											R	EVI	SIOI	VS												
LTR			_					DES	SCRI	PTIO	N								D/	TE (Y	'R-MC)-DA)		APPI	ROVE	D
REV	\perp	_																								
SHEET	4	4		_	_			<u> </u>		L	$oxed{oxed}$				L											
REV	┿	4	_		-	<u> </u>	_		L	<u> </u>	_	ļ_			↓_	_	<u> </u>	_	<u> </u>							
SHEET		ᆛ	_			<u> </u>				_	<u> </u>	<u> </u>		L.,	↓_	<u> </u>	_									
REV STATU		┝	RE			ļ. —	Ļ	<u> </u>		Ŀ	<u> </u>	_			_	<u> </u>									Щ	
PMIC N/A	ΔPI			EET	\exists	PRE	PARE CKE	3 ED BY	4	5	6 20	7 04	8	9	L_	DEF	ENSI	E ELI	ECTR	ONIC (, OH	S SI	UPPL 5444	Y CE	ENTE	R	
MILITARY DRAWING THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS					APT DH	WING	APP	ROV	AL D		1		MICROCIRCUITS, DIGITAL, BIPOLAR, ADVANCE SCHOTTKY TTL, 2-INPUT NOR GATES, MONOLI SILICON SIZE CAGE CODE					LITH	10							
AND AGENCIES OF THE				AUGI		198	8			-	SHEET 1 OF 9					88	70 —	9								

DESC FORM 193 SEP 87

 \circ U.S. GOVERNMENT PRINTING OFFICE: 1987 — 748-129/60911 $5962\!-\!E984\!-\!2$

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444			REVISION LEVEL		SHEET 2		
MILITARY DRAWING	<u> </u>	L			5962-88709		
STANDARDIZED	SIZE						
Maximum power dissipation is defined as V_{CC} x $I_{CC},$ and must withstand the added P_D due to short circuit test, eg. $I_{OS}.$							
Supply voltage range (V_{CC}) Minimum high level input voltage (V_{I} Maximum low level input voltage (V_{IL} Input clamp current (I_{IC}) High level output current (I_{OH}) Low level output current (I_{OL}) Case operating temperature range (I_{CC}) · · · · · · · · · · · · · · ·	 	- 0.8 V 18 mA 1.0 mA		.5 V maximum.		
Voltage applied to any output in the Current into any output in the low s Storage temperature range Maximum power dissipation (PD) 1/ - Lead temperature (soldering, 10 secon thermal resistance, junction-to-case Junction temperature (TJ)	state onds) e (θ _{1C}) -	 	- 40 mA 65 °C to 4 - 71.5 mW - +300 °C - See MIL -M-	·150°C	pendix C		
Supply voltage range Input voltage range Input current range		 	1.2 V at 30 mA to	-18 mA to	o +7.0 V dc maximum +7.0 V		
1.3 Absolute maximum ratings.	54.11	, puc	· uge				
C D 2	D-1 (14- F-2 (14- C-2 (20- carrie	- termi	nal, "358" X "	x .200"), x .085"), 358" x .100	dual-in-line package flat package O"), square chip		
Outline letter			Case out	line			
1.2.2 <u>Case outlines</u> . The case outline as follows:	s shall be			_			
01 5 4 F36			Quadruple 2-in		tes		
Device type Generic nu			Circuit functi		ollows:		
(1.2.1 <u>Device type</u> . The device type sh	•	1.2)	2) þ	IIL-M-38510)		
Drawing number Device	type	Case o	utline Lea	id finish p	ner		
5962-88709 01	_		<u>. </u>	X			
1.2 Part number. The complete part nu	umber shal	1 be a	s shown in the	following	g example:		
1.1 Scope. This drawing describes dewith 1.2.1 of MIL-STD-883, "Provisions for non-JAN devices".	or the use	OI M	1-210-883 1N (conjunction	n with compliant		

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

- Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- $3.2\,$ Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
- 3.2.3 Test circuit and switching waveform. The test circuit and switching waveform shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.

STANDARDIZED MILITARY DRAWING	SIZE A			5962-88709	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION L	EVEL	SHEET 3	

DESC FORM 193A SEP 87

TAE		Т			 -		
Test	Symbol	-55°C < Tr	ons <u>1</u> / < +125°C Tse specified	 Group A subgroup	 Li s Min	Uni	
High level output voltage	V _{OH}	V _{CC} = 4.5 V V _{IL} = 0.8 V	$I_{OH} = -1.0 \text{ mA}$	1, 2, 3	-	-	 V
Low level output voltage	I V _{OL}	V _{CC} = 4.5 V V _{IL} = 0.8 V V _{IH} = 2.0 V 2/	OL = 20 mA	1, 2, 3	 	0.5	 v
Input clamp voltage	VIC	V _{CC} = 4.5 V	IN = -18 mA	1, 2, 3	 	-1.2	ļ Į V
Low level input current	IIL	V _{CC} = 5.5 V V _{IN} = 0.5 V Unused inputs =	4.5 Y	1, 2, 3		-0.6	m,A
High level input current	F	V _{CC} = 5.5 V V _{IN} = 2.7 V Unused inputs =	0.0 Y	1, 2, 3	 	20	μА
	1	V _{CC} = 5.5 V V _{IN} = 7.0 V Unused inputs = 0	0.0 V	1, 2, 3	 	0.1	mA
Short circuit output current	Ios	V _{CC} = 5.5 V V _{OUT} = 0.0 V	<u>5</u> /	1, 2, 3	-60	-150	mA
Supply current	I _{CCH}	V _{CC} = 5.5 V V _{IN} = 0.0 V (all	inputs)	1, 2, 3		5.6	mΑ
	ICCL	V _{CC} = 5.5 V One input per gat all others groun	e at 4.5 V and ded.	1, 2, 3		13	mA
unctional tests	 	See 4.3.1c <u>6</u> /		7, 8			
ropagation delay time, A or B to Y	i ii	$V_{CC} = 4.5 \text{ V to 5.}$ $C_{L} = 50 \text{ pF}$ $C_{L} = 500\Omega$	9, 10, 11	1.7	7.5	ns	
	t _{PHL}	See figure 3		9,10,11	1	6.5	ns
ee footnotes on next page.				·	!		
STANDARDIZED MILITARY DRAWIN	G	SIZE A		5962	2-88709)	
DEFENSE ELECTRONICS SUPPLY (DAYTON, OHIO 45444	CENTER		REVISION LEVEL	s	HEET		

DESC FORM 193A SEP 87

- 1/ Unused inputs that do not directly control the pin under test must be ≥ 2.5 V or ≤ 0.5 V, and shall not exceed 5.5 V or go less than 0.0 V. No inputs shall be floated.
- $^{2/}$ All outputs must be tested. In the case where only one input at V_{IL} maximum or V_{IH} minimum produces the proper output state, the test must be performed with each input being selected as the V_{IL} maximum or V_{IH} minimum input.
- 3/ One input to gate under test = 0.8 V, other inputs < 0.8 V.
- 4/ One input to gate under test = 2.0 V, other inputs < 0.8 V.
- 5/ Not more than one output shall be shorted at one time and the duration of the test condition shall not exceed one second.
- 6/ Functional tests shall be conducted at input test conditions of GND \leq V_{IL} \leq V_{OL} and V_{OH} \leq V_{IH} \leq V_{CC}.
- 7/ Propagation delay limits are based on single output switching. Unused inputs = 0.0 V or 3.0 V.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening.</u> Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - Test condition A or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroups 7 and 8 tests shall verify the truth table as specified on figure 2 herein.

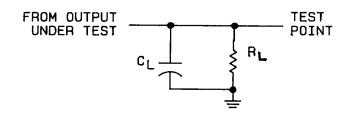
STANDARDIZED MILITARY DRAWING	SIZE A		5962-88709		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 5		

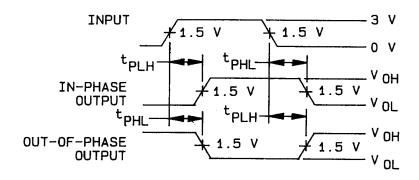
Case outlines	C and D	2				
Terminal number	Terminal symbol					
1 1 2 3 4 4 5 5 1 6 6 7 7 8 9 1 10 11 11 12 13 14 15 16 17 18 19 1 20 1	1A 1B 1Y 2A 2B 2Y GND 3Y 3A 3B 4Y 4A 4B VCC	NC 1A 1B 1Y 1 NC NC				

NC = No connection

FIGURE 1. Terminal connections.

T	Inp	uts	 Output
i	A	B	Y
T	H X L	X H L	L L H


H = High level voltage
L = Low level voltage
X = Irrelevant


FIGURE 2. Truth table.

STANDARDIZED SIZE Α 5962-88709 **MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER** REVISION LEVEL SHEET DAYTON, OHIO 45444 6

DESC FORM 193A SEP 87

☆ U.S. GOVERNMENT PRINTING OFFICE: 1987-549-096

PROPAGATION DELAY TIMES

NOTES:

- 1. CL includes probe and jig capacitance.
- 2. All input pulses have the following characteristics: PRR \leq 10 MHz, t_r = t_f = 2.5 ns, duty cycle = 50%.
- 3. The outputs are measured one at a time with one transition per measurement.
- 4. $C_L = 50 \text{ pF}$, $R_L = 500 \Omega$.

FIGURE 3. Test circuit and switching waveforms.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 SIZE A 5962-88709 REVISION LEVEL SHEET 7

DESC FORM 193A SEP 87

☆ U.S. GOVERNMENT PRINTING OFFICE: 1987--549-096

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*,2,3,7,8,9, 10,11
Group A test requirements (method 5005)	1,2,3,7,8,9, 10,11
Groups C and D end-point electrical parameters (method 5005)	1,2,3

^{*} PDA applies to subgroup 1.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A or D using the circuit submitted with the certificate of compliance (see $3.5\ \text{herein}$).
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

 $5.1\,$ Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-88709

REVISION LEVEL
SHEET
8

DESC FORM 193A

SEP 87

6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /
5962-8870901CX	01295	SNJ 54F36J
5962-3870901DX	01295	SNJ54F36W
5962-88709012X	01295	SNJ 54F36FK

1/ Caution. So not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

01295

Vendor name and address

Texas Instruments, Incorporated P.O. Box 6448 Midland, TX 79711

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER

DAYTON, OHIO 45444

SIZE A

5962-88709

REVISION LEVEL

SHEET

9