

### MICROCIRCUIT DATA SHEET

MNDM54LS154-X REV 0A0

Original Creation Date: 04/13/98 Last Update Date: 06/16/98 Last Major Revision Date: 04/13/98

### 4-LINE to 16-LINE

### DECODERS/DEMULTIPLEXERS

#### General Description

Each of these 4-line to 16-line decoders utilizes TTL circuitry to decode four binary - coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2 are LOW. The demultiplexing function is performed by using the four input lines to address the output line, passing data from one of the strobe inputs with the other strobe input LOW. When either strobe input is HIGH, all outputs are HIGH. These demultiplexers are ideally suited for implementing high-performance memory decoders. All inputs are buffered and input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.

NS Part Numbers

DM541.S154.T/883

#### Industry Part Number

54LS154

#### Prime Die

R154

#### Controlling Document

8301701JA

| Processing                      | Subgrp | Description         | Temp ( $^{\circ}$ C) |
|---------------------------------|--------|---------------------|----------------------|
| MIL-STD-883, Method 5004        | 1      | Static tests at     | +25                  |
|                                 | 2      | Static tests at     | +125                 |
|                                 | 3      | Static tests at     | -55                  |
| Quality Conformance Inspection  | 4      | Dynamic tests at    | +25                  |
| guarrey compensation impression | 5      | Dynamic tests at    | +125                 |
| MIL_CTD_992 Mothod 5005         | 6      | Dynamic tests at    | -55                  |
| MIL-31D-883, Method 5005        | 7      | Functional tests at | +25                  |
|                                 | 8A     | Functional tests at | +125                 |
|                                 | 8B     | Functional tests at | -55                  |
|                                 | 9      | Switching tests at  | +25                  |

10

11

Switching tests at

Switching tests at

+125

-55

Features

# (Absolute Maximum Ratings)

| Storage Temperature                          |                          |
|----------------------------------------------|--------------------------|
| beorage remperature                          | -65 C to +150 C          |
| Ambient Temperature under Bias               | -55 C to +125 C          |
| Input Voltage                                |                          |
|                                              | -0.5V to +7.0V           |
| VCC Pin Potential to Ground Pin              |                          |
|                                              | -0.5V to +7.0V           |
| Junction Temperature under Bias              |                          |
|                                              | -55C to +175C            |
| Current Applied to Output in LOW state (Max) |                          |
|                                              | twice the rated Iol (ma) |
|                                              |                          |

Note 1: Absolute Maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

### Recommended Operating Conditions

| Free Air Ambient Temperature<br>Military | -55 C to +125 C |
|------------------------------------------|-----------------|
| Supply Voltage<br>Military               | +4.5V to +5.5V  |

### Electrical Characteristics

### DC PARAMETER

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: VCC 4.5V to 5.5V, Temp range: -55C to 125C

| SYMBOL | PARAMETER                                                 | CONDITIONS                                                       | NOTES | PIN-<br>NAME | MIN   | МАХ        | UNIT | SUB-<br>GROUPS |
|--------|-----------------------------------------------------------|------------------------------------------------------------------|-------|--------------|-------|------------|------|----------------|
| IIH    | Input High<br>Current                                     | uput High VCC=5.5V, VM=2.7V, VINL=0.0V, VINH=4.5V                |       |              |       | 20.0       | uA   | 1, 2,<br>3     |
| IBVI   | Input High VCC=5.5V, VM=7.0V, VINH=4.5V, VINL=0.0V        |                                                                  | 1, 3  | INPUTS       |       | 100        | uA   | 1, 2,<br>3     |
| IIL    | Input LOW Current                                         | t LOW Current VCC=5.5V, VM=0.4V, VINL=0.0V, 1, 3 DI<br>VINH=4.5V |       | D1, D2       |       | -0.4       | mA   | 1, 2,<br>3     |
| VOL    | Output LOW<br>Voltage                                     | VCC=4.5V, VIH=2.0V, IOL=4.0mA, 1, 3   VINH=4.5V, VIL=0.7V 1      |       | OUTPUTS      |       | 0.4        | V    | 1, 2,<br>3     |
| VOH    | High Level Output<br>Voltage                              | VCC=4.5V, VIH=2.0V, IOH=-0.4mA,<br>VIL=0.7V, VINH=4.5V           | 1, 3  | OUTPUTS      | 2.5   |            | V    | 1, 2,<br>3     |
| IOS    | Short CircuitVCC=5.5V, VINH=4.5V, VOUT=0.0V,<br>VINL=0.0V |                                                                  | 1, 3  | OUTPUT       | -20.0 | -100       | mA   | 1, 2,<br>3     |
| VCD    | Input Clamp Diode<br>Voltage                              | nput Clamp Diode VCC=4.5V, IM=-18mA, VINH=4.5V 1, 3 INPUTS -     |       | -1.5         | V     | 1, 2,<br>3 |      |                |
| ICC    | Supply Current VCC=5.5V, VINL=0.0V                        |                                                                  | 1, 3  | VCC          |       | 14.0       | mA   | 1, 2,<br>3     |

#### AC PARAMETER - 50pF

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: CL=50pF, RL=2k ohms Temp range: -55C to +125C

| tpLH (1) | 1) Propagation Delay VCC=5.0V |            | 2,<br>4, 5 | Data to<br>Ox | 35.0 | ns | 9      |
|----------|-------------------------------|------------|------------|---------------|------|----|--------|
|          |                               |            | 2,<br>4, 5 | Data to<br>Ox | 44.0 | ns | 10, 11 |
| tpHL (1) | Propagation Delay             | VCC=5.0V   | 2,<br>4, 5 | Data to<br>Ox | 35.0 | ns | 9      |
|          |                               |            | 2,<br>4, 5 | Data to<br>Ox | 44.0 | ns | 10, 11 |
| tpLH (2) | Propagation Delay             | VCC=5.0V   | 2,<br>4, 5 | Gx to<br>Ox   | 25.0 | ns | 9      |
|          |                               |            | 2,<br>4, 5 | Gx to<br>Ox   | 31.5 | ns | 10, 11 |
| tpHL (2) | Propagation Delay             | y VCC=5.0V | 2,<br>4, 5 | Gx to<br>Ox   | 35.0 | ns | 9      |
|          |                               |            | 2,<br>4, 5 | Gx to<br>Ox   | 44.0 | ns | 10, 11 |

Note 1: Screen tested 100% on each device at -55C, +25C & +125C temperature, subgroups Al, 2, Screen tested 100% on each device at -55C, +25C & +125C temperature, subgroup 3, 7 & 8. Screen tested 100% on each device at +25C temperature only, subgroup A9. Sample tested (Method 5005, Table 1) on each MFG. lot at +25C, +125C & -55C temperature, subgroups A1, 2, 3, 7 & 8. Sample tested (Method 5005, Table 1) on each MFG. lot at +25C, subgroup A9. Guaranteed, not tested at +125C & -55C.

Note 2:

Note 3:

Note 4:

Note 5:

### MNDM54LS154-X REV 0A0 MICROCIRCUIT DATA SHEET

## Revision History

| Rev | ECN #    | Rel Date | Originator    | Changes                                      |
|-----|----------|----------|---------------|----------------------------------------------|
| 0A0 | M0002896 | 06/16/98 | Linda Collins | Initial MDS Release: MNDM54LS154-X Rev. 0A0. |