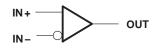
SLCS119B - DECEMBER 1986 - REVISED DECEMBER 2006

- Very Low Power . . . 200 μ W Typ at 5 V
- Fast Response Time . . . 2.5 μs Typ With 5-mV Overdrive
- Single Supply Operation:
 - TLC139M ... 4 V to 16 V TLC339M ... 4 V to 16 V TLC339C ... 3 V to 16 V TLC339I ... 3 V to 16 V
- High Input Impedance . . . $10^{12} \Omega$ Typ
- Input Offset Voltage Change at Worst Case Input at Condition Typically 0.23 μV/Month Including the First 30 Days
- On-Chip ESD Protection

description


The TLC139/TLC339 consists of four independent differential-voltage comparators designed to operate from a single supply. It is functionally similar to the LM139/LM339 family but uses 1/20th the power for similar response times. The open-drain MOS output stage interfaces to a variety of leads and supplies, as well as wired logic functions. For a similar device with a push-pull output configuration, see the TLC3704 data sheet.

The Texas Instruments LinCMOS[™] process offers superior analog performance to standard CMOS processes. Along with the standard CMOS advantages of low power without sacrificing speed, high input impedance, and low bias currents, the LinCMOS[™] process offers extremely stable input offset voltages, even with differential input stresses of several volts. This characteristic makes it possible to build reliable CMOS comparators.

D, J, N	, or pw p (top view	
10UT [20UT [2IN-[2IN-[2IN+[1IN-[1IN+[1 14 2 13 3 12 4 11 5 10 6 9 7 8	4OUT GND 4IN+ 4IN- 3IN+
) 10 19 18 GND 17 NC 16 4IN+ 15 NC 14 4IN-

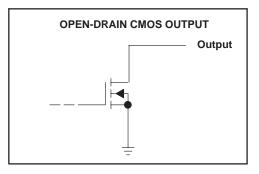
NC - No internal connection

symbol (each comparator)

AVAILABLE OPTIONS

	N	PACKAGE							
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (P)	TSSOP (PW)			
0°C to 70°C	5 mV	TLC339CD	—	—	TLC339CN	TLC339CPW			
-40°C to 85°C	5 mV	TLC339ID	—	—	TLC339IN	TLC339IPW			
-40°C to 125°C	5 mV	TLC339QD	—	—	TLC339QN	—			
-55°C to 125°C	5 mV	TLC339MD	TLC139MFK	TLC139MJ	TLC339MN	—			

The D and PW packages are available taped and reeled. Add the suffix R to the device type (e.g., TLC339CDR or TLC339CPWR).


LinCMOS is a trademark of Texas Instruments Incorporated.

description (continued)

The TLC139M and TLC339M are characterized for operation over the full military temperature range of -55° C to 125°C. The TLC339C is characterized for operation over the commercial temperature range of 0°C to 70°C. The TLC339I is characterized for operation over the industrial temperature range of -40° C to 85°C. The TLC339Q is characterized for operation over the extended industrial temperature range of -40° C to 125°C.

output schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{DD} (see Note 1)	±18 V
Input voltage range, V ₁ –0.3 V	
Output voltage range, V _O –0.3 V	to VDD
Input current, I ₁	
Output current, I _O (each output)	20 mA
Total supply current into V _{DD}	40 mA
Total current out of GND	60 mA
Continuous total dissipation	y Table
Operating free-air temperature range, T _A : TLC139M	125°C
TLC339C	o 70°C
TLC339I	o 85°C
TLC339M	125°C
TLC339Q40°C to	125°C
Storage temperature range	150°C
Case temperature for 60 seconds: FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at IN+ with respect to IN -.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW	190 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW	230 mW
PW	700 mW	5.6 mW/°C	448 mW	364 mW	140 mW

recommended operating conditions

	TLC	139M, TI	_C339M	UNIT
	4 5 0	NOM	MAX	UNIT
Supply voltage, V _{DD}	4	5	16	V
Common-mode input voltage, VIC	0		V _{DD} -1.5	V
Low-level output current, IOL			20	mA
Operating free-air temperature, T _A	-55		125	°C

electrical characteristics at specified operating free-air temperature, V_{DD} = 5 V (unless otherwise noted)

				ТА	TLC139N	A, TLC33	89M	
	PARAMETER	TEST CO	TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
		., ., .		25°C		1.4	5	
VIO	Input offset voltage	V _{IC} = V _{ICR} min, See Note 3	$V_{DD} = 5 V \text{ to } 10 V,$	−55°C to 125°C			10	mV
				25°C		1		pА
10	Input offset current	V _{IC} = 2.5 V		125°C			15	nA
				25°C		5		pА
IВ	Input bias current	V _{IC} = 2.5 V		125°C			30	nA
.,	Common-mode input ICR voltage range	Common-mode input		25°C	0 to V _{DD} -1			
VICR				−55°C to 125°C	0 to V _{DD} -1.5			V
				25°C		84		
CMRR	Common-mode rejection ratio	VIC = VICRmin		125°C		84		dB
				−55°C		84		
				25°C		85		
^k SVR	Supply-voltage rejection ratio	$V_{DD} = 5 V \text{ to } 10 V$		125°C		84		dB
				−55°C		84		
				25°C		300	400	
VOL		.ow-level output voltage $V_{ID} = -1 V$, $I_{OL} = 6 mA$	125°C			800	mV	
	Llich lovel output ourrest			25°C		0.8	40	nA
ЮН	High-level output current	$V_{ID} = -1 V,$	$V_{O} = 5 V$	125°C			1	μΑ
	Supply current (four			25°C		44	80	
IDD	comparators)	Outputs low,	No load	−55°C to 125°C			175	μA

[†] All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V with a 2.5-k Ω load to VDD.

recommended operating conditions

	TLC339C MIN NOM MAX 3 5 16 -0.2 V _{DD} -1.5 8 20 0 70 70	TLC33	UNIT	
Supply voltage, V _{DD}	3	5	16	V
Common-mode input voltage, VIC	-0.2		V _{DD} -1.5	V
Low-level output current, IOL		8	20	mA
Operating free-air temperature, T _A	0		70	°C

electrical characteristics at specified operating free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADAMETER			т.	TL	C339C		
	PARAMETER	ER TEST CONDITIONS [†]		TA	MIN	TYP	MAX	UNIT
.,		$V_{IC} = V_{ICR}$ min, $V_{DD} = 5 V$ to	10 V,	25°C		1.4	5	
VIO	Input offset voltage	See Note 3		0°C to 70°C			6.5	mV
				25°C		1		pА
IIO	Input offset current	V _{IC} = 2.5 V		70°C			0.3	nA
				25°C		5		pА
IIB	Input bias current	V _{IC} = 2.5 V		70°C			0.6	nA
Common-mode inp VICR voltage range	Common-mode input			25°C	0 to V _{DD} -1			
	voltage range			0°C to 70°C	0 to V _{DD} -1.5			V
				25°C		84		
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		70°C		84		dB
	1410			0°C		84		
				25°C		85		
k SVR	Supply-voltage rejection ratio	$V_{DD} = 5 V \text{ to } 10 V$		70°C		85		dB
	1410			0°C		85		
v				25°C		300	400	
V _{OL}	Low-level output voltage	$V_{ID} = -1 V$, $I_{OL} = 6 mA$		70°C			650	mV
lau				25°C		0.8	40	nA
ЮН	High-level output current	$V_{ID} = -1 V,$ $V_O = 5 V$		70°C			1	μΑ
	Supply current (four	Outputs low, No load		25°C		44	80	μA
IDD	comparators)			0°C to 70°C			100	μΑ

[†] All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 4: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V with a 2.5-k Ω load to VDD.

recommended operating conditions

		TLC33	TLC339I	
	MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}	3	5	16	V
Common-mode input voltage, VIC	-0.2		V _{DD} -1.5	V
Low-level output current, IOL		8	20	mA
Operating free-air temperature, T _A	0		70	°C

electrical characteristics at specified operating free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADAMETED		T.	TL	C339I		
	PARAMETER	TEST CONDITIONS [†]	TA	MIN	TYP	MAX	UNIT
	hand affect welter we	$V_{IC} = V_{ICR}$ min, $V_{DD} = 5 V \text{ to } 10$	V, 25°C		1.4	5	
VIO	Input offset voltage	See Note 3	-40°C to 85°C			7	mV
			25°C		1		pА
10	Input offset current	V _{IC} = 2.5 V	85°C			1	nA
			25°C		5		pА
IB	Input bias current	V _{IC} = 2.5 V	85°C			2	nA
VICR	Common-mode input		25°C	0 to V _{DD} – 1			
	voltage range		-40°C to 85°C	0 to V _{DD} -1.5			V
			25°C		84	4	
CMRR	Common-mode rejection ratio	VIC = VICRmin	85°C		84		dB
	1410		-40°C		84		
			25°C		85		
k SVR	Supply-voltage rejection ratio	$V_{DD} = 5 V$ to 10 V	85°C		85		dB
	Tatio				84]
			25°C		300	400	
VOL	Low-level output voltage	Low-level output voltage $V_{ID} = -1 V$, $I_{OL} = 6 mA$	85°C			700	mV
	Likely and a dead and the		25°C		0.8	40	nA
ЮН	High-level output current	$V_{ID} = -1 V$, $V_O = 5 V$	85°C			1	μA
	Supply current (four		25°C		44	80	
DD	comparators)	Outputs low, No load	-40°C to 85°C			125	μA

[†] All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V with a 2.5-k Ω load to VDD.

recommended operating conditions

	TLC339Q MIN NOM MAX 4 5 16 0 V _{DD} -1.5 20 -40 125	TLC33	FLC339Q		
		UNIT			
Supply voltage, V _{DD}	4	5	16	V	
Common-mode input voltage, VIC	0		V _{DD} -1.5	V	
Low-level output current, IOL			20	mA	
Operating free-air temperature,T _A	- 40		125	°C	

electrical characteristics at specified operating free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADAMETED			т _А	TLO	C339Q		
	PARAMETER	TEST CO	TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
.,		$V_{IC} = V_{ICR}min,$	V _{DD} = 5 V to 10 V,	25°C		1.4	5	
VIO	Input offset voltage	See Note 3		-40°C to 125°C			10	mV
1	han it offerst assument			25°C		1		pА
IIO	Input offset current	V _{IC} = 2.5 V		125°C			15	nA
1	Input high ourrent			25°C		5		pА
lΒ	Input bias current	V _{IC} = 2.5 V		125°C			30	nA
	Common-mode input		25°C	0 to V _{DD} −1			.,	
VICR	voltage range			-40°C to 125°C	0 to V _{DD} -1.5			V
				25°C		84		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		125°C		84		dB
	lato			-40°C		84		
	0 1 1 1 1 1			25°C		85		
^k SVR	Supply-voltage rejection ratio	$V_{DD} = 5 V \text{ to } 10 V$		125°C		84		dB
				-40°C		84		
Ve	Low-level output voltage	V _{ID} = -1 V,	lo: - 6 m 1	25°C		300	400	mV
VOL	Low-level output voltage	$v_{\text{ID}} = -1 v$,	I _{OL} = 6 mA	125°C			800	IIIV
	High lovel output ourrest			25°C		0.8	40	nA
ЮН	High-level output current	$V_{ID} = -1 V,$	V _O = 5 V	125°C			1	μΑ
	Supply current (four	Outputs low,	No load	25°C		44	80	μA
IDD	comparators)		NU IUdu	-40° C to 125° C			125	μΛ

[†] All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 4: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V with a 2.5-k Ω load to VDD.

	PARAMETER	TEST CO	TLC139M, TLC339C TLC339I, TLC339M TLC339Q			UNIT		
				MIN	TYP	MAX		
			Overdrive = 2 mV		4.5			
			Overdrive = 5 mV		2.5	339M Q		
	Descention delay fina law to high output	f = 10 kHz, CI = 15 pF	Overdrive = 10 mV		1.7		μs	
^t PLH	Propagation delay time, low-to-high output		Overdrive = 20 mV		1.2			
			Overdrive = 40 mV		1.0			
		V _I = 1.4 V step at IN+						
			Overdrive = 2 mV		3.6]	
			Overdrive = 5 mV		2.1			
	Development of the state of the test of the state of the state of	f = 10 kHz, $C_1 = 15 \text{ pF}$	Overdrive = 10 mV		1.3			
^t PHL	Propagation delay time, high-to-low level output		Overdrive = 20 mV		0.85		μs	
			Overdrive = 20 mV 0.00 Overdrive = 40 mV 0.55					
		V _I = 1.4 V step at I	0.10					
t _{THL}	Transition time, high-to-low level output	f = 10 kHz, C _L = 15pF		20		ns		

switching characteristics, V_{DD} = 5 V, T_A = 25°C (see Figure 3)

PARAMETER MEASUREMENT INFORMATION

The TLC139 and TLC339 contain a digital output stage that, if held in the linear region of the transfer curve, can cause damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo-loop that is designed to force the device output to a level within this linear region. Since the servo-loop method of testing cannot be used, the following alternatives for testing parameters such as input offset voltage, common-mode rejection, etc., are suggested.

To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown in Figure 1(a). With the noninverting input positive with respect to the inverting input, the output should be high. With the input polarity reversed, the output should be low.

A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages can be slewed as shown in Figure 1(b) for the V_{ICR} test, rather than changing the input voltages, to provide greater accuracy.

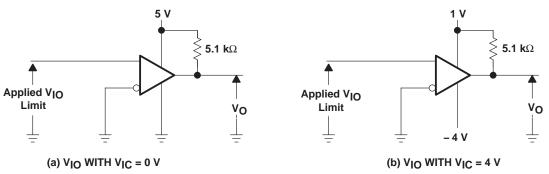


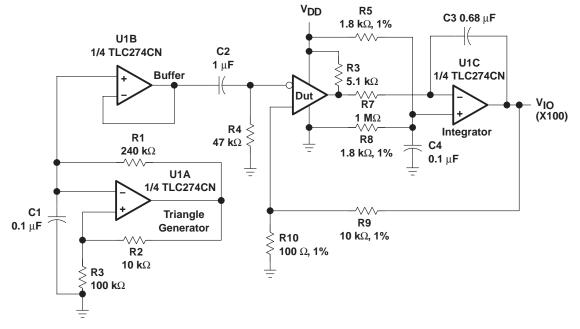
Figure 1. Method for Verifying That Input Offset Voltage Is Within Specified Limits

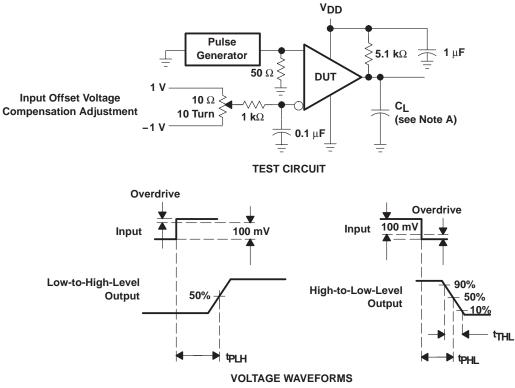
PARAMETER MEASUREMENT INFORMATION

A close approximation of the input offset voltage can be obtained by using a binary search method to vary the differential input voltage while monitoring the output state. When the applied input voltage differential is equal but opposite in polarity to the input offset voltage, the output changes state.

Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the comparator into the linear region. The circuit consists of a switching mode servo loop in which U1A generates a triangular waveform of approximately 20-mV amplitude. U1B acts as a buffer, with C2 and R4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the noninverting input is driven by the output of the integrator formed by U1C through the voltage divider formed by R9 and R10. The loop reaches a stable operating point when the output of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when the voltage at the noninverting input exactly equals the input offset voltage.

Voltage divider R9 and R10 provides a step-up of the input offset voltage by a factor of 100 to make measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the reading; therefore, it is suggested that their tolerance level be 1% or lower.




Figure 2. Circuit for Input Offset Voltage Measurement

Measuring the extremely low values of input current requires isolation from all other sources of leakage current and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board leakage can be measured with no device in the socket. Subsequently, this open socket leakage value can be subtracted from the measurement obtained, with a device in the socket to obtain the actual input current of the device.

PARAMETER MEASUREMENT INFORMATION

Propagation delay time is defined as the interval between the application of an input step function and the instant when the output reaches 50% of its maximum value. Propagation delay time, low-to-high-level output, is measured from the leading edge of the input pulse, while propagation delay time, high-to-low-level output, is measured from the trailing edge of the input pulse. Propagation delay time measurement at low input signal levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input as shown in Figure 3, so that the circuit is just at the transition point. Then a low signal, for example 105-mV or 5-mV overdrive, causes the output to change state.

NOTE A: $\ensuremath{\mathsf{CL}}$ includes probe and jig capacitance.

Figure 3. Propagation Delay, Rise, and Fall Times Test Circuit and Voltage Waveforms

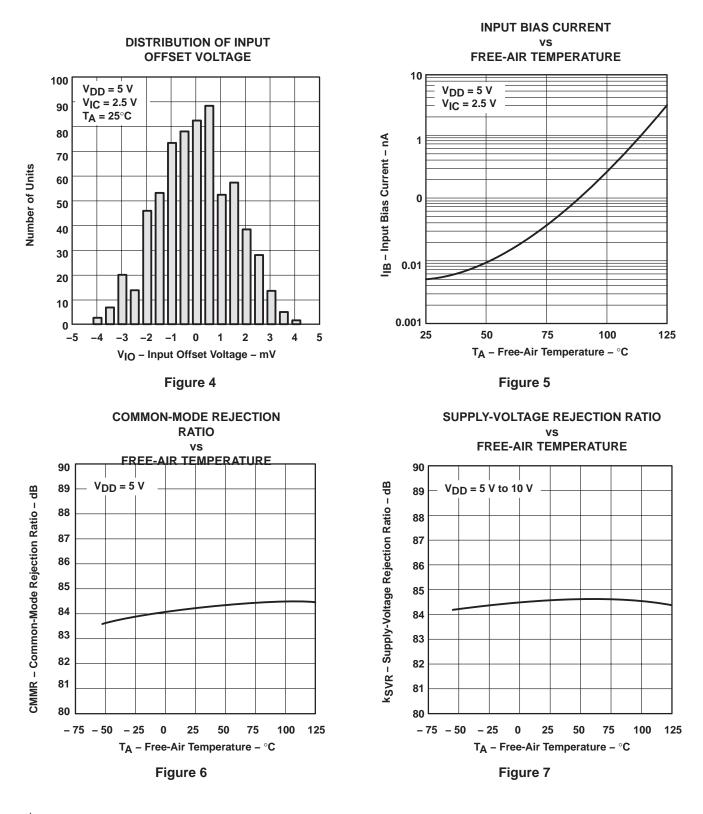
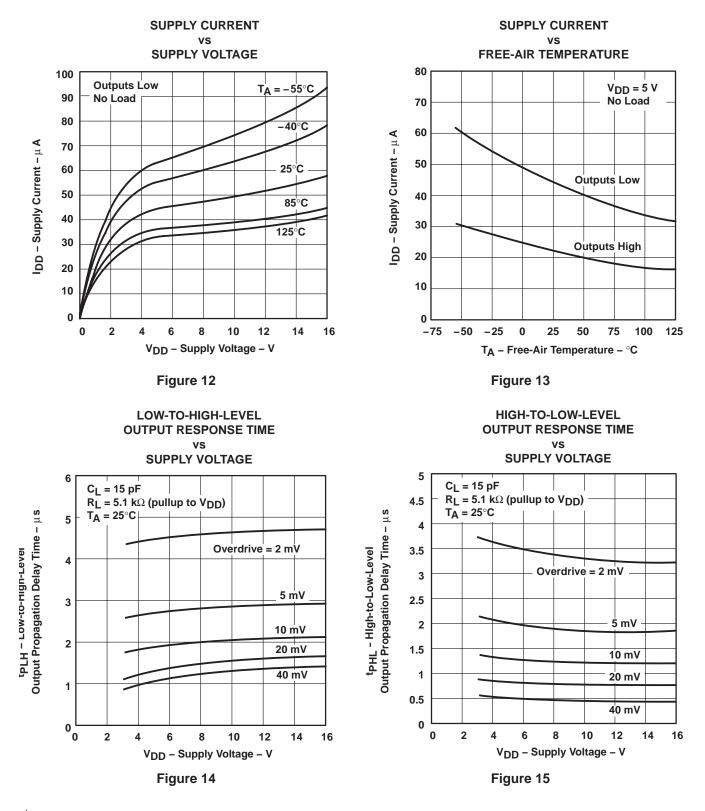

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	4
IIB	Input bias current	vs Free-air temperature	5
CMRR	Common-mode rejection ratio	vs Free-air temperature	6
k SVR	Supply-voltage rejection ratio	vs Free-air temperature	7
IOH	High-level output current	vs High-level output voltage vs Free-air temperature	8 9
V _{OL}	Low-level output voltage	vs Low-level output current vs Free-air temperature	10 11
IDD	Supply current	vs Supply voltage vs Free-air temperature	12 13
^t PLH	Low-to-high level output propagation delay time	vs Supply voltage	14
^t PHL	Low-to-high level output propagation delay time	vs Supply voltage	15
	Overdrive voltage	vs Low-to-high-level output propagation delay time	16
tf	Output fall time	vs Supply voltage	17
	Overdrive voltage	vs High-to-low-level output propagation delay time	18

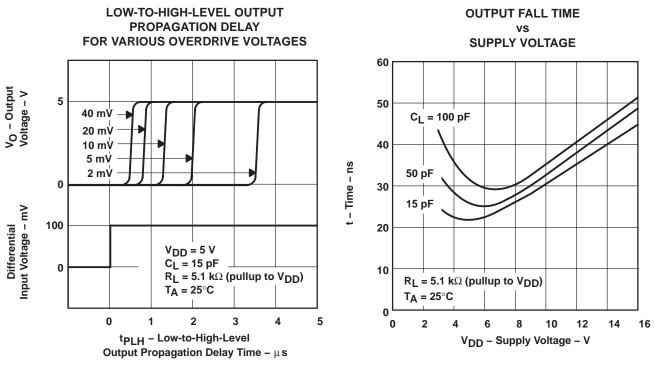
TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



TYPICAL CHARACTERISTICS[†]

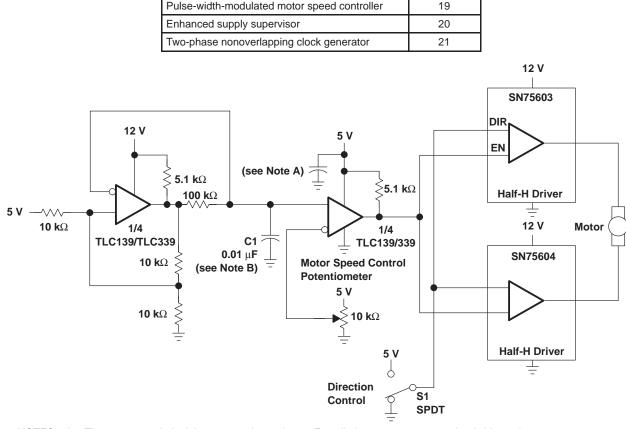
[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

Figure 16

HIGH-TO-LOW-LEVEL OUTPUT PROPAGATION DELAY FOR VARIOUS OVERDRIVE VOLTAGES V_O – Output Voltage – V 5 40 m V 20 m V 10 m/V 5 mV 2 mV 0 $V_{DD} = 5 V$ Input Voltage – mV C_L = 15 pF 100 Differential $R_{L} = 5.1 \text{ k}\Omega$ (pullup to V_{DD}) T_A = 25°C 0 2 0 1 3 4 5 tPHL - High-to-Low-Level Output Propagation Delay Time – μ s

Figure 18


FIGURE

APPLICATION INFORMATION

The inputs should always remain within the supply rails in order to avoid forward biasing the diodes in the electrostatic discharge (ESD) protection structure. If either input exceeds this range, the device is not damaged as long as the input current is limited to less than 5 mA. To maintain the expected output state, the inputs must remain within the common-mode range. For example, at 25°C with $V_{DD} = 5$ V, both inputs must remain between -0.2 V and 4 V to assure proper device operation. To assure reliable operation, the supply should be decoupled with a capacitor (0.1 μ F) positioned as close to the device as possible.

The output and supply currents require close observation since the TLC139/TLC339 does not provide current protection. For example, each output can source or sink a maximum of 20 mA; however, the total current to ground has an absolute maximum of 60 mA. This prohibits sinking 20 mA from each of the four outputs simultaneously since the total current to ground would be 80 mA.

The TLC139 and TLC339 have internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, exercise care when handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

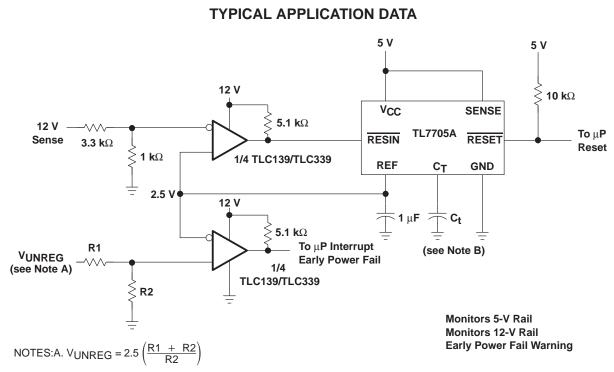


Table of Applications

NOTES: A. The recommended minimum capacitance is 10 µF to eliminate common ground switching noise. B. Select C1 for change in oscillator frequency.

Figure 19. Pulse-Width-Modulated Motor Speed Controller

B. The value of C_t determines the time delay of reset.

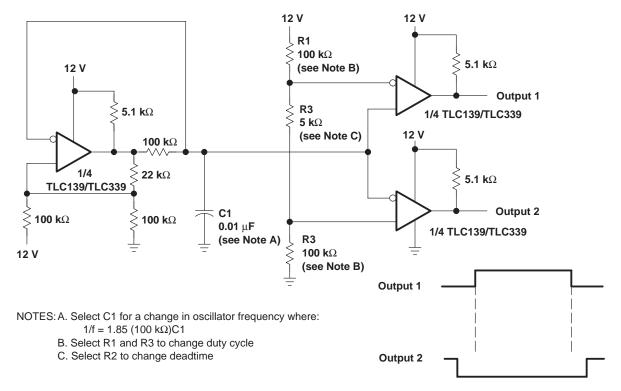


Figure 21. Two-Phase Nonoverlapping Clock Generator

www.ti.com

15-Oct-2009

PACKAGING INFORMATION

S982-87659022A ACTIVE LCCC FK 20 1 TED POST-FLATE N / A for Pkg Type S982-8765902A ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type S982-8655001NXDR ACTIVE SOIC D 14 2500 Green (ReNS & CU NIPDAU Level-1-260C-UNLIM S982-8655001NXDR ACTIVE SOIC D 14 2500 Green (ReNS & CU NIPDAU Level-1-260C-UNLIM S982-8655001NXDR ACTIVE CCC FK 20 1 TED PA2 N / A for Pkg Type TLC139MFKB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLC339CDA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLC339CDA ACTIVE SOIC D 14 2500 Green (ReNS & CU NIPDAU Level-1-260C-UNLIM TLC339CDR4 ACTIVE SOIC D 14 2500 Green (ReNS & CU NI	Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
S962-9555001NXD ACTIVE SOIC D 14 2500 Green (RoHS & SolB) CU NIPDAU Level-1-260C-UNLIM no SolB) 5962-9555001NXDR ACTIVE SOIC D 14 2500 Green (RoHS & SolB) CU NIPDAU Level-1-260C-UNLIM no SolB) TLC139MFKB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLC139MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLC39CD ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/B) TLC339CDR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/B) TLC339CDR4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/B) TLC339CDR4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/B) TLC339CNR4 ACTIVE SOIN N	5962-87659022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
Solitary Solitary Solitary Solitary 5962-955001NXDR ACTIVE SOIC D 14 2500 Green (RAHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Bi) TLC139MFKB ACTIVE CDIP J 14 1 TBD POST-PLATE N / A for Pkg Type TLC139MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLC339CD ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Bi) TLC339CDG4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Bi) TLC339CDR4 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Bi) TLC339CDR4 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU N / A for Pkg Type TLC339CNA ACTIVE PDIP N 14 200 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Bi) TLC33	5962-8765902CA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
TLC139MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type TLC139MJ ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLC339CD ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLC339CD4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CDR4 ACTIVE SOIC D 14 2500 Green (ROHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CDR64 ACTIVE SOIC D 14 2500 Green (ROHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CNA ACTIVE SOIC D 14 250 Ph-Free (ROHS & CU NIPDAU N / A for Pkg Type TLC339CN10 OBSOLETE PDIP N 14 250 Ph-Free (ROHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CNSR4 ACTIVE SO NS 14	5962-9555001NXD	ACTIVE	SOIC	D	14	2500		CU NIPDAU	Level-1-260C-UNLIM
TLC139MJ ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLC39MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLC339CD ACTIVE SOIC D 14 50 Green (RoH5 & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CDG4 ACTIVE SOIC D 14 50 Green (RoH5 & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CDR ACTIVE SOIC D 14 2500 Green (RoH5 & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CDRG4 ACTIVE SOIC D 14 2500 Green (RoH5 & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CN10 OBSOLETE PDIP N 14 25 PF-Free CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CNSR ACTIVE SO NS 14 2000 Green (RoH5 & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CNSR4 ACTIVE SO NS 14 2000 </td <td>5962-9555001NXDR</td> <td>ACTIVE</td> <td>SOIC</td> <td>D</td> <td>14</td> <td>2500</td> <td></td> <td>CU NIPDAU</td> <td>Level-1-260C-UNLIM</td>	5962-9555001NXDR	ACTIVE	SOIC	D	14	2500		CU NIPDAU	Level-1-260C-UNLIM
TLC139MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLC339CD ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM TLC339CDG4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM TLC339CDR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM TLC339CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM TLC339CNGG4 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM TLC339CN10 OBSOLETE PDIP N 14 25 Pb-Free CU NIPDAU N / A for Pkg Type TLC339CNSR ACTIVE PDIP N 14 200 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM TLC339CNSR ACTIVE SO NS 14 2000 Green (RoHS & CU NIPDAU <td< td=""><td>TLC139MFKB</td><td>ACTIVE</td><td>LCCC</td><td>FK</td><td>20</td><td>1</td><td>TBD</td><td>POST-PLATE</td><td>N / A for Pkg Type</td></td<>	TLC139MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
TLC339CD ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CDG4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CDR4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CDR64 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CDR64 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CN10 OBSOLETE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CNSR ACTIVE SO NS 14 200 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CNSRG4 ACTIVE SO NS 14 200 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CPWG4 ACTIVE TSOP PW	TLC139MJ	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
In Solida ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Bt) TLC339CDR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Bt) TLC339CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Bt) TLC339CNG ACTIVE PDIP N 14 250 Pb-Free (RoHS & CU NIPDAU N / A for Pkg Type (RoHS) TLC339CN10 OBSOLETE PDIP N 14 TBD Call TI Call TI TLC339CN84 ACTIVE PDIP N 14 25 Pb-Free (RoHS & CU NIPDAU N / A for Pkg Type (RoHS) TLC339CN87 ACTIVE SO NS 14 2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Bt) TLC339CN87 ACTIVE SO NS 14 2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Bt) TLC339CN874 ACTIVE TSSOP PW 14 90	TLC139MJB	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
no Sb/Br) TLC339CDR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC339CN10 OBSOLETE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC339CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CNSR4 ACTIVE SO NS 14 2000 Green (RoHS & cu NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CNSR4 ACTIVE TSSOP PW 14 90 Green (RoHS & cu NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & creen (RoHS & cu NIPDAU Level-1-260C-UNLIM no Sb/Br)	TLC339CD	ACTIVE	SOIC	D	14	50		CU NIPDAU	Level-1-260C-UNLIM
no Sb/Br) TLC339CDRG4 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC339CN10 OBSOLETE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC339CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CNSRG4 ACTIVE SO NS 14 200 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CNSRG4 ACTIVE SO NS 14 200 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & No Sb/Br) CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & No Sb/Br) CU NIPDAU Level-1-260C-UNLIM no Sb/Br) </td <td>TLC339CDG4</td> <td>ACTIVE</td> <td>SOIC</td> <td>D</td> <td>14</td> <td>50</td> <td></td> <td>CU NIPDAU</td> <td>Level-1-260C-UNLIM</td>	TLC339CDG4	ACTIVE	SOIC	D	14	50		CU NIPDAU	Level-1-260C-UNLIM
TLC339CNACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeTLC339CN10OBSOLETEPDIPN14TBDCall TICall TICall TITLC339CN24ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeTLC339CNSRACTIVESONS142000Green (RoHS & or Sh/Br)CU NIPDAULevel-1-260C-UNLIM no Sh/Br)TLC339CNSR64ACTIVESONS142000Green (RoHS & or Sh/Br)CU NIPDAULevel-1-260C-UNLIM no Sh/Br)TLC339CPWG4ACTIVETSSOPPW1490Green (RoHS & or Sh/Br)CU NIPDAULevel-1-260C-UNLIM no Sh/Br)TLC339CPWG4ACTIVETSSOPPW1490Green (RoHS & or Sh/Br)CU NIPDAULevel-1-260C-UNLIM no Sh/Br)TLC339CPWG4ACTIVETSSOPPW1490Green (RoHS & or Sh/Br)CU NIPDAULevel-1-260C-UNLIM no Sh/Br)TLC339CPWR64ACTIVETSSOPPW142000Green (RoHS & or Sh/Br)CU NIPDAULevel-1-260C-UNLIM no Sh/Br)TLC339IDG4ACTIVETSSOPPW142000Green (RoHS & or Sh/Br)CU NIPDAULevel-1-260C-UNLIM no Sh/Br)TLC339IDR4ACTIVESOICD1450Green (RoHS & or Sh/Br)CU NIPDAULevel-1-260C-UNLIM no Sh/Br)TLC339IDR4ACTIVESOICD1450Green (TLC339CDR	ACTIVE	SOIC	D	14	2500		CU NIPDAU	Level-1-260C-UNLIM
(RoHS)TLC339CN10OBSOLETEPDIPN14TBDCall TICall TICall TITLC339CN44ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeTLC339CNSRACTIVESONS142000Green (RoHS & Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CNSRG4ACTIVESONS142000Green (RoHS & con Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIMTLC339CPWACTIVETSSOPPW1490Green (RoHS & con Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWG4ACTIVETSSOPPW1490Green (RoHS & con Sb/Br)Cul NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWR64ACTIVETSSOPPW1490Green (RoHS & con Sb/Br)Cul NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWR64ACTIVETSSOPPW1490Green (RoHS & con Sb/Br)Cul NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDQACTIVETSOPPW1450Green (ROHS & con Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDG4ACTIVESOICD1450Green (ROHS & con Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDR64ACTIVESOICD14500Green (ROHS & con Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDR64 </td <td>TLC339CDRG4</td> <td>ACTIVE</td> <td>SOIC</td> <td>D</td> <td>14</td> <td>2500</td> <td></td> <td>CU NIPDAU</td> <td>Level-1-260C-UNLIM</td>	TLC339CDRG4	ACTIVE	SOIC	D	14	2500		CU NIPDAU	Level-1-260C-UNLIM
TLC339CNE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeTLC339CNSRACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CNSRG4ACTIVESONS142000Green (RoHS & ros Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWACTIVETSSOPPW1490Green (RoHS & ros Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWG4ACTIVETSSOPPW1490Green (RoHS & ros Sb/Br)Cul NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWLEOBSOLETETSSOPPW1490Green (RoHS & ros Sb/Br)Call TICall TITLC339CPWRACTIVETSSOPPW142000Green (RoHS & ros Sb/Br)Cul NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS & ros Sb/Br)Level-1-260C-UNLIM no Sb/Br)TLC339IDACTIVESOICD1450Green (RoHS & ros Sb/Br)Level-1-260C-UNLIM no Sb/Br)TLC339IDR4ACTIVESOICD142500Green (RoHS & ree (RoHS)Level-1-260C-UNLIM ro Sb/Br)TLC339IDR4ACTIVESOICD142500Green (RoHS & ree (RoHS)Level-1-260C-UNLIM ro Sb/Br)TLC339IDR4ACTIVESOICD142500Green (RoHS & ree	TLC339CN	ACTIVE	PDIP	Ν	14	25		CU NIPDAU	N / A for Pkg Type
TLC339CNSRACTIVESONS142000Green (RoHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CNSRG4ACTIVESONS142000Green (RoHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWACTIVETSSOPPW1490Green (RoHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWG4ACTIVETSSOPPW1490Green (RoHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWLEOBSOLETETSSOPPW1490Green (RoHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWREOBSOLETETSSOPPW142000Green (RoHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDACTIVESOICD1450Green (RoHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDG4ACTIVESOICD142500Green (ROHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDR4ACTIVESOICD142500Green (ROHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDR4ACTIVESOICD142500Green (ROHS)CU NIPDAULevel-1-260C-UNLIM no Sb	TLC339CN10	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
TLC339CNSRG4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339CPWACTIVETSSOPPW1490Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWG4ACTIVETSSOPPW1490Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWLEOBSOLETETSSOPPW1490Green (RoHS & no Sb/Br)Call TICall TITLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDG4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDG4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDRG4ACTIVESOICD142500Green (RoHS & RoHS &CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDRG4ACTIVESOICD142500Green (RoHS & RoHS &CU NIPDAULevel-1-260C-UNLIM no Sb/Br)	TLC339CNE4	ACTIVE	PDIP	Ν	14	25		CU NIPDAU	N / A for Pkg Type
Image: nom sign of billingImage: nom sign of billingTLC339CPWG4ACTIVETSSOPPW1490Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWLEOBSOLETETSSOPPW1490Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWREOBSOLETETSSOPPW142000Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDG4ACTIVESOICD1450Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDG4ACTIVESOICD1450Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDR4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDR4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339INE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type (ROHS)TLC339INE4ACTIVEPDIPN1425Pb-Free (ROHS)CU NIPDAUN / A for Pkg Type	TLC339CNSR	ACTIVE	SO	NS	14	2000		CU NIPDAU	Level-1-260C-UNLIM
TLC339CPWG4ACTIVETSSOPPW1490Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMTLC339CPWLEOBSOLETETSSOPPW14TBDCall TICall TICall TITLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS & cU NIPDAULevel-1-260C-UNLIMTLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS & cU NIPDAULevel-1-260C-UNLIMTLC339IDACTIVESOICD1450Green (RoHS & cU NIPDAULevel-1-260C-UNLIMTLC339IDG4ACTIVESOICD1450Green (RoHS & cU NIPDAULevel-1-260C-UNLIMTLC339IDRG4ACTIVESOICD1450Green (RoHS & cU NIPDAULevel-1-260C-UNLIMTLC339IDRG4ACTIVESOICD142500Green (RoHS & cU NIPDAULevel-1-260C-UNLIMTLC339IDRG4ACTIVESOICD142500Green (RoHS & cU NIPDAULevel-1-260C-UNLIMTLC339IDRG4ACTIVESOICD142500Green (RoHS & cU NIPDAULevel-1-260C-UNLIMTLC339IDRG4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeTLC339INE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type	TLC339CNSRG4	ACTIVE	SO	NS	14	2000		CU NIPDAU	Level-1-260C-UNLIM
TLC339CPWLEOBSOLETETSSOPPW14TBDCall TICall TITLC339CPWRACTIVETSSOPPW142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDG4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDRACTIVESOICD14250Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDRG4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDRG4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDR4ACTIVEPDIPN14250Breen (RoHS & no Sb/Br)CU NIPDAUN / A for Pkg Type (RoHS)TLC339INE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type	TLC339CPW	ACTIVE	TSSOP	PW	14	90		CU NIPDAU	Level-1-260C-UNLIM
TLC339CPWRACTIVETSSOPPW142000Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDACTIVESOICD1450Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDG4ACTIVESOICD1450Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDRACTIVESOICD1450Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDRACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339IDRG4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339INR4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type (ROHS)	TLC339CPWG4	ACTIVE	TSSOP	PW	14	90	•	CU NIPDAU	Level-1-260C-UNLIM
TLC339CPWRG4ACTIVETSSOPPW142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339IDACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339IDG4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339IDRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339IDRG4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339INR4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type (RoHS)TLC339INE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type	TLC339CPWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI
TLC339IDACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIMTLC339IDG4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339IDRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339IDRG4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339INR4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type (RoHS)TLC339INE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type	TLC339CPWR	ACTIVE	TSSOP	PW	14	2000	•	CU NIPDAU	Level-1-260C-UNLIM
TLC339IDG4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339IDRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339IDRG4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)TLC339INR4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type (RoHS)TLC339INE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type	TLC339CPWRG4	ACTIVE	TSSOP	PW	14	2000	,	CU NIPDAU	Level-1-260C-UNLIM
no Sb/Br)TLC339IDRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMTLC339IDRG4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMTLC339INACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeTLC339INE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type	TLC339ID	ACTIVE	SOIC	D	14	50		CU NIPDAU	Level-1-260C-UNLIM
no Sb/Br) TLC339IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM no Sb/Br) TLC339IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC339INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type	TLC339IDG4	ACTIVE	SOIC	D	14	50		CU NIPDAU	Level-1-260C-UNLIM
TLC339IDRG4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)TLC339INACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeTLC339INE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type	TLC339IDR	ACTIVE	SOIC	D	14	2500		CU NIPDAU	Level-1-260C-UNLIM
(RoHS) TLC339INE4 ACTIVE PDIP N 14 25 Pb-Free CU NIPDAU N / A for Pkg Type (RoHS)	TLC339IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM
TLC339INE4 ACTIVE PDIP N 14 25 Pb-Free CU NIPDAU N / A for Pkg Type (RoHS)	TLC339IN	ACTIVE	PDIP	Ν	14	25		CU NIPDAU	N / A for Pkg Type
TLC339IPW ACTIVE TSSOP PW 14 90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM	TLC339INE4	ACTIVE	PDIP	Ν	14	25	Pb-Free	CU NIPDAU	N / A for Pkg Type
	TLC339IPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

www.ti.com

RUMENTS

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
						no Sb/Br)		
TLC339IPWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC339IPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC339IPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC339MD	ACTIVE	SOIC	D	14	50	TBD	CU NIPDAU	Level-1-220C-UNLIM
TLC339MDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC339MDR	ACTIVE	SOIC	D	14	2500	TBD	CU NIPDAU	Level-1-220C-UNLIM
TLC339MDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC339MN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

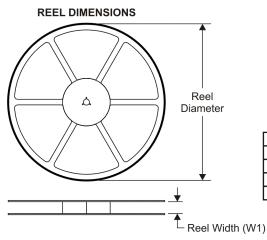
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

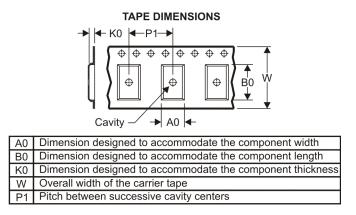
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

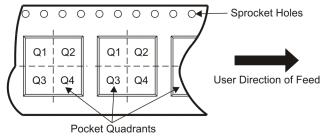
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

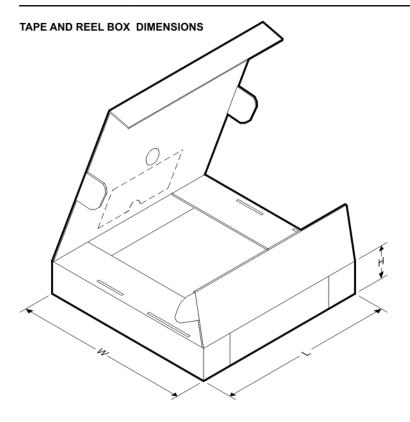

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
5962-9555001NXDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC339CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC339CNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TLC339CPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLC339IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLC339IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLC339MDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION

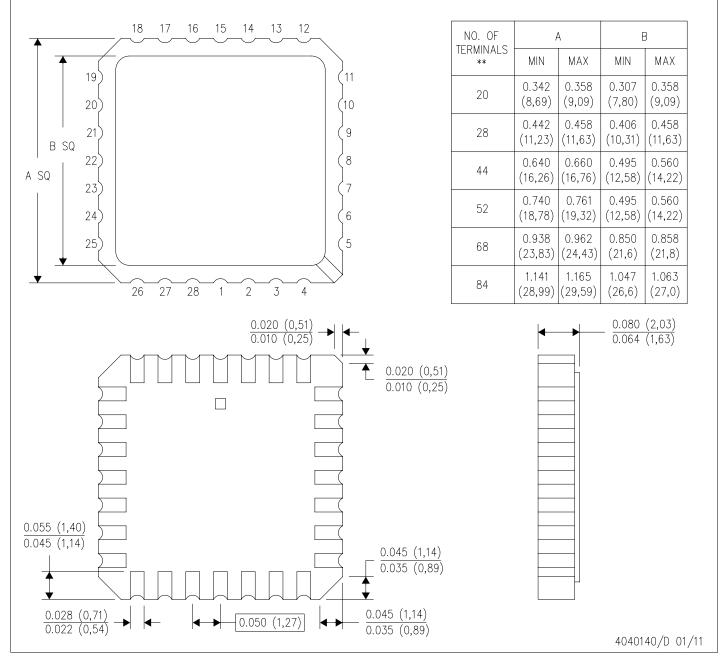
9-Dec-2010

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
5962-9555001NXDR	SOIC	D	14	2500	346.0	346.0	33.0
TLC339CDR	SOIC	D	14	2500	346.0	346.0	33.0
TLC339CNSR	SO	NS	14	2000	346.0	346.0	33.0
TLC339CPWR	TSSOP	PW	14	2000	346.0	346.0	29.0
TLC339IDR	SOIC	D	14	2500	333.2	345.9	28.6
TLC339IPWR	TSSOP	PW	14	2000	346.0	346.0	29.0
TLC339MDR	SOIC	D	14	2500	346.0	346.0	33.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

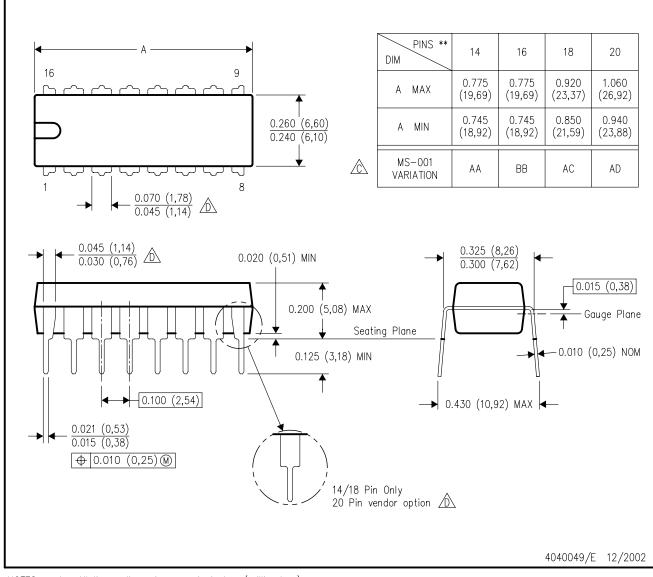
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

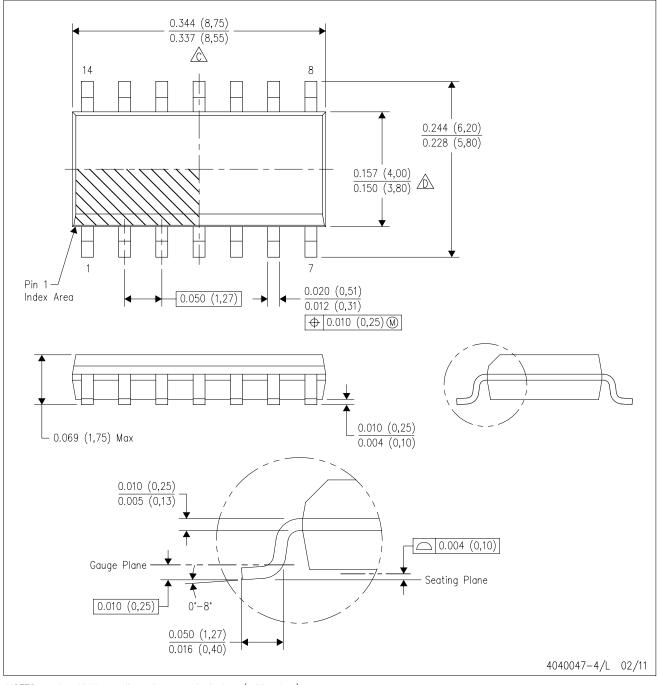
B. This drawing is subject to change without notice.


- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

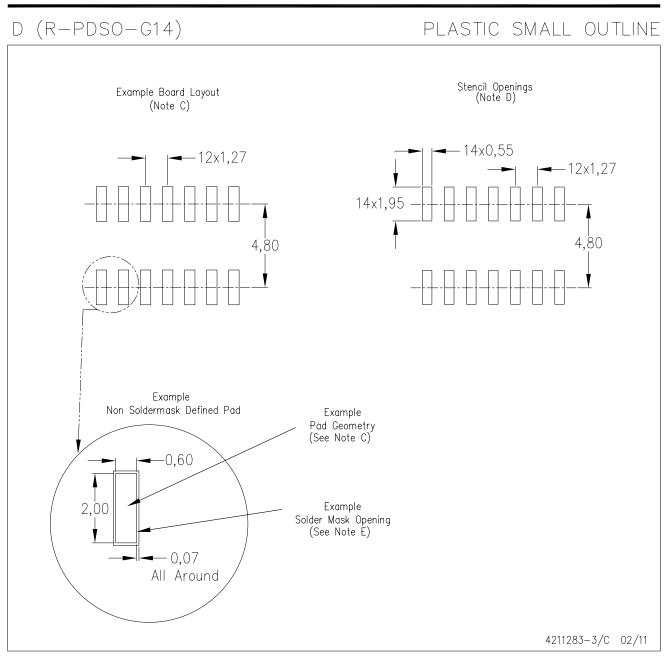
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

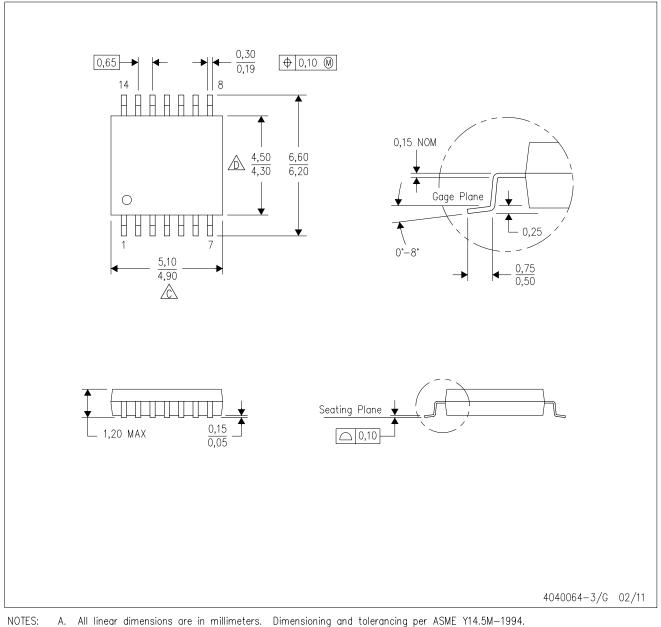
- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

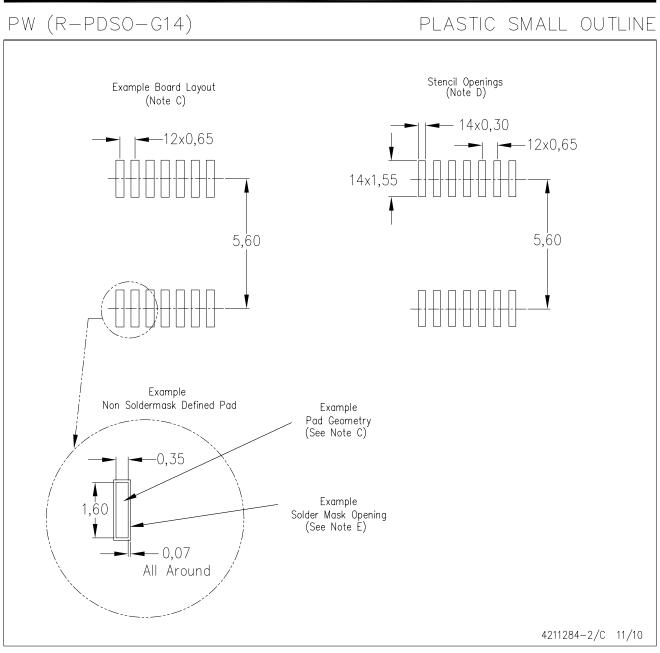

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

A. An integration of the information o


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated