimile ++61 (+2) 94392278
e-mail: components@rubin.com.au

#  

## Circuit Protection and Control



Circuit Breakers and
Control Products


[^0]:    Version with 7／16＂，28－thread to special order

[^1]:    The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

[^2]:    All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications withou notice is reserved. Product markings may not be exactly as the ordering codes

[^3]:    Remote trip coil available to special order.

[^4]:    The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

[^5]:    MIL-C-83383 pending

[^6]:    1 - LED indicates
    0 - LED does not indicate

[^7]:    All dimensions without tolerances are for reference only. In the interest of improved design,
    performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes.

