54ACT11002, 74ACT11002 **OUADRUPLE 2-INPUT POSITIVE-NOR GATES**

1A

1Y [

2Y [3

GND [4

GND [5

> 3Y [6

4Y | 7

2

SCAS003A - D2957, JUNE 1987 - REVISED APRIL 1993

16 🛛 1B

15 2A

14 2B

13 VCC

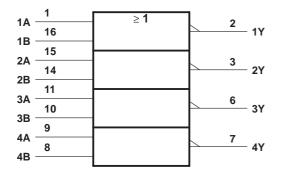
12 V_{CC}

3A

11 10 3B

54ACT11002 ... J PACKAGE 74ACT11002 . . . D OR N PACKAGE

(TOP VIEW)


- Inputs Are TTL-Voltage Compatible
- Flow-Through Architecture to Optimize **PCB** Layout
- Center-Pin V_{CC} and GND Configurations **Minimize High-Speed Switching Noise**
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

description

These devices contain four independent 2-input NOR gates. They perform the Boolean functions $Y = \overline{A} \cdot \overline{B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

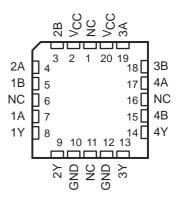
The 54ACT11002 is characterized for operation over the full military temperature range of -55°C to 125°C. The 74ACT11002 is characterized for operation from -40° C to 85° C.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

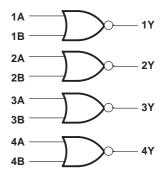
Pin numbers shown are for the D, J, and N packages.

FUNCTION TABLE
(each gate)


INP	JTS	OUTPUT
Α	В	Y
н	Х	L
X	Н	L
L	L	Н

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



NC - No internal connection

logic diagram (positive logic)

54ACT11002, 74ACT11002 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

SCAS003A - D2957, JUNE 1987 - REVISED APRIL 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	– 0.5 V to 6 V
Input voltage range, V _I (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	$\dots -0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} (V _I < 0 or V _I > V _{CC})	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	$\dots \dots \pm 50 \text{ mA}$
Continuous current through V _{CC} or GND	± 100 mA
Storage temperature range	– 65°C to 150°C

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions

		54ACT11002		74ACT		
		MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	VCC	0	VCC	V
VO	Output voltage	0	VCC	0	VCC	V
ЮН	High-level output current		-24		-24	mA
IOL	Low-level output current		24		24	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	0	10	0	10	ns/V
Тд	Operating free-air temperature	-55	125	- 40	85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

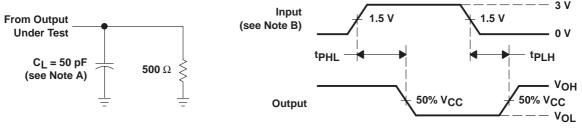
PARAMETER	TEST CONDITIONS	v _{cc}	T _A = 25°C			54AC	Г11002	74ACT11002		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
Vон	I _{OH} = - 50 μA	4.5 V	4.4			4.4		4.4		
		5.5 V	5.4			5.4		5.4		
	1au 24 mA	4.5 V	3.94			3.7		3.8		
	I _{OH} = – 24 mA	5.5 V	4.94			4.7		4.8		
	I _{OH} = - 50 mA [‡]	5.5 V				3.85				
	I _{OH} = – 75 mA [‡]	5.5 V						3.85		
	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	v
		5.5 V			0.1		0.1		0.1	
	I _{OL} = 24 mA	4.5 V			0.36		0.5		0.44	
VOL		5.5 V			0.36		0.5		0.44	
	I _{OL} = 50 mA‡	5.5 V					1.65			
	I _{OL} = 75 mA [‡]	5.5 V							1.65	
lj	$V_I = V_{CC}$ or GND	5.5 V			± 0.1		± 1		± 1	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			4		80		40	μA
∆I _{CC} §	One input at 3.4 V, Other inputs at GND or V _{CC}	5.5 V			0.9		1		1	mA
Ci	$V_{I} = V_{CC}$ or GND	5 V		3.5						pF

[‡]Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

§ This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

54ACT11002, 74ACT11002 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

SCAS003A - D2957, JUNE 1987 - REVISED APRIL 1993


switching characteristics over recommended ranges of supply voltage and free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	Т	₄ = 25°C	;	54ACT	11002	74ACT	11002	UNIT
PARAMETER	(INPUT)	Γ) (OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A or B	V	1.5	6.1	9.4	1.5	11.3	1.5	10.6	
^t PHL		T	1.5	5.3	7.8	1.5	9.5	1.5	8.7	ns

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS		ТҮР	UNIT
C _{pd} Pow	er dissipation capacitance per gate	С _L = 50 рF,	f = 1 MHz	29	pF

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. C_L includes probe and jig capacitance.

B. Input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns. C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated